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A B S T R A C T

We study several intrinsic properties of the Carathéodory and Szegő metrics on finitely
connected planar domains. Among them are the existence of closed geodesics and
geodesic spirals, boundary behaviour of Gaussian curvatures, and L2-cohomology.
A formula for the Szegő metric in terms of the Weierstrass ω-function is obtained.
Variations of these metrics and their Gaussian curvatures on planar annuli are also
studied. Consequently, we obtain optimal universal upper bounds for their Gaussian
curvatures while no universal lower bounds exist for their Gaussian curvatures. More-
over, it follows that there are domains where the Gaussian curvatures of the Szegő
metric assume both negative and positive values. Furthermore, we have established
the existence of domains where the Gaussian curvatures of the Bergman and Szegő
metrics have opposite signs. Lastly, it is also observed that there is no universal upper
bound for the ratio of the Szegő and Carathéodory metrics.
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Part I

O V E RV I E W A N D P R E L I M I N A R I E S





1
I N T R O D U C T I O N

The Riemann mapping theorem is a landmark result in complex analysis, stating that
any simply connected planar domain, except the complex plane C, is holomorphically
equivalent to the unit disc D. However, such a classification does not exist in higher
dimensions, making the study of the geometry of domains particularly intriguing. In
1907, Poincaré highlighted this distinction by demonstrating that the open-unit ball B

2

and the open bidisc D
2 are not holomorphically equivalent, despite both being simply

connected, using the group of holomorphic automorphisms. This result underscores
the importance of attaching invariant objects to domains that remain unchanged under
biholomorphic mappings.

The study of invariant objects originated with the work of C. Carathéodory, who
defined an invariant metric—later known as the Carathéodory metric—by utilizing the
set of bounded holomorphic functions on a domain. He approached the classification
problem without relying on the group of holomorphic automorphisms. In 1933,
Bergman took a different approach by defining an invariant Kähler metric—called the
Bergman metric, induced by the Bergman kernel—a reproducing kernel for the space
of square-integrable holomorphic functions on a domain known as the Bergman space.
In 1967, Kobayashi introduced another invariant metric defined using analytic discs
within a domain—called the Kobayashi metric. This metric is, in some sense, dual to
the Carathéodory metric. The classical invariant metrics—Carathéodory, Kobayashi,
and Bergman—play a fundamental role in complex analysis. The study of these
metrics and their boundary behaviour is a powerful tool in various problems, such
as characterizing domains, extending biholomorphic and proper holomorphic maps
to boundary points, identifying domains with non-compact groups of holomorphic
automorphisms, and exploring Gromov hyperbolicity, among many others.

In 1915, Hardy extended Hadamard’s three-circle theorem, laying the foundation
for a new mathematical field that bears his name: the theory of Hardy spaces. The
reproducing kernel of the Hardy space, known as the Szegő kernel, induces the Szegő
metric on C∞-smoothly bounded planar domains, analogous to the Bergman metric.
The Szegő metric is invariant because the arc length measure transforms well under
conformal equivalences. The Szegő kernel and the Szegő metric are well-defined
on any non-degenerate finitely connected planar domain (see [3] for more details ),
since such a domain is conformally equivalent to a C∞-smoothly bounded planar
domain. These notions are defined similarly in higher dimensions, using the Euclidean
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surface area measure on C∞-smoothly bounded domains. However, they are generally
not invariant, as the Euclidean surface area measure does not behave well under
biholomorphisms. To address this issue, Fefferman introduced a new surface area
measure on C∞-smoothly bounded strongly pseudoconvex domains, which Barrett and
Lee used to define an invariant Kähler metric called the Fefferman-Szegő metric. They
studied various properties of this metric and compared it with the Bergman metric.
This metric was further investigated by Krantz in [29] and [30]. Notably, in dimension
n = 1, the Fefferman surface area measure reduces to the arc length measure, and thus,
the Fefferman-Szegő metric coincides with the Szegő metric.

This thesis incorporates the research findings presented in the preprint [8]. Here, we
study the intrinsic properties of the Carathéodory metric dscΩ = cΩ(z)|dz| and Szegő
metric dssΩ = sΩ(z)|dz|, such as geodesics, curvature, L2-cohomology, etc., and show
that these metrics resemble the Bergman metric on non-degenerate finitely connected
planar domains Ω → C. We also provide a closed expression of the Szegő metric on
the annulus as well as we study the variations of these metrics and their curvatures on
planar annuli.

Geodesics. The geodesics in the Bergman metric escaping towards the boundary
play a crucial role in Fefferman’s proof of the smooth extension up to the boundary
of biholomorphic mappings between C∞-smoothly bounded strongly pseudoconvex
domains [18]. It naturally leads to the following question: Does there exist a geodesic
for the Bergman metric that stays within a compact subset of a C∞-smoothly bounded
strongly pseudoconvex domain? Such a geodesic (if it exists) can be closed or non-
closed. The latter one is known as a geodesic spiral. Herbort investigated this question
in [23] and provided an affirmative answer for domains that are not topologically
trivial. On the other hand, no non-trivial closed geodesics or geodesic spirals exist in a
simply connected planar domain that is not all of C as such a domain is conformally
equivalent to the unit disc D, and the Bergman metric on the unit disc D coincides with
the Poincaré metric. We prove that the analogous results hold for the Carathéodory
and Szegő metrics. Results of this kind were obtained for the capacity metric in [10]
and for the Kobayashi-fuks metric in [11, 27].

The Szegő metric on a doubly connected domain. In [41], Zarankiewicz derived a
formula for the Bergman kernel on an annulus in terms of the Weierstrass ω-function.
Using this, a similar formula for the Szegő kernel on an annulus can be obtained (see,
for example, [12]). Formulas for the Bergman and capacity metrics in terms of the
ω-function can also be derived and were helpful in studying the qualitative behaviour
of geodesics and curvatures of these metrics on an annulus (see [24], [23], and [1]). We
show that the Szegő metric ds2

sAr
on the annulus Ar = {z ↑ C : r < |z| < 1}, where

r ↑ (0, 1), can be expressed in terms of the Weierstrass elliptic function ω with periods
2ω1 = ↓2 log r and 2ω3 = 2iπ as follows:

ds2
sAr

=
ω
(
2 log |z|

)
↓ ω

(
2 log |z|+ ω1 + ω3

)

|z|2 |dz|2.
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We hope this formula will be useful in studying the qualitative behaviour of geodesics
and curvature of the Szegő metric on an annulus, as in the case of the Bergman and
capacity metrics.

Curvature. Let εmΩ(z) denote the Gaussian curvature of a C2-smooth conformal
metric mΩ(z)|dz|. Suita [38] showed that εcΩ is at most ↓4 on any domain Ω → C that
admits a nonconstant bounded holomorphic function. On the other hand, Burbea [12]
showed that if Ω → C is a C2-smoothly bounded domain, then εcΩ(z) approaches ↓4
if z approaches bΩ nontangentially. In [36], it was obtained that εcΩ(z) approaches
↓4 without any restricted approach to the boundary. The limiting behaviour of the
higher-order curvatures of the Caratheodory metric was also studied in the above
article. For the Szegő metric, we observe (see Chapter 7 for more details) that εsΩ is at
most 4 on any non-degenerate finitely connected domain Ω → C. As for the limiting
behaviour of εsΩ , we establish that the N-th order curvature ε

(N)
mΩ (z) (see Definition

2.1.6) where mΩ = cΩ or sΩ, satisfies

ε
(N)
mΩ (z) ↔ ↓4

(
N

∏
m=1

m!

)2

,

as z approaches bΩ. In particular, we have εsΩ(z) approaches ↓4 as z approaches
bΩ. This fact, combined with [21, Theorem 1.17], immediately implies that for each
isometry between two non-degenerate finitely connected planar domains equipped
with the Szegő metric (or the Carathéodory metric) is either holomorphic or conjugate
holomorphic.

L2-cohomology. Let Ω → C
n be a C∞-smoothly bounded strongly pseudoconvex

domain. Donnelly and Fefferman [17] established that Ω admits no square-integrable
harmonic (p, q)-forms with respect to the Bergman metric, except in the case where
p + q = n, for which the space of such forms is infinite-dimensional. Ohsawa [34]
provided a more accessible proof of the infinite dimensionality of the L2-cohomology
in the middle dimension. Furthermore, Donnelly [16] provided an alternative proof
of the vanishing of the L2-cohomology outside the middle dimension, relying on a
Gromov’s observation [22] which is, if M is a complete Kähler manifold of complex
dimension n, and its Kähler form ω can be expressed as ω = dϱ, where ϱ is bounded
in the supremum norm, then M does not admit any square-integrable harmonic k-form
for k ↗= n. We have established that these ideas can be applied to prove an analogous
result for the Szegő and Carathéodory metrics. This kind of result was also investigated
for the Robin metric by Borah [9] and for the capacity metric by Borah-Haridas-Verma
[10].

Variations of the Carathéodory and Szegő metrics on planar annuli. Recall that
the Gaussian curvatures of the Carathéodory and the Szegő metrics have the universal
upper bounds ↓4 and 4, respectively. Theorem 3.2.3 shows that for the Carathéodory
metric, the upper bound ↓4 is optimal. It is natural to ask whether the upper bound 4
is optimal for the Szegő metric. Similarly, we ask whether the Gaussian curvatures of
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these metrics have universal lower bounds. These questions for the Bergman metric
have been studied by several authors—see [25], [31], [14], [15], and [42]. Among them,
in [15], Dinew studied the variation of the Gaussian curvatures of the Bergman metric
on planar annuli to answer these questions, which were later simplified by Zwonek
in [42]. Zwonek’s idea was to analyse the maximal domain functions that appear in
the Bergman-Fuks formula for the curvature of the Bergman metric. Using similar
ideas, we study the variations of the Carathéodory and Szegő metrics, along with
their Gaussian curvatures on planar annuli. As a result, we obtain optimal universal
upper bounds for their curvatures, whereas no universal lower bounds exist for them.
Furthermore, we establish the existence of domains where the Gaussian curvature of
the Szegő metric achieves both positive and negative real values. We also show that
there are domains in which the product of the Gaussian curvatures of the Bergman
and Szegő metrics have opposite signs. Lastly, we establish that there is no universal
upper bound for sΩ/cΩ.

The thesis is organised as follows. The next chapter (Chapter 2) covers the prelimi-
naries, where we recall the definition of the Carathéodory and Szegő metrics, and their
higher-order curvatures, followed by some known examples. In Chapter 3, we exam-
ine the boundary behaviour of the Carathéodory metric cΩ(z)|dz|, and Szegő metric
sΩ(z)|dz| and provide several applications. These applications include the localisation
of ∂klcΩ and ∂klsΩ, Gromov hyperbolicity of sΩ(z)|dz|, and the limiting behaviour of
the higher-order curvatures. Chapter 4 demonstrates the existence of closed geodesics
and geodesic spirals for the Szegő and Carathéodory metrics. In Chapter 5, the Szegő
metric on an annulus is computed. Chapter 6 explores the L2-cohomology of the
Szegő and Carathéodory metrics. In Chapter 7, we investigate the variations of the
Carathéodory and Szegő metrics on planar annuli, which provide several applications
such as the optimality of the universal upper and lower bounds for their Gaussian
curvatures and also establish the comparison between these metrics.



2
P R E L I M I N A R I E S

This chapter is mainly dedicated to reviewing some basic notions, such as the
Carathéodory and Szegő metrics and their higher order curvatures, along with some
examples. We mainly follow [4, 26] to recall these notions.

2.1 the carathéodory and szegő metrics

2.1.1 The Carathéodory metric

Let Ω → C be a domain. The Carathéodory metric on Ω is the function cΩ : Ω ↔ [0, ∞)
defined by

cΩ(z) = sup
{∣∣ f ↘(z)

∣∣ : f : Ω ↔ D is holomorphic and f (z) = 0
}

.

Under a conformal equivalence φ : Ω ↔ Ω↘, cΩ(z) transforms by the rule

cΩ(z) = cΩ↘
(
φ(z)

)∣∣φ↘(z)
∣∣.

Suita [38] showed that if Ω admits a nonconstant bounded holomorphic function, then
cΩ is a positive real analytic function and thus,

dscΩ = cΩ(z)|dz|,

is a conformal metric on Ω. The Carathéodory metric is analogously defined in higher
dimensions—see, for instance, [26]. It is invariant under biholomorphisms but not
smooth, in general.

2.1.2 The Szegő metric

We recall the definition of the Hardy space and the Szegő kernel following Bell’s
book [4]. Let Ω → C be a C∞-smoothly bounded domain. Then the boundary bΩ
consists of finitely many C∞-smooth Jordan curves. Denote by L2(bΩ) the Hilbert
space of complex-valued functions on bΩ that are square-integrable with respect to
the arc-length measure ds on bΩ.

Definition 2.1.1. Let f ↑ C∞(bΩ). The Cauchy transform C f of f in Ω is defined as

C f (z) =
1

2πi

ˆ
bΩ

f (w)
w ↓ z

dw ↑ O(Ω). (1)

21
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Remark 2.1.2. It can be seen that the definition of the Cauchy transform can be
extended from C∞(bΩ) to L2(bΩ).

In harmonic analysis, the Poisson integral plays a crucial role, as it creates a one-
to-one correspondence between continuous functions on the boundary and harmonic
functions in the interior whose boundary values are those functions. Similarly, the
Cauchy transform serves a comparable role in complex analysis, although the relation-
ship is more delicate since not all functions on the boundary can be interpreted as the
boundary values of a holomorphic function. For example, f (z) = z, z ↑ bD or any
continuous real-valued functions on bΩ. These examples illustrate that those functions
in L2(bΩ) that are the boundary values of holomorphic functions on Ω forms a proper
subset, which is informally known as the Hardy space.

Definition 2.1.3. The Hardy space H2(bΩ) is defined as the closure in L2(bΩ) of the
subspace of functions in O(Ω), which are C∞-smooth on Ω.

This is not the standard definition of the Hardy space. To recall the classical definition
of the Hardy space, let dΩ(z) = dist(z, bΩ) be the Euclidean distance of z to bΩ and let
δ > 0 be sufficiently small such that for 0 < ε < δ, Ωε = {z ↑ Ω : dΩ(z) > ε} is a C∞-
smoothly bounded domain with bΩε is parameterized by wε(t) = w(t) + iεT(w(t)).
Then the Hardy space H2(Ω) is defined as

H2(Ω) =

{
h ↑ O(Ω) : sup

0<ε<δ

(ˆ ∣∣∣h
(
wε(t)

)∣∣∣
2∣∣w↘

ε(t)
∣∣dt

) 1
2
< ∞

}
. (2)

As sets H2(bΩ) and H2(Ω) are not equal; however, they are equivalent in the following
sense:

The Cauchy transform of functions in H2(bΩ) belongs to H2(Ω) and conversely, functions
in H2(Ω) are the Cauchy transform of functions in H2(bΩ)—see [4, Theorem 6.1 and
Theorem 6.2].

By an abuse of notation, we will identify the elements h ↑ H2(bΩ) with their Cauchy
transform Ch ↑ H2(Ω). Using the Cauchy transform, it can be shown that the Hardy
space H2(bΩ) is a reproducing kernel Hilbert space. The associated reproducing
kernel SΩ(z, w) is known as the Szegő kernel for Ω, which is uniquely determined by
the following properties:

(a) For each z ↑ Ω, SΩ(·, z) ↑ H2(bΩ),

(b) For all z, w ↑ Ω, SΩ(z, w) = SΩ(w, z), and

(c) For each f ↑ H2(bΩ) and z ↑ Ω,

f (z) =
ˆ

bΩ
f (w)SΩ(z, w)ds.
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In terms of a complete orthonormal basis {φk}k≃1 of H2(bΩ), the Szegő kernel SΩ(z, w)
can be expressed as

SΩ(z, w) =
∞

∑
k=1

φk(z)φk(w), (3)

where the series converges uniformly on compact subsets of Ω ⇐ Ω.
We recall from [4] that under a conformal equivalence φ : Ω ↔ Ω↘ between two C∞-

smoothly bounded domains, the Szegő kernel transforms according to the following
rule

SΩ(z, w) =
√

φ↘(z)SΩ↘
(
φ(z), φ(w)

)√
φ↘(w). (4)

The function φ↘ has a single-valued square root on Ω, and thus
√

φ↘(z) is well-defined.
The restriction of the Szegő kernel to the diagonal, SΩ(z) = SΩ(z, z), is a positive real
analytic function on Ω. By a classical result of Garabedian, the Carathéodory metric
and the Szegő kernel on a C∞-smoothly bounded domain Ω → C are related by the
identity (see for example [6, p. 118])

cΩ(z) = 2πSΩ(z), (5)

Using this identity, the real analyticity of the Carathéodory metric was established in
[38]. Note that the function log SΩ(z) is strictly subharmonic.

Definition 2.1.4. The Szegő metric on Ω is defined as

dssΩ = sΩ(z)|dz|,

where

sΩ(z) =

√
∂2 log SΩ(z)

∂z∂z
.

It follows from (4) that dssΩ is a conformal metric.
The Szegő kernel and the Szegő metric are defined on any finitely connected planar

domain Ω (not necessarily C∞-smoothly bounded) such that no boundary component
of Ω is a singleton (see for example [3]). Such a domain is called a non-degenerate,
finitely connected domain. It is well-known that there is a conformal equivalence
φ : Ω ↔ Ω↘, where Ω↘ → C is a bounded domain with real analytic boundary. Also,
the function φ↘ has a single-valued square root on Ω. It is thus customary to define the
Szegő kernel with the aid of the transformation formula, i.e.,

SΩ(z, w) =
√

φ↘(z)SΩ↘(φ(z), φ(w))
√

φ↘(w). (6)

Then, the Szegő metric is defined analogously.
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2.1.3 Higher order curvatures

Definition 2.1.5. The Gaussian curvature of a C2-smooth conformal metric dsmΩ =
mΩ(z)|dz| on a domain Ω → C is defined by

εmΩ(z) = ↓∆ log mΩ(z)
m2

Ω(z)
.

Burbea in [13] generalises the Gaussian curvature as follows.

Definition 2.1.6. For N ≃ 1, the N-th order curvature of a C2-smooth conformal metric
dsmΩ = mΩ(z)|dz| on a domain Ω → C is defined as

ε
(N)
mΩ (z) = ↓4

det
(
∂klmΩ(z)

)N
k,l=0

m(N+1)2

Ω (z)
,

where ∂k = ∂k/∂zk , ∂l = ∂l/∂zl, and ∂kl = ∂k∂l.

It is evident that the function ε
(N)
mΩ (z) is invariant under conformal equivalences, and

ε
(1)
mΩ(z) coincides with εmΩ(z).

2.1.4 Some examples

Example 2.1.7. Let Ω = D denote the unit disc. For f ↑ H2(bD), and z ↑ D, we know

f (z) =
1

2πi

ˆ
bD

f (w)
w ↓ z

dw.

Since T(w) = iw, we obtain

f (z) =
ˆ

bD

f (w)
1

2π(1 ↓ zw)
ds.

Thus, by the uniqueness of SD, we get

SD(z, w) =
1

2π(1 ↓ zw)
.

It follows that

sD(z) =
1

(1 ↓ |z|2) , (7)

and by (5), we have cD(z) = sD(z) = 1/(1 ↓ |z|2). Therefore,

ε
(N)
cD

(z) = ε
(N)
sD

(z) = ↓4

(
N

∏
m=1

m!

)2

, (8)

for all z ↑ D.
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Example 2.1.8. Let Ω = H = {z ↑ C : Im(z) > 0}. Recall that z ⇒↔ (z ↓ i)/(z + i) is a
conformal equivalence of the upper half-plane H = {z ↑ C : Im z > 0} onto D. Then,
using

SH(z, w) =
√

φ↘(z)SD

(
φ(z), φ(w)

)√
φ↘(w),

we have
SH(z, ζ) =

i
2π(z ↓ ζ)

.

This implies

sH(z) =
1

2 Im
(
z
) ,

and by (5), cH(z) = sH(z) = 1/
(
2 Im(z)

)
. Then by (8), we have

ε
(N)
cH

(z) = ε
(N)
sH

(z) = ↓4

(
N

∏
m=1

m!

)2

,

for all z ↑ H.
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3
B O U N D A RY B E H AV I O U R

Biholomorphic invariants, particularly their boundary behaviour, play an essential role
in understanding the geometry of domains. The Carathéodory metric is a well-known
invariant metric that has been extensively studied and has found several applications.
On the other hand, the Szegő metric was recently defined by Barrett-Lee [2] using
the Fefferman surface area measure (see page 259 of [19]). This approach yields an
invariant version of the Szegő metric—known as the Fefferman-Szegő metric, as the
classical Szegő metric is generally not invariant. However, in one dimension, the
classical Szegő metric and Fefferman-Szegő metric coincide. The Fefferman-Szegő
metric was further explored by Krantz in [29] and [30].

In this chapter, we will derive the boundary behaviour of the Carathéodory metric
cΩ(z)|dz| and the Szegő metric sΩ(z)|dz| along with their partial derivatives, using the
affine scaling method. We highlight its significance by presenting various applications,
both in this and in the subsequent chapters.

3.1 boundary asymptotics

3.1.1 Localisation of SΩ(z)

The following localisation of the Carathéodory metric is well-known (see [26, Section
19.3]): if Ω → C is a C∞-smoothly bounded domain, p ↑ bΩ, and U is a (sufficiently
small) neighbourhood of p, then

lim
z↔p

cU⇑Ω(z)
cΩ(z)

= 1. (9)

Now, let Ω̃ → Ω be a C∞-smoothly bounded domain that share an open piece Γ → bΩ.
Let p ↑ Γ and choose a neighbourhood U of p sufficiently small so that U ⇑ Ω̃ = U ⇑ Ω
and (9) holds. Since the Carathéodory metric is decreasing under holomorphic maps,

1 ⇓ cΩ̃(z)
cΩ(z)

⇓ cU⇑Ω(z)
cΩ(z)

,

and hence by (9),

lim
z↔p

cΩ̃(z)
cΩ(z)

= 1.

29
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Combining this with the identity cΩ = 2πSΩ on C∞-smoothly bounded domains, we
have the following:

Proposition 3.1.1. Let Ω̃ → Ω → C be C∞-smoothly bounded domains such that bΩ̃ and bΩ
share an open piece Γ → bΩ. Then for every p ↑ Γ,

lim
z↔p

SΩ̃(z)
SΩ(z)

= 1.

3.1.2 Scaling method

Let Ω → C be a C∞-smoothly bounded domain and p ↑ bΩ. Let ψ be a C∞-smooth
local defining function for Ω at p defined on a neighbourhood U of p. Let (pj)j≃1 be a
sequence in U ⇑ Ω converging to p. Consider the affine maps Tj : C ↔ C defined by

Tj(z) =
z ↓ pj

↓ψ(pj)
, (10)

and let Ωj = Tj(Ω). Observe that Tj(pj) = 0, and thus every Ωj contains 0. Moreover,
the function

ψj(z) =
1

↓ψ(pj)
ψ ⇔ T↓1

j (z),

is a C∞-smooth local defining function for Ωj at Tj(p) defined on Tj(U). Observe that
if K is a compact subset of C, then K → Tj(U) for j large, and thus ψj is defined on K.
Moreover, for z ↑ K,

ψj(z) =
1

↓ψ(pj)
ψ
(

pj + z(↓ψ(pj)
)

= ↓1 + 2 Re
(
∂ψ(pj)z

)
+ ψ(pj)o(1),

by expanding ψ in a Taylor series near pj. Therefore, (ψj)j≃1 converges uniformly on
compact subsets of C to

ψ∞(z) = ↓1 + 2 Re
(
∂ψ(p)z

)
.

Consequently, a set is compactly contained in the half-plane

H =
{

z ↑ C : ↓1 + 2 Re
(
∂ψ(p)z

)
< 0

}
, (11)

if and only if it is uniformly compactly contained in Tj(U ⇑Ω) → Ωj for j large. In other
words, the sequences of domains (Ωj)j≃1 and (Tj(U ⇑ Ω))j≃1 converge in the local
Hausdorff sense to the half-plane H. Moreover, if Ω̃ → Ω is a C∞-smoothly bounded
domain such that bΩ̃ and bΩ share a neighbourhood of p in bΩ, and Ω̃j = Tj(Ω̃), then
taking U sufficiently small, Tj(U ⇑ Ω) → Ω̃j → Ωj, and thus the sequence of domains
(Ω̃j)j≃1 also converges in the local Hausdorff sense to H.

At this point, we briefly recall the definition of the local Hausdorff convergence. A
sequence of domains Dj converges to D∞ in the local Hausdorff sense if the following
conditions hold:
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(a) For any compact subset K → D∞, there exists a positive integer m such that
K → Dj for all j ≃ m.

(b) For any compact subset L is contained in the interior of ⇑j≃m↘Dj for some positive
integer m↘ satisfies L → D∞.

To this end, we write down the Szegő kernel, its metric and higher-order curvatures
for the half-plane H; we recall SH(z, ζ) = i

2π(z↓ζ)
from Example 2.1.8. Since z ⇒↔

↓i(∂ψ(p)z ↓ 1/2) is the conformal equivalence of H onto H gives

SH(z, ζ) =

∣∣∂ψ(p)
∣∣

2π
(
1 ↓ ∂ψ(p)z ↓ ∂ψ(p)ζ

) . (12)

It follows that

sH(z) =
∣∣∂ψ(p)

∣∣

1 ↓ 2 Re
(
∂ψ(p)z

) , (13)

and

ε
(N)
mH

(z) = ↓4

(
N

∏
m=1

m!

)2

, (14)

for all z ↑ H.
In this situation, we have

Proposition 3.1.2. The sequence (SΩj(z, ζ))j≃1 converges uniformly on compact subsets
of H ⇐H to SH(z, ζ). Moreover, all the partial derivatives of SΩj(z, ζ) converge to the
corresponding partial derivatives of SH(z, ζ) uniformly on compact subsets of H⇐H.

This follows from Proposition 3.2 of [36] together with the following observation
we add for clarity: choose U above to be sufficiently small so that U ⇑ Ω is simply
connected. Fix a ↑ H. Then a ↑ Tj(U ⇑ Ω) for j large. Since Tj(U ⇑ Ω) is simply
connected, by the proof of Proposition 3.1 in [36],

cTj(U⇑Ω)(a) ↔ cH(a).

Also, by the transformation formula for the Carathéodory metric and by (9),

cTj(U⇑Ω)(a)

cΩj(a)
=

cU⇑Ω
(
↓ ψ(pj)a + pj

)

cΩ
(
↓ ψ(pj)a + pj

) ↔ 1.

This implies that
cΩj(a) ↔ cH(a).

Now, the proof of Proposition 3.2 of [36] applies to show that (SΩj(z, ζ))j≃1 converges
uniformly on compact subsets of H⇐H to SH(z, ζ). The uniform convergence of the
derivatives follows from the fact that these functions are holomorphic in z, ζ. Finally,
since SΩj(z) and SH(z) are nonvanishing, it is immediate from the above proposition
that
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Corollary 3.1.3. All the partial derivatives of SΩj(z) and sΩj(z) converge uniformly on
compact subsets of H to the corresponding derivatives of SH(z) and sH(z).

Proposition 3.1.4. Let Ω → C be a C∞-smoothly bounded domain and p ↑ bΩ. Let ψ be a
C∞-smooth local defining function for Ω at p defined in a neighbourhood U of p and H be the
half-plane defined by

H =
{

z ↑ C : ↓1 + 2 Re
(
∂ψ(p)z

)
< 0

}
.

Then as U ⇑ Ω ↖ z ↔ p,

(a) ∂klSΩ(z)
(
↓ ψ(z)

)k+l+1 ↔ (k+l)!
2π

∣∣∂ψ(p)
∣∣(∂ψ(p)

)k(
∂ψ(p)

)l .

(b) ∂klsΩ(z)
(
↓ ψ(z)

)k+l+1 ↔ (k + l)!
∣∣∂ψ(p)

∣∣(∂ψ(p)
)k(

∂ψ(p)
)l .

Proof. Let (pj)j≃1 be a sequence in Ω such that pj ↔ p. Then pj ↑ U for j large. Let
Ωj = Tj(Ω) where Tj is as in (10). Differentiating

SΩ(z) = SΩj

(
Tj(z)

)(
↓ ψ(pj)

)↓1,

we obtain
∂klSΩ(pj)

(
↓ ψ(pj)

)k+l+1
= ∂klSΩj(0) ↔ ∂klSH(0),

by Proposition 3.1.2. Then, it follows by an explicit calculation of the derivatives of
SH(z).

Similarly, (b) is obtained by differentiating

sΩ(z) = sΩj

(
Tj(z)

)(
↓ ψ(pj)

)↓1,

which completes the proof of the proposition.

3.2 some applications

3.2.1 Localisation of ∂klSΩ and ∂klsΩ

As an immediate consequence of the boundary asymptotics, we have the following
localisation result that generalises Proposition 3.1.1:

Proposition 3.2.1. Let Ω̃ → Ω → C be C∞-smoothly bounded domains such that bΩ̃ and bΩ
share an open piece Γ → bΩ. Then for p ↑ Γ and k, l ≃ 0,

∂klSΩ̃(z)
∂klSΩ(z)

↔ 1 and
∂klsΩ̃(z)
∂klsΩ(z)

↔ 1,

as z ↔ p, z ↑ Ω̃.

Proof. Choose a common C∞-smooth local defining function ψ for Ω and Ω̃ at p
defined on a neighbourhood U of p. Then, by Proposition 3.1.4, both ∂klSΩ(z) and
∂klSΩ̃(z) (resp. ∂klsΩ(z) and ∂klsΩ̃(z)) have the same boundary asymptotics and hence
the proposition follows.
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3.2.2 Comparison with the classical metrics

Another consequence of Proposition 3.1.4 is that the Szegő metric is comparable with
the hyperbolic metric. Let ρΩ(z)|dz| be the hyperbolic metric and sΩ(z)|dz| the Szegő
metric on a C∞-smoothly bounded domain Ω → C. By Proposition 3.1.4 (ii), there
exists a constant C > 1 such that for every z ↑ Ω,

C↓1ρΩ(z) ⇓ sΩ(z) ⇓ CρΩ(z). (15)

It follows that sΩ(z)|dz| is comparable to ρΩ(z)|dz| and hence also to the Carathéodory
and the Bergman metric.

The above observation implies that the Szegő metric on Ω is Gromov hyperbolic. In
a coarse sense, a Gromov hyperbolic metric space behaves like a negatively curved
manifold and is defined as follows. Let (X, d) be a metric space and x, y ↑ X. By a
geodesic segment in X joining x and y, we mean continuous map σ : [a, b] ↔ X, where
[a, b] → R is a closed interval, such that σ(a) = x, σ(b) = y, and for every s, t ↑ [a, b],

d
(
σ(s), σ(t)

)
= |s ↓ t|.

A geodesic segment joining x and y, despite its possible non-uniqueness, will be
denoted by [x, y]. The space (X, d) is called a geodesic space if, for every pair of points
x, y ↑ X, there is a geodesic segment joining x and y. Given δ ≃ 0, a geodesic metric
space (X, d) is called δ-hyperbolic if every geodesic triangle [x, y] ↙ [y, z] ↙ [z, w] in X
is δ-thin, i.e.,

d
(
w, [y, z] ↙ [z, x]

)
⇓ δ,

for all w ↑ [x, y]. The metric space (X, d) is called Gromov hyperbolic if there exists a
δ > 0 such that (X, d) is δ-hyperbolic.

For brevity, we will denote the distance functions induced by ρΩ and sΩ by the same
notations ρΩ and sΩ, respectively.

Corollary 3.2.2. Let Ω → C be a non-degenerate finitely connected domain. Then the metric
space (Ω, sΩ) is Gromov hyperbolic.

Proof. Since a non-degenerate finitely connected domain is conformally equivalent to
a C∞-smoothly bounded domain and conformal maps are isometries (in differential
geometric sense and hence also in metric geometric sense) of the Szegő metric, which,
therefore preserve Gromov hyperbolicity, we assume without loss of generality that Ω
is a C∞-smoothly bounded domain.

From [35], (Ω, ρΩ) is δ-hyperbolic for some δ > 0. Since ρΩ(z)|dz| is complete, this
implies that sΩ(z)|z| is also complete and hence (Ω, sΩ) is a geodesic space. Moreover,
the identity map between (Ω, ρΩ) and (Ω, sΩ) is a quasi-isometry and consequently
(Ω, sΩ) is also δ-hyperbolic, possibly for a different choice of δ.
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3.2.3 Boundary behaviour of curvatures

In [13], Burbea showed that for any p-connected domain Ωp → C where 1 ⇓ p < ∞,
ε
(N)
cΩ (z) satisfies

sup
z↑Ωp

ε
(N)
cΩ (z) ⇓ ↓4

(
N

∏
m=1

m!

)2

for all N ≃ 1.

Furthermore, equality holds for one point z ↑ Ωp, and for any N ≃ 1, if and only if
Ωp is simply connected. As for the boundary behaviour of ε

(N)
mΩ where mΩ = cΩ (for

this case—see [36]) or sΩ, we have

Theorem 3.2.3. Let Ω → C be a non-degenerate finitely connected domain and let mΩ = cΩ
or sΩ. Then for every p ↑ bΩ,

ε
(N)
mΩ (z) ↔ ↓4

(
N

∏
m=1

m!

)2

,

as z ↔ p.

Proof. First, assume that Ω is C∞-smoothly bounded and p ↑ bΩ. By Proposition 3.1.4
and recalling that cΩ(z) = 2πSΩ(z), we have for k, l ≃ 0,

∂klmΩ(z)
(
↓ ψ(z)

)k+l+1 ↔ ∂klmH(0),

as z ↔ p. Therefore, denoting the symmetric group over {0, . . . , N} by SN+1,

det
(

∂klmΩ(z)
N

k,l=0

(
↓ ψ(z)

)(N+1)2

= ∑
σ↑SN+1

sign(σ)
N

∏
k=0

(
∂kσ(k)mΩ(z)

(
↓ ψ(z)

)k+σ(k)+1


↔ ∑
σ↑SN+1

sign(σ)
N

∏
k=0

(
∂kσ(k)mH(0)



= det
(

∂klmH(0)
N

k,l=0
.

This implies that

ε
(N)
Ω (z) = ↓4

det
(

∂klmΩ(z)
N

j,k=0

(
↓ ψ(z)

)(N+1)2

m(N+1)2

Ω (z)
(
↓ ψ(z)

)(N+1)2

↔ ↓4
det

(
∂klmH(0)

N

k,l=0

m(N+1)2

H (0)
= ε

(N)
mH

(0),
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as z ↔ p. Recall from (14) that right-hand side is ↓4(∏N
m=1 m!)2 and the proof is

complete when Ω is C∞-smoothly bounded.
For the general case, let φ : Ω ↔ Ω↘ be a conformal equivalence where Ω↘ → C is a

C∞-smoothly bounded domain. Let p ↑ bΩ and (zj)j≃1 be a sequence in Ω such that
zj ↔ p. Since the sequence (φ(zj))j≃1 is bounded, it has a convergent subsequence, say
(φ(zjk))k≃1. Note that the limit of this subsequence must lie in bΩ↘. It follows from the
previous case that

ε
(N)
mΩ (zjk) = ε

(N)
mΩ↘

(
φ(zjk)

)
↔ ↓4

(
N

∏
m=1

m!

)2

.

Thus, we have shown that every sequence in Ω converging to p admits a subsequence
along which ε

(N)
mΩ converges to ↓4(∏N

m=1 m!)2. It follows that ε
(N)
mΩ (z) ↔ ↓4(∏N

m=1 m!)2

as z ↔ p. This completes the proof of the theorem.

In particular, Theorem 3.2.3 implies that εsΩ(z) approaches ↓4 as z approaches bΩ.
This, combined with [21, Theorem 1.17], immediately gives the following:

Corollary 3.2.4. Let Ω1 and Ω2 be two non-degenerate finitely connected planar domains
equipped with the metrics dscΩ1

and dscΩ2
(resp. dssΩ1

and dssΩ2
). Then, each isometry

f : (Ω1, dscΩ1
) ↔ (Ω2, dscΩ2

) (resp. f : (Ω1, dssΩ1
) ↔ (Ω2, dssΩ2

)) is either holomorphic or
conjugate holomorphic.
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G E O D E S I C S

The existence of closed geodesics is a classical topic in the realm of Riemannian
geometry. One of the most studied Riemannian metrics in several complex variables
is the Bergman metric. Herbort [23] provided the general result for the complete
Riemannian metric to prove the existence of closed geodesics for the Bergman metric
in C∞-smoothly bounded strongly pseudoconvex domains that are topologically non-
trivial. In contrast, geodesic spirals—non-closed geodesics in the complete Riemannian
metric that eventually remains in a compact subset—have also been examined by
Herbort for the Bergman metric in similar domains.

Using Herbort’s ideas, we will establish the existence of closed geodesics and
geodesic spirals for the Szegő and Carathéodory metrics in this chapter. Before
presenting our main result, we clarify here that by a geodesic of a C∞-smooth conformal
metric, we mean a geodesic in the differential geometric sense (and it is not the same
as a geodesic segment defined on p. 33). The equation of a geodesic σ : (a, b) ↔ Ω,
where (a, b) → R, of a C∞-smooth conformal metric dsΩ = mΩ(z)|dz| in a domain
Ω → C can be expressed in complex coordinates as

↓σ↘↘ =
1

m2
Ω(σ)

∂m2
Ω(σ)

∂z
(σ↘)2.

We can now state our main result:

Theorem 4.0.1. Let Ω → C be a non-degenerate n-connected domain, n ≃ 2. Equip Ω with
the conformal metric dsmΩ = mΩ(z)|dz|, where mΩ = cΩ or sΩ. Then

(a) Every non-trivial homotopy class of loops in Ω contains a closed geodesic.

(b) For every z0 ↑ Ω that does not lie on a closed geodesic, there exists a geodesic spiral
passing through z0.

4.1 existence of closed geodesics

We recall the following result of Herbort:

Theorem 4.1.1 (Theorem 1.1 [23]). Let G be a bounded domain in R
N, where N ↑ N, such

that π1(G) is non-trivial. Assume that the following conditions are satisfied:

37
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(a) For each p ↑ G, there is an open neighbourhood U → R
N such that the set G ⇑ U is

simply connected.

(b) G is equipped with a complete Riemannian metric g which possesses the following
property: (B) For each S > 0 there exists a δ > 0, such that for each p ↑ G with
d(p, bG) < δ and every X ↑ R

N, g(p, X) ≃ S∝X∝2 (where ∝ · ∝ denotes the Euclidean
norm).

Then, every non-trivial homotopy class in π1(G) contains a closed geodesic for g.

Proof of Theorem 4.0.1 (a). Using the same reasoning as in the proof of Corollary 3.2.2,
we assume without loss of generality that Ω is a C∞-smoothly bounded domain. It
suffices to show that ds2

mΩ
= m2

Ω(z)|dz|2 satisfies the hypotheses of the above theorem.
Let ψ be a C∞-smooth defining function for Ω. By Proposition 3.1.4 (b), for z ↑ Ω and
v ↑ C, we have

ds2
mΩ

(z, v)
|v|2 = m2

Ω(z) ↭
(
ψ(z)

)↓2,

which implies that the Property (B) is satisfied. All the other conditions are evidently
true. This proves (a).

4.2 existence of geodesic spirals

The main tool for the proof of Theorem 1.1 (ii) is a result of Herbort from [24]. To
state this result, we first recall the notion of a geodesic loop. Let (M, g) be a complete
Riemannian manifold.

(a) A geodesic spiral is a non-closed geodesic σ : R ↔ M in which each point σ(t) for
t ≃ 0 belongs to a fixed compact subset K of M.

(b) For a non-trivial geodesic σ : R ↔ M, if there exist t1, t2 ↑ R, t1 < t2 with
σ(t1) = σ(t2), then the segment σ|[t1,t2]

is referred to as a geodesic loop passing
through σ(t1).

Lemma 4.2.1 (Lemma 2.2, [24]). Let (M, g) be a complete Riemannian manifold with a
universal cover with infinitely many leaves. Let x0 be a point in M such that no closed geodesic
passes through x0. Assume a compact subset K of M exists with the property that each geodesic
loop passing through x0 is contained in K. Then, there exists a geodesic spiral passing through
x0.

In view of this lemma, the problem of showing the existence of geodesic spirals for
mΩ(z)|dz| now reduces to finding an appropriate compact subset K → Ω. For this, we
require the following:

Proposition 4.2.2. Let Ω → C be a C∞-smoothly bounded domain with a C∞-smooth defining
function ψ. Then there exists ε = ε(Ω) > 0 such that for each geodesic σ : R ↔ Ω of the
metric mΩ(z)|dz| satisfying (ψ ⇔ σ)(0) > ↓ε and (ψ ⇔ σ)↘(0) = 0, we have (ψ ⇔ σ)↘↘(0) > 0.
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Proof. Suppose to the contrary, for each k ↑ N, there exists a geodesic σk of mΩ(z)|dz|
satisfying

(a) ψ
(
σk(0)

)
> ↓1

k
, (b) (ψ ⇔ σk)

↘(0) = 0, and (c) (ψ ⇔ σk)
↘↘(0) ⇓ 0.

Let us denote for each k,

pk = σk(0), vk =
σ↘

k(0)∣∣σ↘
k(0)

∣∣ , and bk =
(ψ ⇔ σk)

↘↘(0)
∣∣σ↘

k(0)
∣∣2

⇓ 0.

By passing to the subsequence, let pk ↔ p0 and vk ↔ v0 where |v0| = 1. By a
translation and rotation of D, we may assume that

p0 = 0 and
∂ψ(0)

∂z
= 1.

Then from (b) we have

0 = lim
k↔∞

Re
(

∂ψ(pk)
∂z

vk

)
= Re

(
∂ψ(0)

∂z
v0

)
= Re(v0). (16)

On the other hand, from (c) we have

Re
(

∂ψ(pk)
∂z

σ↘↘
k (0)

)
+ Re

(
∂2ψ(pk)

∂z2

(
σ↘

k(0)
)2
)
+

∂2ψ(pk)
∂z∂z

∣∣σ↘
k(0)

∣∣2 ⇓ 0. (17)

Since σk is a geodesic of the metric m2
Ω|dz|2, we have

↓σ↘↘
k =

1
m2

Ω(σk)

∂m2
Ω(σk)

∂z
(σ↘

k)
2. (18)

Thus, combining (17) and (18), we obtain

↓Re

(
∂ψ

∂z
(pk)

1
m2

Ω(pk)

∂m2
Ω(pk)

∂z
(
σ↘

k(0)
)2
)
+ Re

(
∂2ψ(pk)

∂z2

(
σ↘

k(0)
)2
)

+
∂2ψ(pk)

∂z∂z
∣∣σ↘

k(0)
∣∣2 ⇓ 0.

Dividing throughout by |σ↘
k(0)|2 and multiplying by ↓ψ(pk), we have

↓ Re

(
∂ψ

∂z
(pk)

(
↓ ψ(pk)

) 1
m2

Ω(pk)

∂m2
Ω(pk)

∂z
v2

k

)
+

(
↓ ψ(pk)

)
Re

(
∂2ψ(pk)

∂z2 v2
k

)

+
(
↓ ψ(pk)

)∂2ψ
(

pk
)

∂z∂z
⇓ 0. (19)
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Observe that the last two terms converge to 0 as k ↔ ∞. On the other hand, by
Proposition 3.1.4,

(
↓ ψ(pk)

) 1
m2

Ω(pk)

∂m2
Ω(pk)

∂z
=

1
m2

Ω(pk)(↓ψ(pk))2
∂m2

Ω(pk)

∂z
(↓ψ(pk))

3 ↔ 2.

By taking k ↔ ∞ in (19), it follows that

Re
(

v2
0


≃ 0.

which is a contradiction as v0 = ±i from (16).

We are now in a position to give proof of Theorem 1.1 (b).

Proof of Theorem 4.0.1 (b). Using the same reasoning as in the proof of Corollary 3.2.2,
we assume without loss of generality that Ω is a C∞-smoothly bounded domain.
Let z0 ↑ Ω be such that no closed geodesics passes through it. Let ψ be a C∞-
smooth defining function for Ω and let ε > 0 be as in Proposition 4.2.2. Let ε1 =
min{ε, ↓ψ(z0)}. Set

K =


z ↑ Ω : ψ(z) ⇓ ↓ε1


.

Then, the compact set K has the property as in Lemma 4.2.1. Indeed, let σ|[t1,t2] :
[t1, t2] ↔ Ω be a geodesic loop that passes through z0 and suppose that σ|[t1,t2]([t1, t2]) ↗→
K. Since (ψ ⇔ σ)|[t1,t2] is a continuous real-valued function, it will attain maximum at
some point t0 ↑ (t1, t2). From the definition of K and the fact σ|[t1,t2] leaves K implies
that σ(t0) ↑ Ω \ K, which further implies that (ψ ⇔ σ)(t0) > ↓ε, (ψ ⇔ σ)↘(t0) = 0, and
(ψ ⇔ σ)↘↘(t0) ⇓ 0. But it contradicts the above proposition. By Lemma 4.2.1, the proof
of (ii) follows.
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In [23], Herbort provided the qualitative behaviour of geodesics of the Bergman metric
in a planar annulus. He achieved this by expressing the Bergman metric using the
Wierstrass elliptic ω- function. As the Szegő kernel enjoys a relationship with the
Bergman kernel in C∞-smoothly bounded planar domains—see [4, Chapter 25], it is
natural to ask whether the Szegő metric can also be described using Weierstrass elliptic
ω-functions. In this chapter, we will show that this is indeed possible.

5.1 szegő metric on Ar

We begin by recalling the series form of the Szegő kernel on the annulus

Ar =


z ↑ C : r < |z| < 1


,

where r ↑ (0, 1). An orthonormal basis for H2(bAr) is given by
{

zn
√

2π(1 + r2n+1)

}∞

n=↓∞

,

and hence the Szegő kernel for Ar is

SAr(z, w) =
1

2π

∞

∑
n=↓∞

(zw)n

1 + r2n+1 .

To find a closed form of the Szegő metric, we first recall the definitions of the Weierstrass
elliptic functions following the notations in [1] and [32]. For more details on the
theory of elliptic functions, we refer to [39]. Let ω1 = ↓ log r, ω3 = iπ, and write
Ωm,n = 2mω1 + 2nω3 for m, n ↑ Z. The Weierstrass elliptic ω function is defined by

ω(z) =
1
z2 + ∑

m,n

↘
(

1
(z ↓ Ωm,n)2 ↓ 1

Ω2
m,n

)
,

where the ↘ in the summation means that simultaneous zero values of m, n are excepted.
The function ω is holomorphic on C except for poles at Ωm,n for each m, n ↑ Z.
Moreover, it is an even function, it is doubly periodic with periods 2ω1 and 2ω3, and
satisfies the differential equation

(ω↘)2 = 4ω3 ↓ g2ω↓ g3,

41
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where
g2 = 60∑

m,n

↘ 1
Ω4

m,n
, g3 = 140∑

m,n

↘ 1
Ω6

m,n
.

We also note that the roots of the equation 4x3 ↓ g2x ↓ g3 are given by

e1 = ω(ω1), e2 = ω(↓ω1 ↓ ω3), e3 = ω(ω3), (20)

which are real and satisfies e1 > e2 > e3. Along the boundary of the half-period
rectangle with vertices 0, ω1, ω1 + ω3, ω3, the function ω(z) is real, and as z is taken
counterclockwise around this rectangle from 0 ↔ ω1 ↔ ω1 + ω3 ↔ ω3 ↔ 0, ω(u)
decreases from +∞ ↔ e1 ↔ e2 ↔ e3 ↔ ↓∞. The behaviour of ω along the boundaries
of the other half-period rectangles can be obtained from this using p(↓z) = p(z),
p(z) = p(z), and periodicity.

The Weierstrass ζ function is defined by

ζ ↘(z) = ↓ω(z),

lim
z↔0

(
ζ(z)↓ z↓1) = 0.

The function ζ is odd and satisfies the quasi-periodicity condition

ζ(z + 2ωk) = ζ(z) + 2ϱk,

for k = 1, 3, where ϱk = ζ(ωk).
Finally, the Weierstrass σ function is defined by the equation

d
dz

log σ(z) = ζ(z),

lim
z↔0

σ(z)/z = 1.

The function σ is odd and satisfies the quasi-periodicity condition

σ(z + 2ωk) = ↓e2ϱk(z+ωk)σ(z),

for k = 1, 3. For real u, the functions ω(u), σ(u), and ζ(u) take real values since ω1 is
positive and ω2 is purely imaginary.

It is customary to write ω2 = ↓ω1 ↓ ω3, ϱ2 = ↓ϱ1 ↓ ϱ3, and define three other σ
functions σk(u), k = 1, 2, 3, by the equation

σk(u) = e↓ϱku σ(u + ωk)
σ(ωk)

. (21)

We also recall a relation between the Szegő kernel and the capacity metric from
[1, Equation (7)]:

2πSAr(z) = cβ(z)σ′
2
(
↓ 2 log |z|

)
, (22)

where cβ denotes the logarithmic capacity on Ar, and

σ′
2

2(u) = e↓cu2
σ2

2 (u), (23)

where c = ϱ1/ω1.
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Proposition 5.1.1. Let r ↑ (0, 1) and Ar = {z ↑ C : r < |z| < 1}. Then the Szegő metric
on Ar is given by

ds2
sAr

=
ω
(
2 log |z|

)
↓ ω

(
2 log |z|+ ω1 + ω3

)

|z|2 |dz|2,

where ω is the Weierstrass elliptic ω function with periods 2ω1 = ↓2 log r and 2ω3 = 2iπ.

Proof of Proposition 5.1.1. Differentiating (22), we obtain

∂∂ log SAr(z) = ∂∂ log cβ(z) + ∂∂ log
(

σ′
2
(
↓ 2 ln |z|

)
.

From, Suita [37], we know that

∂∂
(

ln cβ(z)
)
= πKAr(z) =

1
|z|2

(
ω
(
2 ln |z|

)
+ c


. (24)

The latter expression was originally found by Zarankiewicz [41]. On the other hand,
writing u = ↓2 log |z|, which is harmonic, we obtain from (23) and (21), that

∂∂ log
(
σ′

2
2(u)

)
= ∂∂(↓cu2) + ∂∂ log σ2(u + ω2).

Note that
∂∂(↓cu2) = ↓c∂(2u∂u) = ↓2c|∂u|2 = ↓ 2c

|z|2 ,

and

∂∂ log σ2(u + ω2) = 2∂

(
d

du
(

log σ(u + ω2)
)
∂u

)

= 2∂
(
ζ(u + ω2)∂u

)

= 2
d

du
(
ζ(u + ω2)

)
|∂u|2

= ↓2ω(u + ω2)
1
|z|2 .

Thus,

∂∂ log
(

σ′
2
(
↓ 2 log |z|

)
= ↓

ω
(
↓ 2 log |z|+ ω2

)
+ c

|z|2

= ↓
ω
(
2 log |z|+ ω1 + ω3

)
+ c

|z|2 . (25)

Adding (24) and (25), we obtain

∂∂ log SAr(z) =
ω
(
2 log |z|

)
↓ ω

(
2 log |z|+ ω1 + ω3

)

|z|2 ,

as required.
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L 2 - C O H O M O L O G Y

Given a complete Kähler manifold, the question of whether there are non-trivial
square integrable harmonic forms is of interest because every L2-cohomology class
has a harmonic representative—which is an analogue of the Hodge theorem for non-
compact manifolds. This question for the Bergman metric on strongly pseudoconvex
domains in C

n was studied by Donnelly–Fefferman [17] and Donnelly [16] and in a
more general setup by McNeal [33] and Ohsawa [34] among others. Let us fix some
notations to state our next result. Denote by Ωk

2 the space of k-forms on Ω which are
square integrable with respect to dsmΩ = mΩ(z)|dz| where mΩ = cΩ or sΩ. Then, the
L2-cohomology of the complex

Ω0
2

d0↓↔ Ω1
2

d1↓↔ Ω2
2

d2↓↔ 0,

is defined by

Hk
2(Ω) =

ker dk

Im(dk↓1)
,

where the closure is taken in the L2-norm. Since dsmΩ is complete,

Hk
2(Ω) ∞= Hk

2(Ω),

where Hk
2(Ω) denotes the space of square-integrable harmonic forms. We also note

the decomposition
Hk

2(Ω) = ∈p+q=kH
p,q
2 (Ω).

The goal of this chapter is to show the following theorem:

Theorem 6.0.1. Let Ω → C be a non-degenerate finitely connected domain equipped with
mΩ(z)|dz|, where mΩ = cΩ or sΩ. Then

dimH
p,q
2 (Ω) =

{
0 if p + q ↗= 1,
∞ if p + q = 1.

6.1 proof of theorem 6 .0 .1

Using the same reasoning as in the proof of Corollary 3.2.2, we can assume that Ω is
C∞-smoothly bounded. Also, we will prove the theorem for mΩ = sΩ only as the case
mΩ = cΩ is similar. Fix a C∞-smooth defining function ψ for Ω.
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Case p + q ↗= 1. Since H0
2(Ω) ∞= H2

2(Ω), it is enough to prove that every square
integrable harmonic function on Ω with respect to dssΩ = sΩ(z)|dz| is identically equal
to 0. Let f be such a function. First, note that f must be constant since dssΩ is complete
and Kähler (see, for instance, [40]). Also, by Proposition 3.1.4, Ω has infinite volume
with respect to dssΩ :

ˆ
Ω

i
2

s2
Ω(z) dz ∋ dz ↭

ˆ
Ω

1
(
ψ(z)

)2 dA(z) = +∞,

where dA(z) = i/2dz ∋ dz, which implies that f must be identically equal to 0.
Case p + q = 1. By [34], the infinite dimensionality of Hp,q

2 (Ω) will follow at once if
we establish that

ds2
sΩ

△ (↓ψ)↓1|dz|2 + (↓ψ)↓2|∂ψ|2|dz|2, (26)

uniformly near bΩ. If p ↑ bΩ then by Proposition 3.1.4,

lim
z↔p

sΩ(z)2

(
↓ ψ(z)

)↓1
+

(
↓ ψ(z)

)↓2∣∣∂ψ(z)
∣∣2

= lim
z↔p

(
↓ ψ(z)

)2s2
Ω(z)

↓ψ(z) +
∣∣∂ψ(z)

∣∣2

=

∣∣∂ψ(p)
∣∣2

∣∣∂ψ(p)
∣∣2

,

which shows that (26) holds near p. Then, by compactness of bΩ, it follows that (26)
holds near bΩ, which completes the proof.
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VA R I AT I O N S O F T H E C A R AT H É O D O RY A N D S Z E G Ő M E T R I C S
O N P L A N A R A N N U L I

The study of the holomorphic sectional curvature of the Bergman metric has a rich
history, dating back to the work of Bergman [7] and Kobayashi [28]. Bergman demon-
strated that the holomorphic sectional curvature of the Bergman metric is strictly
bounded above by 2, a result later extended by Kobayashi to complex manifolds.
Lebed→[31] further refined this result by showing that 2 is the optimal upper bound for
n ≃ 2. The question of whether a lower bound exists for the holomorphic sectional
curvature of the Bergman metric was answered negatively in higher dimensions by
Herbort in [25].

For planar domains, Dinew [15] constructed an infinitely connected planar domain
where the holomorphic sectional curvature of the Bergman metric diverges to ↓∞ at
one of its boundary points, while the upper limit at that point is 2. This result was
extended by Zwonek in [42] by establishing that the supremum of the holomorphic
sectional curvature on Zalcman-type domains is 2, while the infimum is ↓∞. It was
achieved by examining the variations of the holomorphic sectional curvature of the
Bergman metric bAr(z)|dz| on planar annuli Ar as the inner radius r approaches 0,
where

bAr(z) =

√
∂2 log KAr(z, z)

∂z∂z
,

and KAr denotes the Bergman kernel on Ar.
In this chapter, we will study the variations of the Carathéodory and Szegő metrics,

as well as their Gaussian curvatures, on planar annuli, drawing inspiration from [42].

7.1 variations on planar annuli

The main objective of this chapter is to establish the following limiting behaviour:

Theorem 7.1.1. For r ↑ (0, 1), let Ar = {z ↑ C : r < |z| < 1}. Then

(a) limr↔0+ cAr(r
λ) = 2π limr↔0+ SAr(r

λ) =






1 0 < λ < 1
2 ,

2 λ = 1
2 ,

+∞ 1
2 < λ < 1.

47



48 variations of the carathéodory and szegő metrics on planar annuli

(b) limr↔0+ sAr(r
λ) =






1 0 < λ < 1
4 ,▽

2 λ = 1
4 ,

+∞ 1
4 < λ < 1.

(c) limr↔0+ εcAr
(rλ) =






↓4 0 < λ < 1
4 ,

↓8 λ = 1
4 ,

↓∞ 1
4 < λ < 3

4 ,
↓8 λ = 3

4 ,
↓4 3

4 < λ < 1.

(d) limr↔0+ εsAr
(rλ) =






↓4 0 < λ < 1
6 ,

↓12 λ = 1
6 ,

↓∞ 1
6 < λ < 1

3 ,
↓4 λ = 1

3 ,
4 1

3 < λ < 2
3 ,

↓4 λ = 2
3 ,

↓∞ 2
3 < λ < 5

6 ,
↓12 λ = 5

6 ,
↓4 5

6 < λ < 1.

Some remarks are in order. First, as r decreases to 0, the annuli Ar exhaust the
punctured unit disc D

′ = D \ {0}. Therefore, cAr converges uniformly on compact
subsets of D

′ to cD′ = cD|D′ as r ↔ 0+. It follows that εcAr
converges uniformly

on compact subsets of D
′ to ↓4 as r ↔ 0+. Since cAr(z) = 2πSAr(z), it also follows

that SAr(z) converges uniformly on compact subsets of D
′ to SD|D′(z) as r ↔ 0+.

Accordingly, sAr and εsAr
converge uniformly on compact subsets of D

′ to sD|D′ and
↓4 respectively as r ↔ 0+. This does not contradict Theorem 7.1.1 as in this theorem,
the points where the limits are studied, do not lie on a fixed compact subset of D

′.
Second, using Theorem 7.1.1, we can answer the questions related to the universal

bounds of the Gaussian curvatures of the Carathéodory and Szegő metrics. Observe
from (d) that εsAr

(r4/9) ↔ 4 as r ↔ 0+. This establishes the following:

Theorem 7.1.2. Given ε > 0, there exist a C∞-smoothly bounded domain Ωε → C and a point
z ↑ Ωε such that

εsΩε
(z) > 4 ↓ ε.

Also, from (c) and (d), εcAr
(r1/2) ↔ ↓∞ and εsAr

(r1/4) ↔ ↓∞ as r ↔ 0+. Thus we
obtain

Theorem 7.1.3. There are no universal lower bounds for the Gaussian curvatures of the
Carathéodory and Szegő metrics on the class of C∞-smoothly bounded planar domains.
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Third, Theorem 7.1.1 also shows that there are domains in C such that the Gaussian
curvature of the Szegő metric assume both negative and positive values:

Theorem 7.1.4. There exist a C∞-smoothly bounded domain Ω → C and z, w ↑ Ω, such that

εsΩ(z) > 0 and εsΩ(w) < 0.

Fourth, from Zwonek’s result [42] and (d), we have

lim
r↔0+

εsAr
(rλ) < 0 < lim

r↔0+
εbAr

(rλ) for 0 < λ ⇓ 1
3

or
2
3
⇓ λ < 1,

lim
r↔0+

εbAr
(rλ) < 0 < lim

r↔0+
εsAr

(rλ) for
1
3
< λ <

2
3

.

Therefore,

Theorem 7.1.5. There exist a C∞-smoothly bounded domain Ω → C and z, w ↑ Ω, such that

εsΩ(z) < 0 < εbΩ(z) and εsΩ(w) > 0 > εbΩ(w).

Lastly, Theorem 7.1.1 also allows us to answer a question related to the comparison
of the Carathéodory and Szegő metrics. It was shown in [2] that sΩ ≃ cΩ, and
therefore the ratio sΩ/cΩ has the universal lower bound 1. On the other hand, since
sAr(r

1/2)/cAr(r
1/2) ↔ +∞ as r ↔ 0+, we have

Proposition 7.1.6. There is no universal constant M > 0 such that

sΩ(z)
cΩ(z)

⇓ M,

for all z ↑ Ω and for all C∞-smoothly bounded domains Ω → C.

The idea to prove Theorem 7.1.1 is to use the Bergman-Fuks type formulas for the
Szegő kernel and the metric that relates them to certain maximal domain functions.
Let us recall their definitions first. For a C∞-smoothly bounded domain Ω → C,
j = 0, 1, 2, · · · , and z ↑ Ω, we define the maximal domains functions J(j)

Ω (z) by

J(j)
Ω (z) = sup

∝ f ∝H2(bΩ)⇓1

{∣∣ f (j)(z)
∣∣2 : f ↑ H2(bΩ), f (z) = f ↘(z) = · · · = f (j↓1)(z) = 0

}
.

It can be shown that
SΩ(z) = J(0)Ω (z),

sΩ(z) =

 J(1)Ω (z)

J(0)Ω (z)
,

εsΩ(z) = 4 ↓ 2
J(0)Ω (z)J(2)Ω (z)

J(1)Ω (z)2
.

(27)

These formulas can be derived in the same way as for the usual Bergman kernel and
the metric (see, for example, [5], [6], [20], and [26]). Indeed, we will present the proof
for εsΩ only, as the proofs for SΩ, sΩ are significantly simpler and follow from similar
lines of reasoning.
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Theorem 7.1.7. Let Ω → C be a C∞-smoothly bounded domain. Then the Gaussian curvature
εsΩ of the Szegő metric sΩ(z)|dz| satisfies

εsΩ(z) = 4 ↓ 2

(
J(0)Ω (z)J(2)Ω (z)

J(1)Ω (z)2

)
,

for all z ↑ Ω.

Proof. Let a ↑ Ω. Define

H↘
a =


f ↑ H2(bΩ) : f (a) = 0


,

H↘↘
a =


f ↑ H↘

a : f ↘(a) = 0


,
H↘↘↘

a =


f ↑ H↘↘
a : f ↘↘(a) = 0


.

By definition, H↘↘
a is a closed subspace of H↘

a, and H↘↘↘
a is a closed subspace of H↘↘

a . In
both cases the codimension is 1. Thus, there exists an orthonormal basis (φk)k≃0 of
H2(bΩ) such that

φk↓1(a) = 0, φ↘
k(a) = 0, φ↘↘

k+1(a) = 0 for k ≃ 2. (28)

To simplify the notation, let S(z) = SΩ(z), s(z) = sΩ(z), and for all non-negative
integers k, l, define

Skl(z) = ∂k∂
lS(z), Sl(z) = S0l(z), Sk(z) = Sk0(z),

for z ↑ Ω. We first note that

εΩ(a)
2

= ↓ 1
s2(a)

(
log(SS11 ↓ |S1|2)

)
11(a) + 2 = ↓ I0(a)

s2(a)
+ 2, (29)

say. By straightforward calculations, we have

I0(a) =
S(a)S22(a)↓ S2(a)S2(a)

s2(a)S2(a)
+

∣∣S(a)S21(a)↓ S2(a)S1(a)
∣∣2

s4(a)S4(a)
.

Using S(z) = ∑∞
k=0 |φk(z)|2 and (28), we have

S(a) =
∣∣φ0(a)

∣∣2, S1(a) = φ↘
0(a)φ0(a), S11(a) =

1

∑
k=0

∣∣φ↘
k(a)

∣∣2, and

S2(a) = φ↘↘
0 (a)φ0(a), S21(a) = φ↘↘

0 (a)φ↘
0(a) + φ↘↘

1 (a)φ↘
1(a), S22(a) =

2

∑
k=0

∣∣φ↘↘
k (a)

∣∣2.

It can also be seen that J(j)
Ω (a) =

∣∣φ(j)(a)
∣∣2 for j = 0, 1, 2. Using S(a) = J(0)Ω (a), s(a)2 =

J(1)Ω (a)/J(0)Ω (a), it follows from above that

I0(a) =
∣∣φ↘↘

2 (a)
∣∣2

∣∣φ↘
1(a)

∣∣2
=

J(2)Ω (a)

J(1)Ω (a)
. (30)
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Therefore, using (30) in (29), we get

εΩ(a)
2

= 2 ↓
J(0)Ω (a)

J(1)Ω (a)
·

J(2)Ω (a)

J(1)Ω (a)
,

which completes the proof.

Corollary 7.1.8. Let Ω → C be any non-degenerate finitely connected domain. Then

εsΩ(z) < 4,

for all z ↑ Ω.

Under a conformal equivalence φ : Ω ↔ Ω↘, the maximal domain functions J(j)
Ω (z),

j = 0, 1, 2, . . ., transform according to the following rule

J(j)
Ω (z) =

∣∣φ↘(z)
∣∣2j+1 J(j)

Ω↘
(
φ(z)

)
. (31)

Because of (27), the focus now is to investigate the maximal domain functions on Ar.
As a first step, we compute these domain functions on a general annulus

A(r, R) =


z ↑ C : r < |z| < R


,

where 0 < r < 1 < R < ∞. It is apparent from their definition that we will require
suitable functions in H2(bA(r, R)) to compute them, and so first, we prove a result
that allows us to construct plenty of them. Note that (zn)∞

n=↓∞ is an orthogonal basis
for H2(bA(r, R)) and writing αr,R

n = ∝zn∝2
H2(bA(r,R)), we have

αr,R
n =

ˆ
|z|=r

|z|2n|dz|+
ˆ
|z|=R

|z|2n|dz| = 2π
(
r2n+1 + R2n+1). (32)

Proposition 7.1.9. Let p be a monic polynomial and

cn =
p(n)
αr,R

n
, n ↑ Z.

Then (cn)∞
↓∞ is summable, and hence also square summable. In particular,

f (z) =
∞

∑
n=↓∞

cnzn,

is in H2(bA(r, R)
)
.

Proof. Let n ≃ 0 be large. Then p(±n) ↗= 0 and

|p(n + 1)|
|p(n)| ↔ 1 and

|p(↓n ↓ 1)|
|p(↓n)| ↔ 1.
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Now,
∣∣∣∣
cn+1

cn

∣∣∣∣ =
|p(n + 1)|
|p(n)|

αr,R
n

αr,R
n+1

=
|p(n + 1)|
|p(n)|

r2n+1 + R2n+1

r2n+3 + R2n+3

=
|p(n + 1)|
|p(n)|

R2n+1((r/R)2n+1 + 1
)

R2n+3
(
(r/R)2n+3 + 1

)

↔ 1/R2 < 1.

Similarly,

∣∣∣∣
c↓n↓1

c↓n

∣∣∣∣ =
|p(↓n ↓ 1)|
|p(↓n)|

αr,R
↓n

αr,R
↓n↓1

=
|p(↓n ↓ 1)|
|p(↓n)|

r↓2n+1 + R↓2n+1

r↓2n↓1 + R↓2n↓1

=
|p(↓n ↓ 1)|
|p(↓n)|

r↓2n+1(1 + (R/r)↓2n+1)

r↓2n↓1
(
1 + (R/r)↓2n↓1

)

↔ r2 < 1.

It follows from the ratio test that (cn)∞
n=↓∞ is summable.

Now, to compute the maximal domain functions on A(r, R), let us consider the series

sr,R
k =

∞

∑
n=↓∞

nk

αr,R
n

, k = 0, 1, 2, . . . , (33)

which are finite by Proposition 7.1.9.

Proposition 7.1.10. We have

(a) J(0)A(r,R)(1) = sr,R
0 , (b) J(1)A(r,R)(1) =

sr,R
0 sr,R

2 ↓ (sr,R
1 )2

sr,R
0

,

and

(c) J(2)A(r,R)(1) =
(sr,R

1 )2sr,R
4 ↓ sr,R

0 sr,R
2 sr,R

4 ↓ 2sr,R
1 sr,R

2 sr,R
3 + sr,R

0 (sr,R
3 )2 + (sr,R

2 )3

(sr,R
1 )2 ↓ sr,R

0 sr,R
2

.

Proof. Let f ↑ H2(bA(r, R)
)

and f (z) = ∑∞
n=↓∞ anzn. Then

∝ f ∝2
H2
(

bA(r,R)
) =

∞

∑
n=↓∞

|an|2αr,R
n .
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(a) By the Cauchy-Schwarz inequality

∣∣ f (1)
∣∣2 =

∣∣∣∣∣

∞

∑
n=↓∞

an

∣∣∣∣∣

2

=

∣∣∣∣∣∣

∞

∑
n=↓∞

1√
αr,R

n

(
an

√
αr,R

n


∣∣∣∣∣∣

2

⇓ sr,R
0 ∝ f ∝2

H2(bA(r,R)). (34)

Since f is arbitrary, this implies that

J(0)A(r,R)(1) ⇓ sr,R
0 .

Thus, to complete the proof of (a), all we need to do is to produce a function in
H2(bA(r, R)) for which the inequality in (34) is equality. In view of Proposition 7.1.9,

f0(z) =
∞

∑
n=↓∞

zn

αr,R
n

,

is in H2(bA(r, R)). Note that ∝ f0∝2
H2(bA(r,R)) = sr,R

0 = f0(1), and therefore,

∣∣ f0(1)
∣∣2 = sr,R

0 ∝ f0∝2
H2(bA(r,R)).

Thus, f0 has the desired property; hence, the proof of (a) follows.
(b) Assume that f (1) = 0, so that ∑∞

n=↓∞ an = 0. Then for any β ↑ R,

∣∣ f ↘(1)
∣∣2 =

∣∣∣∣∣

∞

∑
n=↓∞

nan

∣∣∣∣∣

2

=

∣∣∣∣∣

∞

∑
n=↓∞

(n ↓ β)an

∣∣∣∣∣

2

=

∣∣∣∣∣∣

∞

∑
n=↓∞

n ↓ β√
αr,R

n

(
an

√
αr,R

n


∣∣∣∣∣∣

2

⇓
∞

∑
n=↓∞

(n ↓ β)2

αr,R
n

∝ f ∝2
H2(bA(r,R)), (35)

which shows that

J(1)A(r,R)(1) ⇓
∞

∑
n=↓∞

(n ↓ β)2

αr,R
n

. (36)

We now show that the above inequality is equality for a suitable β. It suffices to
produce a function f ↑ H2(bA(r, R)) such that f (1) = 0, and for which the inequality
in (35) is equality. Let β ↑ R and set

fβ(z) =
∞

∑
n=↓∞

n ↓ β

αr,R
n

zn.

By Proposition 7.1.9, fβ ↑ H2(bA(r, R)). We choose β so that

fβ(1) =
∞

∑
n=↓∞

n ↓ β

αr,R
n

= 0. (37)
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Indeed, we can take

β =
sr,R

1

sr,R
0

. (38)

Then, by (37),

∝ fβ∝2
H2(bA(r,R)) =

∞

∑
n=↓∞

(n ↓ β)2

αr,R
n

=
∞

∑
n=↓∞

n(n ↓ β)

αr,R
n

↓
∞

∑
n=↓∞

β(n ↓ β)

αr,R
n

=
∞

∑
n=↓∞

n(n ↓ β)

αr,R
n

= f ↘β(1),

from which it follows that

∣∣ f ↘β(1)
∣∣2 =

∣∣ f ↘β(1)
∣∣∝ fβ∝2

H2(bA(r,R)) =
∞

∑
n=↓∞

(n ↓ β)2

αr,R
n

∝ fβ∝2
H2(bA(r,R)),

and hence fβ has the desired property. It follows that

J(1)A(r,R)(1) =
∞

∑
n=↓∞

(n ↓ β)2

αr,R
n

.

Again, in view of (37) and (38), we can write

J(1)A(r,R)(1) =
∞

∑
n=↓∞

n(n ↓ β)

αr,R
n

= sr,R
2 ↓

sr,R
1

sr,R
0

sr,R
1 =

sr,R
0 sr,R

2 ↓
(
sr,R

1
)2

sr,R
0

,

which proves (b).
(c) Assume that f (1) = f ↘(1) = 0 so that

∞

∑
n=↓∞

an =
∞

∑
n=↓∞

nan = 0.

Then for any γ, δ ↑ R,

∣∣ f ↘↘(1)
∣∣2 =

∣∣∣∣∣

∞

∑
n=↓∞

n(n ↓ 1)an

∣∣∣∣∣

2

=

∣∣∣∣∣

∞

∑
n=↓∞

n2an

∣∣∣∣∣

2

=

∣∣∣∣∣

∞

∑
n=↓∞

(n2 ↓ γn ↓ δ)an

∣∣∣∣∣

2

=

∣∣∣∣∣∣

∞

∑
n=↓∞

n2 ↓ γn ↓ δ√
αr,R

n

(
an

√
αr,R

n


∣∣∣∣∣∣

2

⇓
(

∞

∑
n=↓∞

(n2 ↓ γn ↓ δ)2

αr,R
n

)
∝ f ∝2

H2(bA(r,R)), (39)

which implies that

J(2)A(r,R)(1) ⇓
∞

∑
n=↓∞

(n2 ↓ γn ↓ δ)2

αr,R
n

. (40)
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As before, we show that for a suitable choice of γ and δ, there is a function f in
H2(bA(r, R)) satisfying f (1) = f ↘(1) = 0, and for which the inequality in (39) is
equality. This would imply that the inequality (40) is also equality. For γ, δ ↑ R, set

fγδ(z) = ∑ n2 ↓ γn ↓ δ

αr,R
n

zn.

By Proposition 7.1.9, fγδ ↑ H2(bA(r, R)). We claim that there exist γ, δ such that

fγδ(1) =
∞

∑
n=↓∞

n2 ↓ γn ↓ δ

αr,R
n

= 0, and

f ↘γδ(1) =
∞

∑
n=↓∞

n(n2 ↓ γn ↓ δ)

αr,R
n

= 0.
(41)

The above equations can be written as

sr,R
1 γ + sr,R

0 δ ↓ sr,R
2 = 0,

sr,R
2 γ + sr,R

1 δ ↓ sr,R
3 = 0.

Since,

(sr,R
1 )2 ↓ sr,R

0 sr,R
2 =

(
∞

∑
n=↓∞

n
αr,R

n

)2

↓
(

∞

∑
n=↓∞

n2

αr,R
n

)(
∞

∑
n=↓∞

1
αr,R

n

)
< 0,

which is a consequence of the Cauchy-Schwarz inequality; the above system has a
unique solution given by

γ =
sr,R

1 sr,R
2 ↓ sr,R

0 sr,R
3

(sr,R
1 )2 ↓ sr,R

0 sr,R
2

, and δ =
sr,R

1 sr,R
3 ↓ (sr,R

2 )2

(sr,R
1 )2 ↓ sr,R

0 sr,R
2

. (42)

We now choose γ and δ as above. Then, by (41),

∝ fγδ∝2
H2(bA(r,R)) =

∞

∑
n=↓∞

(n2 ↓ γn ↓ δ)2

αr,R
n

=
∞

∑
n=↓∞

n2(n2 ↓ γn ↓ δ)

αr,R
n

,

and also

f ↘↘γδ(1) =
∞

∑
n=↓∞

n(n ↓ 1)(n2 ↓ γn ↓ δ)

αr,R
n

=
∞

∑
n=↓∞

n2(n2 ↓ γn ↓ δ)

αr,R
n

.

Therefore, ∣∣ f ↘↘γδ(1)
∣∣2 =

∣∣ f ↘↘γδ(1)
∣∣∝ fγδ∝2

H2(bA(r,R)),

and thus fγδ has the desired property. It follows that

J(2)A(r,R)(1) =
∞

∑
n=↓∞

(n2 ↓ γn ↓ δ)2

αr,R
n

.
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Again, in view of (41) and (42), we can write

J(2)A(r,R)(1) =
∞

∑
n=↓∞

n2(n2 ↓ γn ↓ δ)

αr,R
n

= sr,R
4 ↓

sr,R
1 sr,R

2 ↓ sr,R
0 sr,R

3

(sr,R
1 )2 ↓ sr,R

0 sr,R
2

sr,R
3 ↓

sr,R
1 sr,R

3 ↓ (sr,R
2 )2

(sr,R
1 )2 ↓ sr,R

0 sr,R
2

sr,R
2

=
(sr,R

1 )2sr,R
4 ↓ sr,R

0 sr,R
2 sr,R

4 ↓ 2sr,R
1 sr,R

2 sr,R
3 + sr,R

0 (sr,R
3 )2 + (sr,R

2 )3

(sr,R
1 )2 ↓ sr,R

0 sr,R
2

,

as required. This completes the proof of (c) and the proposition.

We now focus on the annulus Ar = {z ↑ C : 0 < |z| < 1}. Note that by the
transformation formula (31), we have

r(2j+1)λ J(j)
Ar
(rλ) = J(j)

A(r1↓λ,r↓λ)
(1), j ≃ 0. (43)

Observe that while on the left-hand side, both the domains and points vary, on the
right-hand side only the domains vary. Hence, studying the asymptotic behaviour
of the right-hand side is relatively easier and in view of Proposition 7.1.10, it now
suffices to analyse the quantities sr1↓λ,r↓λ

j . For simplicity, let us write αn = αr1↓λ,r↓λ

n ,

and sj = sr1↓λ,r↓λ

j . Note from (32) that for n ≃ 0,

αn = 2π
1 + r2n+1

r(2n+1)λ and α↓n↓1 = 2π
1 + r2n+1

r(2n+1)(1↓λ)
.

Thus, we can write

sj =
∞

∑
n=↓∞

nj

αn

=
∞

∑
n=0

(
nj

αn
+

(↓1)j(n + 1)j

α↓n↓1

)

=
1

2π

∞

∑
n=0

1
1 + r2n+1

(
njr(2n+1)λ + (↓1)j(n + 1)jr(2n+1)(1↓λ))

= uj + vj,

(44)

where uj is the 0th term of the series and vj is the sum of the terms from n = 1 onwards.
Observe that

u0 =
1

2π

rλ + r1↓λ

1 + r
, uj = (↓1)j 1

2π

r1↓λ

1 + r
, for j ≃ 1, (45)

and

vj =
1

2π

r3λ + (↓1)j2jr3(1↓λ)

1 + r3 + O(r5λ) + O(r5(1↓λ)). (46)
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The following lemma that describes the asymptotic behaviour of the maximal domain
functions associated with Ar is the key to the proof of Theorem 7.1.1. In what follows,
for N, Φ : (0, 1) ↔ (0, ∞), we will write N(r) ∞ Φ(r) if for all sufficiently small ε > 0,

N(r)↓ Φ(r) = Φ(r)o(rε).

Also, we will compute asymptotic expansions of many functions on (0, 1). To follow a
uniform notation, we will write

N(r) = ΦN(r) + ΨN(r),

where ΦN is the dominating term and ΨN is the remainder term. In this notation,
observe that N(r) ∞ ΦN(r) if and only if N, Φ are positive and for all sufficiently small
ε > 0,

ΨN(r)
ΦN(r)

= o(rε)

as r ↔ 0+.

Lemma 7.1.11. Let λ ↑ (0, 1) be fixed. Then for r ↑ (0, 1),

(a) rλ J(0)Ar
(rλ) = N(0)

λ (r), (b) r3λ J(1)Ar
(rλ) =

N(1)
λ (r)

N(0)
λ (r)

, (c) r5λ J(2)Ar
(rλ) =

N(2)
λ (r)

N(1)
λ (r)

,

where N(j)
λ (r), j = 0, 1, 2, are positive functions satisfying

N(0)
λ (r) ∞ 1

2π

rλ + r1↓λ

1 + r
,

N(1)
λ (r) ∞ 1

4π2
r

(1 + r)2 +
1

4π2
(r4λ + r4(1↓λ)) + 4r(r2λ + r2(1↓λ))

(1 + r)(1 + r3)
, and

N(2)
λ (r) ∞ 1

2π3
r9λ + r9(1↓λ)

(1 + r)(1 + r3)(1 + r5)
+

1
2π3

r
(
r3λ + r3(1↓λ)

)

(1 + r)2(1 + r3)
.

Proof. (a) We define
N(0)

λ (r) = rλ J(0)Ar
(rλ),

which is evidently positive. By (43) and Proposition 7.1.10, we have

N(0)
λ (r) = s0.

Then from (44)–(46), we have

N(0)
λ (r) = u0 + v0 =

1
2π

rλ + r1↓λ

1 + r
+ Ψ

N(0)
λ

(r),

where
Ψ

N(0)
λ

(r) = O
(
r3λ)+ O

(
r3(1↓λ)).
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Therefore, to complete the proof of (a), we only need to show that

Ψ
N(0)

λ

(r)

1
2π

rλ+r1↓λ

1+r

= o(rε).

Note that for all sufficiently small ε > 0,

Ψ
N(0)

λ

(r) = o
(
r2λ+ε)+ o

(
r2(1↓λ)+ε).

Also, ∣∣o(r2λ+ε)
∣∣

1
2π

rλ+r1↓λ

1+r rε
⇓

2π(1 + r)
∣∣o(r2λ+ε)

∣∣

rλ+ε
↔ 0

as r ↔ 0+, and by symmetry, the same holds for the o(r2(1↓λ)+ε) term.
(b) By (43) and Proposition 7.1.10, we have

r3λ J(1)Ar
(r) = J(1)A(r1↓λ,r↓λ)

(1) =
s0s2 ↓ s2

1
s0

=
N(1)

λ (r)

N(0)
λ (r)

,

where N(1)
λ (r) is the function defined by

N(1)
λ (r) = s0s2 ↓ s2

1,

which is positive as the left-hand side of the above equation and N(0)
λ (r) are positive.

The asymptotic behaviour of N(0)
λ (r) is already discussed in (a). For N(1)

λ (r), note that
by (44),

N(1)
λ (r) = (u0u2 ↓ u2

1) + (u0v2 + u2v0 ↓ 2u1v1) + (v0v2 ↓ v2
1) = I + I I + I I I, (47)

say. From (45) and (46), we have

I =
1

4π2
r

(1 + r)2 , (48)

and

I I =
1

2π

rλ + r1↓λ

1 + r
· 1

2π

r3λ + 4r3(1↓λ)

1 + r3 +
1

2π

r1↓λ

1 + r
· 1

2π

r3λ + r3(1↓λ)

1 + r3

+ 2
1

2π

r1↓λ

1 + r
· 1

2π

r3λ ↓ 2r3(1↓λ)

1 + r3 + ΨI I(r)

=
1

4π2
(r4λ + r4(1↓λ)) + 4r(r2λ + r2(1↓λ))

(1 + r)(1 + r3)
+ ΨI I(r), (49)

where
ΨI I(r) = O(r4λ+1) + O(r4(1↓λ)+1) + O(r6λ) + O(r6(1↓λ)).
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Finally,

I I I =
1

2π

r3λ + r3(1↓λ)

1 + r3 · 1
2π

r3λ + 4r3(1↓λ)

1 + r3 ↓
(

1
2π

r3λ ↓ 2r3(1↓λ)

1 + r3

)2

+ ΨI I I(r)

=
1

4π2
9r3

(1 + r3)2 + ΨI I I(r),

(50)

where
ΨI I I(r) = O

(
r8λ)+ O

(
r8(1↓λ))+ O

(
r3+2(1↓λ))+ O

(
r3+2λ).

It follows from (47)–(50) that

N(1)
λ (r) = Φ

N(1)
λ

(r) + Ψ
N(1)

λ

(r),

where

Φ
N(1)

λ

(r) =
1

4π2
r

(1 + r)2 +
1

4π2
(r4λ + r4(1↓λ)) + 4r(r2λ + r2(1↓λ))

(1 + r)(1 + r3)
,

and
Ψ

N(1)
λ

(r) = o(r2) + o(r4λ+ε) + o(r4(1↓λ)+ε),

for all sufficiently small ε. Thus, to complete the proof of (b), we only need to show
that

Ψ
N(1)

λ

(r)/Φ
N(1)

λ

(r) = o(rε).

Note that ∣∣o(r2)
∣∣

rεΦ
N(1)

λ

(r) ⇓
∣∣o(r2)

∣∣

rε 1
4π2

r
(1+r)2

↔ 0

as r ↔ 0+. Similarly,
∣∣o(r4λ+ε)

∣∣
rεΦ

N(1)
λ

(r) ⇓
∣∣o(r4λ+ε)

∣∣

rε 1
4π2

r4λ

(1+r)(1+r3)

↔ 0

as r ↔ 0+, and by symmetry, the same holds for the o(r4(1↓λ)+ε) term.
(c) By (43) and Proposition 7.1.10, we have

r5λ J(2)Ar
(rλ) = J(2)A(r1↓λ,r↓λ)

(1) =
↓s2

1s4 + s0s2s4 + 2s1s2s3 ↓ s0s2
3 ↓ s3

2
s0s2 ↓ s2

1
=

N(2)
λ (r)

N(1)
λ (r)

, (51)

where N(2)
λ (r) is the function defined by

N(2)
λ (r) = ↓s2

1s4 + s0s2s4 + 2s1s2s3 ↓ s0s2
3 ↓ s3

2, (52)
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which is positive as the left-hand side of (51) and N(1)
λ are positive. We have already

obtained the asymptotic behaviour of N(1)
λ (r) in (b). The calculation of N(2)

λ (r) is
lengthy, and so we only outline the main steps. Using (44), we substitute sj = uj + vj
in (52) and write

N(2)
λ (r) = I↘ + I I↘ + I I I↘,

where I↘ consists of the terms involving u↘
js alone, I I↘ consists of the mixed terms

involving both uj’s and vj’s, and I I I↘ consists of the terms involving vj’s alone. Before
proceeding into the calculation of these terms, note from (45) that

u4 = u2 and u3 = u1 = ↓u2. (53)

The term I↘: Using (53), writing I↘ in terms of u0 and u2 alone, it follows immediately
that I↘ = 0.

The term I I↘: Note that

I I↘ = ↓
(
u2

1v4 + v2
1u4 + 2u1v1u4 + 2u1v1v4

)
+

(
u0u2v4 + u0v2u4 + u0v2v4 + v0u2u4

+ v0u2v4 + v0v2u4
)
+ 2

(
u1u2v3 + u1v2u3 + u1v2v3 + v1u2u3 + v1u2v3 + v1v2u3

)

↓
(
u0v2

3 + 2u0u3v3 + v0u2
3 + 2v0u3v3

)
↓ 3(u2

2v2 + u2v2
2).

Using (53), I I↘ becomes

I I↘ = u2
2(↓v2 ↓ 2v3 ↓ v4) + u2(v0v2 + 2v0v3 + v0v4 ↓ v2

1 ↓ 2v1v2 + 2v1v3 + 2v1v4)+

u2(↓3v2
2 ↓ 2v2v3) + u0u2(v2 + 2v3 + v4) + u0(v2v4 ↓ v2

3).

To remove the u2
2 term, we write u0 = u0 ↓ u2 + u2 in the u0u2 term. Then

I I↘ = u2(v0v2 + 2v0v3 + v0v4 ↓ v2
1 ↓ 2v1v2 + 2v1v3 + 2v1v4 ↓ 3v2

2 ↓ 2v2v3)

+ (u0 ↓ u2)u2(v2 + 2v3 + v4) + u0(v2v4 ↓ v2
3) = A↘ + B↘ + C↘, (54)

say. To simplify the calculation of I I↘, we first note from (44) that

vj =
1

2π

r3λ + (↓1)j2jr3(1↓λ)

1 + r3 +
1

2π

2jr5λ + (↓1)j3jr5(1↓λ)

1 + r5 + O(r7λ) + O(r7(1↓λ)), (55)

and hence it follows that the asymptotic expansion of the term vivj has the following
form:

Lemma 7.1.12. We have for i, j = 0, . . . , 4,

vivj = Φij(r) + Ψij(r),

where

Φij(r) =
r6λ +

(
(↓1)i2i + (↓1)j2j)r3 + (↓1)i+j2i+jr6(1↓λ)

4π2(1 + r3)2 +
(2i + 2j)r8λ

4π2(1 + r3)(1 + r5)
+

(
(↓1)i + (↓1)j)2i+jr3+2λ +

(
(↓1)i3i + (↓1)j3j)r3+2(1↓λ) + (↓1)i+j(2i3j + 2j3i)r8(1↓λ)

4π2(1 + r3)(1 + r5)
+

2i+jr10λ +
(
(↓1)j2i3j + (↓1)i3i2j)r5 + (↓1)i+j3i+jr10(1↓λ)

4π2(1 + r5)2 ,
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and
Ψij(r) = O(r10λ) + O(r10(1↓λ)) + O(r3+λ) + O(r3+(1↓λ)).

To compute A↘, we substitute vivj from Lemma 7.1.12. To simplify the calculation,
we make a few observations. First, note that the coefficient of r6λ in vivj is independent
of i, j. From (54), observe that the sum of the integer coefficients of vivj terms in A↘

is zero. Therefore, the coefficient of r6λ in A↘ becomes 0. The coefficient of r6(1↓λ) in
vivj depends only on i + j. For each l, the sum of the integer coefficients of vivj in A↘

such that i + j = l is zero. Therefore, the coefficient of r6(1↓λ) is 0. The same argument
applies to the terms r10λ and r10(1↓λ) and so their coefficients in A↘ are zero. Also, the
sum of the integer coefficients of r3 in A↘ (i.e., keeping u2/(4π2(1 + r3)2) intact) is

5 + 2(↓7) + 17 ↓ (↓4)↓ 2(2) + 2(↓10) + 2(14)↓ 3(8)↓ 2(↓4) = 0,

and hence the coefficient of r3 in A↘ is 0. Similarly, the coefficient of r5 in A↘ is
also 0. Thus, we are left with r8λ, r3+2λ, r3+2(1↓λ), and r8(1↓λ)-terms only. Keeping
u2/(4π2(1 + r3)(1 + r5)) intact, the sum of the integer coefficients of r8λ in A↘ is

5 + 2(9) + 17 ↓ 4 ↓ 2(6) + 2(10) + 2(18)↓ 3(8)↓ 2(12) = 32,

and that of r3+2λ, r3+2(1↓λ), and r8(1↓λ) are ↓112, 112, and ↓32, respectively. It follows
that

A↘ =
1

8π3
r1↓λ

1 + r
· 32r8λ ↓ 112r3+2λ + 112r3+2(1↓λ) ↓ 32r8(1↓λ)

(1 + r3)(1 + r5)
+ ΨA↘(r),

where
ΨA↘(r) = r1↓λEA↘

where EA↘ has the same big O terms as in Ψij. Also, from (45) and (46),

B↘ =
1

2π

rλ

1 + r
· 1

2π

r1↓λ

1 + r
· 1

2π

1
1 + r3

(
(1+ 2+ 1)r3λ +

(
4+ 2(↓8)+ 16

)
r3(1↓λ)


+ΨB↘(r)

=
1

2π3
r
(
r3λ + r3(1↓λ)

)

(1 + r)2(1 + r3)
+ ΨB↘(r), (56)

where
ΨB↘(r) = O

(
r1+5λ) + O(r1+5(1↓λ)).

Finally, to compute C↘, note that the arguments similar to the computation of A↘ show
that the coefficients of r6λ, r6(1↓λ), r8λ, and r10λ in C↘ are 0. The coefficients of the other
terms can be computed as before, and it turns out that

C↘ =
1

8π3
rλ + r1↓λ

1 + r

(
36r3

(1 + r3)2 +
(4r8λ + 256r3+2λ + 144r3+2(1↓λ) + 36r8(1↓λ))

(1 + r3)(1 + r5)

+
900r5

(1 + r5)2

)
+ ΨC↘(r),
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where,
ΨC↘(r) = (rλ + r1↓λ)EC↘

where EC↘ has the same big O term as in Ψij. Thus,

I I↘ =
1

2π3
r9λ + r9(1↓λ)

(1 + r)(1 + r3)(1 + r5)
+

1
2π3

r
(
r3λ + r3(1↓λ)

)

(1 + r)2(1 + r3)
+ ΨI I(r),

where

ΨI I↘(r) = O(r11λ) + O(r11(1↓λ)) + O(r3+λ) + O(r3+(1↓λ)) + O(r1+5λ) + O(r1+5(1↓λ)).

The term I I I↘: Recall that I I I↘ is the term consisting of vj’s alone, i.e.,

I I I↘ = ↓v2
1v4 + v0v2v4 + 2v1v2v3 ↓ v0v2

3 ↓ v3
2.

Observe from (55) that in vivjvk, the coefficient of r9λ is independent of i, j, k. Also, in
I I I↘, the sum of the coefficients of vivjvk is 0. Therefore, the coefficient of r9λ in I I I↘ is
0. Similarly, the coefficient of r9(1↓λ) in vivjvk depends only on i + j + k. Since for each
term in I I I↘, i + j + k = 6, and their coefficients sum up to 0 as observed above, the
coefficient of r9(1↓λ) in I I I↘ is 0. Now, it follows that

I I I↘ = O(r11λ) + O(r11(1↓λ)) + O(r3+λ) + O(r3+(1↓λ)).

Summarising,

N(2)
λ (r) = Φ

N(2)
λ

(r) + Ψ
N(2)

λ

(r),

where

Φ
N(2)

λ

(r) =
1

2π3
r9λ + r9(1↓λ)

(1 + r)(1 + r3)(1 + r5)
+

1
2π3

r(r3λ + r3(1↓λ))
(1 + r)2(1 + r3)

,

and
Ψ

N(2)
λ

(r) = o
(
r10λ+ε)+ o

(
r10(1↓λ)+ε)+ o

(
r1+3λ+ε)+ o

(
r1+3(1↓λ)+ε).

for all sufficiently small ε > 0. Thus, to complete the proof of (c), we only need to
check that

Ψ
N(2)

λ

(r)

Φ
N(2)

λ

(r)
= o(rε),

which can be done in a similar way to the one above. This completes the proof of (c)
and the lemma.

We are now ready for the proof of Theorem 7.1.1.
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Proof of Theorem 7.1.1. (a) By (27) and Lemma 7.1.11 (a), we have

cAr(r
λ) = 2πSAr(r

λ) = 2π J(0)Ar
(rλ) = 2π

1
rλ

N(0)
λ (r) =

1 + r1↓2λ

1 + r
(
1 + o(rε)

)
,

from which (a) follows immediately.

(b) By (27) and Lemma 7.1.11, we have

s2
Ar
(rλ) =

J(1)(rλ)

J(0)(rλ)
=

1
r2λ

N(1)
λ (r)

(
N(0)

λ (r)
)2 =

r + 1+r
1+r3

(
r4λ + r4(1↓λ) + 4r

(
r2λ + r2(1↓λ)

)

r2λ
(
rλ + r1↓λ

)2 f (r),

where f (r) is a positive function such that f (r) ↔ 1 as r ↔ 0+. Dividing the numerator
and denominator by r4λ, we write

s2
Ar
(rλ) =

r1↓4λ + 1+r
1+r3

(
1 + r4(1↓2λ) + 4

(
r1↓2λ + r3(1↓2λ)

)

(
1 + r1↓2λ

)2 f (r),

from which the limiting behaviour on (0, 1/4] follows immediately. On the other hand,
by dividing the numerator and denominator by r2, we write

s2
Ar
(rλ) =

1
r +

1+r
1+r3

(
r2(2λ↓1) + r2(1↓2λ) + 4

(
r2λ↓1 + r1↓2λ

)

(
r2λ↓1 + 1

)2 f (r),

from which the limiting behaviour on (1/4, 1) follows. Thus, the proof of (b) is
complete.

(c) First, note that

εcAr
= ↓∆ log cAr

c2
Ar

= ↓4
∂∂ log cAr

c2
Ar

= ↓∂∂ log SAr

π2S2
Ar

= ↓ 1
π2

s2
Ar

S2
Ar

= ↓ 1
π2

J(1)Ar(
J(0)Ar

)3 ,

using (27). Now, using Lemma 7.1.11, we have

εcAr
(rλ) = ↓ 1

π2
N(1)

λ (r)
(

N(0)
λ (r)

)4 = ↓4
r(1 + r)2 + (1+r)3

1+r3

(
r4λ + r4(1↓λ) + 4r

(
r2λ + r2(1↓λ)

)

(
rλ + r1↓λ

)4 g(r),

where g(r) is a positive function such that g(r) ↔ 1 as r ↔ 0+. Observe that the
right-hand side is symmetric in λ and 1↓ λ, and hence enough to compute the limiting
behaviour on (0, 1/2]. Dividing the numerator and denominator by r4λ, we write

εcAr
(rλ) = ↓4

r1↓4λ(1 + r)2 + (1+r)3

1+r3

(
1 + r4(1↓2λ) + 4

(
r1↓2λ + r3(1↓2λ)

)

(1 + r1↓2λ)2 g(r),
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from which the limiting behaviour on (0, 1/2] (and hence on (0, 1)) follows immediately.
This completes the proof of (c).

(d) Recall from (27) that

εsAr
(rλ) = 4 ↓ 2

J(0)Ar
(rλ)J(2)Ar

(rλ)
(

J(1)Ar
(rλ)

)2 . (57)

Therefore, using Lemma 7.1.11, we have

εsAr
(rλ) = 4 ↓ 2

(
N(0)

λ (r)
)3N(2)

λ (r)
(

N(1)
λ (r)

)3

= 4 ↓ 8

(
rλ+r1↓λ

1+r

3
(

r9λ+r9(1↓λ)

(1+r)(1+r3)(1+r5)
+

r
(

r3λ+r3(1↓λ)
)

(1+r)2(1+r3)

)

(
r

(1+r)2 +
(r4λ+r4(1↓λ))+4r(r2λ+r2(1↓λ))

(1+r)(1+r3)

3 h(r),

where h(r) is a positive function such that h(r) ↔ 1 as r ↔ 0+. Observe that the right-
hand side is symmetric with respect to λ and 1 ↓ λ; hence, it is enough to compute the
limiting behaviour on (0, 1/2]. Moreover, terms like 1 + r, etc., tend to 1 as r ↔ 0+,
and so they can be ignored while computing the limit. In other words, the limit of
εsAr

(rλ) as r ↔ 0+ is the same as that of

4 ↓ 8

(
rλ + r1↓λ

)3
(

r9λ + r9(1↓λ) + r
(
r3λ + r3(1↓λ)

)

(
r +

(
r4λ + r4(1↓λ)

)
+ 4r

(
r2λ + r2(1↓λ)

)3 ,

as r ↔ 0+. Now, dividing the numerator and the denominator of the second term by
r12λ, the above expression is equal to

4 ↓ 8
(
1 + r1↓2λ

)3(1 + r9(1↓2λ) + r1↓6λ + r4(1↓3λ)
)

(
r1↓4λ + 1 + r4(1↓2λ) + 4

(
r1↓2λ + r3(1↓2λ)

)3 ,

from which the limiting behaviour on (0, 1/4] follows. Multiplying the numerator and
the denominator of the second term of the above expression by r3(4λ↓1), we obtain

4 ↓ 8
(1 + r1↓2λ)3(r3(4λ↓1) + r6(1↓λ) + r2(3λ↓1) + r

)

(
1 + r4λ↓1 + r3↓4λ + 4

(
r2λ + r2(1↓λ)

)3 ,

from which the limiting behaviour on (1/4, 1/2] follows. As mentioned above, this
gives us the limiting behaviour on all of (0, 1). This completes the proof of (d) and the
theorem.
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[2] D. Barrett and L. Lee, On the Szegő metric, J. Geom. Anal. 24 (2014), no. 1, 104–117. MR3145917

[3] S. R. Bell, Complexity in complex analysis, Adv. Math. 172 (2002), no. 1, 15–52. MR1943900

[4] , The Cauchy transform, potential theory and conformal mapping, Second, Chapman & Hall/CRC,
Boca Raton, FL, 2016. MR3467031

[5] S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. i, J. Reine Angew. Math.
169 (1933), 1–42 (German). MR1581372

[6] , The kernel function and conformal mapping, revised, Mathematical Surveys, vol. No. V,
American Mathematical Society, Providence, RI, 1970. MR507701

[7] S. Bergmann, Sur les fonctions orthogonales de plusieurs variables complexes avec les applications à la
théorie des fonctions analytiques, Interscience Publishers, Inc., New York, 1941. MR4317

[8] A. Bhatnagar and D. Borah, Some remarks on the Carathéodory and Szegő metrics on Planar Domains, J.
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