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Abstract
Atom interferometry, a technique that leverages the wave nature of atoms to cre-

ate interference patterns, has emerged as a powerful tool for high-precision measure-

ments. This method exploits the principles of quantum mechanics, particularly the

wave-particle duality, to achieve remarkable sensitivity and accuracy. Atom interferom-

eters utilize coherent matter waves, typically of ultracold atoms, which are manipulated

using laser pulses to form superposition states that interfere. The resulting interference

patterns provide insights into various physical phenomena, making atom interferometers

highly effective in precision metrology, fundamental physics, and practical applications.

The development of quantum sensors based on atom interferometry has opened new

frontiers in measurement science. Quantum sensors exploit quantum coherence and en-

tanglement to surpass the limitations of classical sensors, offering unprecedented preci-

sion. In the realm of inertial sensing, atom interferometers can measure accelerations

and rotations with extraordinary accuracy, leading to advances in navigation systems,

geophysics, and seismology. For instance, gravimeters based on atom interferometry

can detect minute changes in gravitational acceleration, useful for mineral exploration,

monitoring volcanic activity, and detecting underground structures.

In addition to inertial sensing, atom interferometry is pivotal in testing fundamental

physics. It allows precise measurements of constants such as the fine-structure con-

stant and the gravitational constant. Moreover, atom interferometers are instrumental in

experiments probing the equivalence principle, a cornerstone of general relativity, and

in searches for dark matter and gravitational waves. The sensitivity of these interfer-

ometers to tiny perturbations makes them ideal for detecting phenomena predicted by

theories beyond the Standard Model of particle physics. The engineering of quantum

sensors using atom interferometry involves several critical technologies. These include

techniques for cooling and trapping atoms, precise control of laser fields, and advanced

methods for isolating the system from environmental noise. Innovations in these ar-

eas have led to the development of portable and even chip-scale atom interferometers,

broadening their applicability in various fields.

Despite significant progress, challenges remain in the practical deployment of atom

interferometer-based quantum sensors. These include enhancing the coherence time of



atomic superposition states, improving robustness against environmental disturbances,

and miniaturizing the systems for real-world applications. Ongoing research focuses

on overcoming these challenges through novel quantum control techniques, improved

atom optics, and integration with microfabricated technologies.

This work explores the development of atomic sensor technology through several

key areas. It begins with a detailed examination of atom interferometers, focusing on

the interaction between light and atoms in two-level and three-level systems, and the

principles of Bragg and Raman diffraction.

The research then describes the design and assembly of an experimental setup ca-

pable of producing an ensemble of ultracold atoms at a temperature of 100 nK. This

setup includes a Bragg lattice used to develop an atom interferometer for ultracold 87Rb

atoms.

Subsequent analysis covers Bragg diffraction and atom interferometry, providing

insights into the diffraction process within the experimental setup and its influence on

atom transitions between momentum states. This section also includes a demonstration

of a Mach-Zehnder interferometer utilizing Bragg diffraction.

The implementation of the atom interferometer is investigated as an atomic gravime-

ter, with a new approach proposed to reduce phase noise and improve measurement

accuracy and precision.

Lastly, the work examines double Bragg diffraction and its potential applications,

proposing a new concept for an atom-based Sagnac interferometer to advance the field

of atomic sensors.
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Chapter 1
Introduction

1.1 Exploring Quantum Sensors for Precise Measure-

ments
In the realm of modern physics, the advent of quantum mechanics has revolutionized

our understanding of the fundamental nature of the universe. Quantum mechanics, with

its probabilistic nature and intriguing phenomena such as superposition and entangle-

ment, has not only deepened our comprehension of the microscopic world but has also

paved the way for transformative technological advancements. One such groundbreak-

ing application lies in the realm of quantum sensors [8] , which harness the principles

of quantum mechanics to achieve unparalleled levels of precision in measurement.

Traditional sensors have played a pivotal role in countless fields, from navigation

systems and medical diagnostics to environmental monitoring and fundamental research.

However, as demands for higher accuracy [9], sensitivity [10], and resolution [11] con-

tinue to escalate, the limitations of classical sensing technologies become increasingly

apparent. Quantum sensors offer a promising solution to these challenges by exploiting

quantum phenomena to achieve measurements that were once deemed unattainable.

At the heart of quantum sensors lies the principle of quantum superposition, wherein

a quantum system can exist in multiple states simultaneously. By delicately manip-

ulating and interrogating quantum states, quantum sensors can achieve levels of sen-

sitivity and precision that surpass those of their classical counterparts. Moreover, the

1
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phenomenon of quantum entanglement enables correlations between particles over vast

distances, enabling the development of distributed sensing networks with unprecedented

capabilities.

In this thesis, we explored atom interferometers, which are matter-wave interfer-

ometers analogous to the well-known optical interferometers. Similar to their optical

counterparts, atom interferometers function by splitting a an ensemble of cold atoms

into a superposition of two states that travel through separate interferometer arms, ac-

cumulating relative phase differences. These states are then recombined to produce

interference. In optical interferometers, this process is achieved using mirrors and beam

splitters, whereas in matter-wave interferometers, pulses of an optical lattice are used.
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Figure 1.1: Classical and quantum senor comparison: The working principle of a
cold-atom accelerometer or interferometer involves using a standing wave along with
an ensemble of cold atoms. The standing wave acts as an optical ruler, guiding the
atoms as they fall freely through the system. During their descent, the atoms interact
with a first beam splitter, a mirror pulse, and a final beam splitter. This interaction causes
a phase shift, which can be detected at the output ports of the atom interferometer.

1.1.1 Inertial sensing using cold atom sensors

The foundation for cold atom sensors was laid by the groundbreaking work of Steven

Chu, Claude Cohen-Tannoudji, and William D. Phillips [12], who were awarded the
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Nobel Prize in Physics in 1997 for their development of methods to cool and trap atoms

with laser light. Building upon the groundbreaking work, M. Kasevich and S. Chu in

1991 [13], demonstrated the light-pulse atom interferometry, employing laser-cooled

atoms, which has evolved into a highly effective method for achieving precise measure-

ments. Over the last three decades, significant advancements have been made in the

realms of inertial sensing and the exploration of fundamental physics through pioneer-

ing experiments. In 1995, Eric Cornell, Carl Wieman , and Wolfgang Ketterle [14, 15]

achieved a major breakthrough by successfully creating the first Bose-Einstein conden-

sate (BEC) in a dilute gas of rubidium atoms. BEC is a state of matter that occurs at

extremely low temperatures, where quantum effects become dominant, and all atoms

occupy the same quantum state. This milestone marked the birth of a new era in atomic

physics and laid the groundwork for atom sensors using BEC.

Inertial sensing covers the measurement of the local gravitational acceleration, rotations

as the rotation of the Earth, as well as gravity gradiometry, by a differential read out of

two spatially separated atom interferometers. Table 1.1 presents a reference for various

sensors utilizing atom-based platforms.

Quantity Mea-
sured

Sensor Type Achieved Sensitivity No of atoms

Gravity Cold atoms ∼ 75× 10−8 ms−2/
√

Hz ∼ 107 [16]
Gradiometer Cold atoms ∼ 466× 10−9 s−2/

√
Hz ∼ 108 [11]

Time Optical clocks ∼ 4.4× 10−18 /
√

Hz ∼ 105 [17]
Rotation Cold atoms ∼ 100× 10−9 rad/sec/

√
Hz ∼ 2 × 107 NA

[18]
Magnetic Field BEC ∼ 120× 10−12 T/m/

√
Hz ∼ 2× 106 [19]

Rydberg Sensor Vapour cell ∼ 55× 10−9 nVcm−1/
√

Hz [20]

Table 1.1: Different capabilities of atom based quantum sensors

Most sensors mentioned in table 1.1 are based on atom interferometer and they share

a conceptual resemblance to optical Mach-Zehnder interferometers [21]. In such con-

figurations, a beamsplitter divides a light beam into two paths, which subsequently con-

verge after reflecting from mirrors. Upon their reunion, these paths intertwine at another

beamsplitter, leading to observable interference patterns in the power output from the
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Figure 1.2: Atom Interferometer for Various Applications: Fig (a): Atomic gravime-
ter adapted from [1]. Fig (b): Rotation sensor adapted from [2]. Fig (c): Atomic clock
adapted from NIST-F1 Cesium Fountain Clock Credit: NIST.

final beamsplitter’s two ports.

Contemporary atom interferometers predominantly employ light-pulse atom-optical el-

ements, where laser light takes on the role traditionally held by mirrors and beamsplit-

ters in manipulating matter waves. This paradigm shift effectively exchanges the tradi-

tional function of light and matter in an optical interferometer.

When laser light, resonating with an atomic transition, interacts with an atom, it co-

herently induces oscillations in the populations of the ground and excited states, a phe-

nomenon known as Rabi oscillations. This is explained in detail in Chapter 4. Initiating

with atoms in the ground state and timing the laser pulse to cease after a quarter of

an oscillation, corresponding to a π/2 phase evolution of the Rabi oscillation, results

in placing the atoms into an equal-probability superposition of the ground and excited

states. This operation, termed a ’π/2 pulse,’ effectively acts as a 50:50 beamsplitter.

Similarly, a ’π pulse,’ timed to last half an oscillation, reverses the population of the

ground and excited states, functioning akin to a mirror. Finally, one observes the oscil-

lation in the population of atoms after the completion of the interferometer.
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1.2 Atom Interferometer (AI)

Over the last decade, atom interferometr (AI)-based quantum sensors have rapidly evolved,

showcasing diverse measurement schemes and implementations for high-precision mea-

surements. Utilized in various applications today, atom interferometers (AI) remain

pivotal contributors to precision measurement frontiers, even on ground. Cold clouds

of atoms, cooled to mere tens of microkelvin and nanokelvin using laser cooling, ap-

proaches absolute zero, offer an ultra-sensitive test matter wave for interferometric

measurements. Atom interferometers (AIs) have demonstrated their exceptional sen-

sitivity as a probe for inertial forces, including accelerations and rotations. By drop-

ing cooled atom clouds, precise measurements of local gravitational acceleration have

been achieved with an absolute uncertainty of ∼ 75 × 10−8 ms−2/
√

Hz [16]. Addi-

tionally, Sagnac-type interferometers have detected minuscule rotations, typically with

sensitivities closer to 10−9 rad/s/
√

Hz [18]. Gravity gradiometers, designed to gauge

gravitational differences between two points using a shared reference frame, have been

developed with an absolute sensitivity of ∼ 466× 10−9 s−2/
√

Hz [11].

1.2.1 Stepwise Explanation of an Atom Interferometer

Within this segment, we shall elucidate the principle of atom interferometry in a com-

prehensible manner through six sequential steps. This journey will culminate in our

understanding of the measurement of acceleration due to gravity and other fundamental

constants.

1. Step 1: Let’s explore a three-level system compris-

ing the ground state |ψg⟩, excited state |ψe⟩, and

an intermediate state |ψi⟩. Initially, atoms are pre-

pared in the ground state through cooling and trap-

ping techniques.
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2.

Step 2: A laser pulse, incorporating two distinct fre-

quencies, with frequency difference equal to the fre-

quency difference between the ground and interme-

diate state, is directed at the atom, causing it to enter

a superposition state encompassing both the ground

state |ψg⟩ and the excited state |ψe⟩.

|ψ⟩ = 1√
2
(|ψg⟩+ expiωget |ψe⟩) (1.1)

This type of pulse is referred to as a π/2 pulse, akin

to a beamsplitter in optical interferometry.

3.

Step 3: After the first pulse, the atoms evolve freely

for a time T , without intervention. The phase accu-

mulated during this period is ∆ϕ =
∫ T

0
ωgedt. If,

during this interval, the atoms undergo a displace-

ment δx relative to the electromagnetic field radia-

tion produced by a local oscillator, an extra phase

shift ∆ϕ = k.δx is acquired.

4.

Step 4: Thus one can introduce another laser pulse,

which transfer the atoms from ground state to excited

state and viceversa.

|ψ⟩ = 1√
2
(exp−iωget |ψg⟩+ |ψe⟩) (1.2)

This type of pulse is referred to as a π pulse, akin to

a mirror in optical interferometry.
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5.

Step 5: The final step includes the re-combining the

two atomic wavefunctions by a π/2 pulse. The out-

come of the atom’s final state hinges on the relative

phase obtained between the two states. The likeli-

hood of observing the atom in either |ψg⟩ or |ψe⟩
after the pulse is contingent upon the degree of de-

phasing and follows the equation:

Pe =
1

2
(1 + cos(∆ϕ)) (1.3)

6. Step 6: A three-pulse interferometer is constructed by sequentially applying Ra-

man or Bragg pulses separated by a time interval T , consisting of a π/2-pulse, a

π-pulse, and another π/2-pulse. This arrangement induces a phase shift expressed

as:

∆ϕ = ϕ1 − 2ϕ2 + ϕ3 (1.4)

By analyzing the interference pattern, it’s possible to make extremely precise

measurements of parameters such as gravitational acceleration, magnetic fields,

and inertial forces.

1.3 Different types of Atom Interferometer

1.3.1 Mach-Zehnder Atom Interferometer

The Mach-Zehnder atom interferometer [22] is one of the simplest and most common

types. It is similar to the optical Mach-Zehnder interferometer but uses atoms instead

of photons. In this interferometer, a beam of atoms is split into two separate paths using

laser pulses. These paths are then recombined to produce an interference pattern that

depends on the phase difference accumulated along the two paths as shown in figure

1.1. The phase difference can be influenced by external forces like gravity, enabling

precision measurements.
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1.3.2 Ramsey-Bordé Atom Interferometer

The Ramsey-Bordé interferometer [23] is a variant that uses two pairs of laser pulses

to create an atom interferometer. The first pair of pulses splits and recombines the

atomic wave packets, while the second pair, does the same as shown in figure 1.3. The

interference pattern generated by this setup is highly sensitive to the atomic velocity and

can be used to measure atomic recoil, fundamental constants, and time. This type of

interferometer is widely used in precision spectroscopy, determination of fine structure

constant and measurements of atomic transitions.

1.3.3 Multi-Path Atom Interferometer

Multi-path atom interferometers [24, 25] extend the basic two-path design by splitting

the atom beam into more than two paths, creating a more complex interference pattern.

These interferometers can provide higher sensitivity and accuracy for certain measure-

ments by exploiting the additional phase information available from the multiple paths.

They are used in fundamental research applications, such as exploring quantum coher-

ence and decoherence.

1.4 Different cold atom sensor applications

1.4.1 Determination of the Fine Structure Constant

Calculating the fine structure constant α [26] using cold atoms has become an exciting

area in atomic physics. This fundamental constant, in quantum electrodynamics, de-

termines the strength of electromagnetic interaction between charged particles [27]. It

shows the relationship between the binding energy of an electron-proton system and the

electron’s rest energy, expressed through a formula:

α2 =
2R∞

c

mAtom

me

h

mAtom

(1.5)

where h is the Planck constant, c is the speed of light in vacuum, R∞ is the Rydberg

constant, and me is the mass of an electron.

Atom interferometers measure α based on measuring the recoil kinetic energy trans-

ferred from or to an atom of mass mAtom after scattering a photon that carries mo-
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Figure 1.3: Simultaneous Conjugate Ramsey-Borde Interferometers. Solid lines
show the trajectories of the atoms, while dashed lines indicate the laser pulses with their
respective frequencies. The optical lattices are formed by two laser pulses contains two
different frequencies, ω1, ω2 and ω1, ω2 ± ωm. BO stands for Bloch oscillations which
helps us in creating an accelerating optical lattice acquiring momentum from two photon
recoils per BO. |n⟩ represents a momentum eigenstate with momentum 2nℏk.
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mentum ℏk [28], where ℏ = h/2π is the reduced Plance constant and k is the photon

wavenumber. This recoil kinetic energy is given by ωr, where ωr =
ℏk2

2mAtom
is the recoil

frequency. Introducing an extension to the conventional laser-pulse sequence within an

atom interferometer, involving the incorporation of four π/2 pulses, leads to the forma-

tion of two distinct closed interferometers as shown in figure 1.3. The disparity between

the phase shifts [29] experienced by these two interferometers correlates directly with

the recoil energy accumulated during the beamsplitter π/2 pulses. By amalgamating

this innovative interferometer configuration with an accurate determination of the wave-

length of the laser light utilized for the pulses, it becomes feasible to derive a precise

measurement of h/mAtom [30].

1.4.2 Testing the equivalence principle:

The equivalence principle asserts that local physical phenomena in a freely falling frame

are equivalent to those in the absence of gravitational fields, as long as tidal effects

can be neglected [31, 32]. The discrepancy in acceleration observed between two test

masses in free fall, which signifies a departure from the universality of free fall (UFF),

is a key aspect of the equivalence principle. A comprehensive recent overview explores

both the theoretical underpinnings and practical implications of the equivalence princi-

ple, alongside its experimental validations [33]. Typically, investigations into the weak

equivalence principle involve examining the minute difference in acceleration, denoted

as |a1− a2|, between two dissimilar freely falling test masses. Any potential deviation

of the weak equivalence principle are quantified through the Eötvös parameter η:

η = 2

∣∣∣∣a1− a2a1 + a2

∣∣∣∣ (1.6)

According to the Weak Equivalence Principle (WEP), the Eötvös parameter should

be zero, indicating that the accelerations experienced by two test masses of different

composition or material are equal when subjected to the same gravitational field. How-

ever, deviations from zero in the Eötvös parameter would indicate a violation of the

Weak Equivalence Principle. Such deviations could arise from new physics beyond the

standard framework of general relativity, such as theories involving extra dimensions or

modifications to the gravitational interaction.
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Various experiments have been conducted to assess the weak equivalence princi-

ple. On Earth, torsion balances have yielded the most stringent constraints on potential

violations, achieving a relative precision of approximately 10−13 [34]. In space, the

MICROSCOPE mission stands out for its highly accurate test of the weak equivalence

principle, reaching a relative precision of around 10−14 [35]. Additionally, lunar laser

ranging measurements have also established stringent bounds. Notably, several other

experiments rely on the weak equivalence principle for their validity.

Atom interferometers present a unique and complementary method for investigating the

equivalence principle [36, 37]. One key advantage is the intrinsic isotopic purity of the

test samples, coupled with their well-defined spin states. This inherent purity allows

for a meticulous exploration of potential violations of the equivalence principle related

to spin-dependence [38]. By comparing results obtained with different spin polariza-

tions, researchers can scrutinize for deviations from the Universality of Free Fall (UFF).

Moreover, atom interferometers offer access to atomic elements [39] that are challeng-

ing to employ as macroscopic test masses due to technical constraints. This capability

broadens the scope of investigation, particularly in terms of exploring atomic elements

or isotopes with varying neutron and proton numbers. Consequently, atom interferom-

eters facilitate the expansion of the parameter space, thereby enhancing our ability to

probe the fundamental principles governing gravitational interactions.

1.4.3 Gravitational wave detection:

Atom interferometry presents an alternative avenue to traditional laser interferometry

for detecting gravitational waves, offering a complementary approach [40]. By em-

ploying two atom interferometers manipulated by the same light field, these systems

can function as differential phase meters, tracking the distance traveled by the light

field [41], similar to the figure 1.3. Building upon this principle, proposals for space-

borne detectors which aim to achieve performance levels akin to the laser interferometer

utilized in the Laser Interferometer Space Antenna (LISA) project [42].

To bridge the frequency gap between ground-based laser interferometers such as

Virgo or AdvLIGO [43], and LISA, atom interferometers have been suggested to be op-

erated at 0.1−10 Hz band. Variations in setup, whether vertical or horizontal baselines,
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have been explored, with ongoing efforts towards the latter configuration within the

Matter-wave laser Interferometric Gravitation Antenna (MIGA) [44] consortium. The

European Laboratory for Gravitation and Atom-Interferometric Research (ELGAR) fa-

cility is pioneering the development of long-baseline infrastructure employing quantum

physics to probe spacetime and gravitation. Utilizing a network of atom interferometers,

it aims to discern gravitational-wave signals in the 0.1− 10 Hz range while filtering out

Newtonian gravitational noise, filling a frequency band which was overlooked by ex-

isting gravitational-wave detectors [45]. Beyond gravitational wave detection, ELGAR

is poised to contribute to various scientific inquiries, including monitoring the Earth’s

gravitational field evolution and three-dimensional rotation rate over time.

1.4.4 Measuring gravity with atoms

In an absolute gravimeter, the determination of local gravity acceleration relies on track-

ing the displacement of a freely falling test mass [13]. In classical gravimeters, this test

mass, typically a macroscopic object, is optically monitored. However, in atom interfer-

ometers, a collection of laser-cooled atoms serves as the test mass. Their displacement

is observed through their interaction with a stationary two-photon Raman [13, 46] or

Bragg [47, 48] transitions, or single-photon transitions on ultranarrow lines [49] func-

tioning essentially as an ’optical ruler’ as shown in figure 1.1. A simplified overview

of the timing sequence involved in such measurements is provided here for introduc-

tory purposes. The gravity acceleration g produces a phase change at the interferometer

output which is given as [50]:

∆ϕ = kgT 2 (1.7)

where, k represents the effective wavevector responsible for splitting and recombining

the wavepacket of light, while T denotes the duration of free-fall experienced by the

atom between successive laser pulses.

Alternative methods have been explored to measure g using atom interferometry, in-

cluding experiments with Bloch oscillations [51]. In these experiments, cold atoms are

trapped in a vertical optical lattice [52]. The gravitational force and the periodic poten-

tial from the laser standing wave result in oscillations in momentum space, characterized
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Figure 1.4: Schematic diagram of Bose Einstien Condensate (BEC) based Atom
Interferometer and its space time trajectories. The blue dots represents BEC with
ballistic expansion after release from the dipole trap. The experiment runs in three
steps.(i) The conversion of mean field energy into kinetic energy of BEC during time of
flight Ttof (ii) the MZI with different interferometric time ranging from ms (iii) the final
pulse for detection after allowing the wave packets to separate with τsep ms.

by a frequency νBO as:

νBO =
mgλ

2h
(1.8)

Here, m represents the atomic mass, λ denotes the wavelength of the laser creating the

lattice, and h is Planck’s constant. By determining the frequency of the Bloch oscilla-

tions, the gravitational acceleration g can be calculated.

In this thesis, I will focus on demonstrating an atom interferometer utilizing Bragg

diffraction [53] and employ it to measure the acceleration due to gravity.

1.4.5 Quantum gyroscope with atoms

From the beginning of the 20th century onwards, numerous adaptations of Georges

Sagnac’s [54] original experiments have emerged. These experiments leveraged the

’Sagnac’ interference phenomenon to assess rotational movement, employing both light

and atoms in their setups. Gyroscopes that utilize this effect measure a rotation rate, Ω,
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through a phase shift between the two paths of an interferometer [55]. The Sagnac phase

shift, applicable to both photons and massive particles, can be expressed as:

Φsagnac =
4πE
hc2

A.Ω (1.9)

The vector A represents the area of the Sagnac loop, perpendicular to the plane of the

interferometer and corresponding to the area enclosed by its arms. The energy E is

defined as follows: for a photon, it is ℏω, and for a particle with rest mass M, it is Mc2.

Equation 1.9 indicates that the Sagnac phase shift for a matter-wave interferometer is

greater by a factor of Mc2
ℏω ∼ 1011 compared to an optical interferometer of the same

area. This factor becomes significant when comparing the rest energy of an atom to that

of an optical photon in the visible spectrum, highlighting the exceptional sensitivity of

atom-based sensors to rotational motion [55]. Figure 1.5 provides the basic illustration

of an atom based rotation sensor. More detailed work is provided in the chapter 7.

Figure 1.5: Atom based Sagnac interferometer. Schematic of a matter-wave Sagnac
interferometer based on two-photon Raman transitions. An optical illustration of atom
interferometer is shown in the left diagram. An atom in state |1⟩, with center-of-mass
velocity v = p

M
, is subjected to a sequence of counter-propagating laser pulses that are

rotating relative to the atomic trajectory at a constant rate Ω.
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1.5 Emerging techniques to enhance the sensitivity in

Atom Interferometer
In the last decade, there have been huge efforts to develop new techniques to enhance

the sensitivity of cold atoms as well as ultracold atom-based interferometers. Cutting-

edge techniques such as large momentum transfer, Bloch oscillations, double Bragg

diffraction, and momentum entangled state preparation for the interferometers are a

few of them. There have been efforts to improve precision, accuracy, stability, and

in decreasing the size of AIs. Here we discuss briefly how entanglement and large

momentum transfer play crucial roles in boosting the sensitivity of AIs [56].

1.5.1 Quantum Entanglement in Atom Interferometry

The Standard Quantum Limit (SQL) represents a fundamental limit on the precision

of measurements imposed by quantum mechanics, particularly in interferometry and

metrology. It originates from the Heisenberg uncertainty principle, which dictates that

there is a trade-off between the precision of measurements of conjugate variables, such

as position and momentum or phase and number.

In the context of interferometry, the SQL sets the minimum uncertainty in phase

measurements when using a coherent state of light or matter waves. The uncertainty in

phase, ∆ϕ, for a coherent state is given by:

∆ϕ ≥ 1√
N

where N is the number of photons or atoms used in the interferometer. This expres-

sion implies that the precision improves as the square root of the number of particles in-

creases, but this scaling represents the best possible sensitivity achievable with classical

resources. The SQL is derived from the quantum noise that arises due to the quantiza-

tion of the electromagnetic field or atomic states. In a simple interferometric setup, the

phase uncertainty can also be related to the uncertainties in the amplitude quadratures

of the light field, ∆X1 and ∆X2, through the following relation:

∆X1∆X2 ≥
1

2
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Figure 1.6: Spin squeezing in an atom interferometer: a) Schematic diagram of an
atom interferometer, b) and c) Coherent Spin State evolution of non-entangled states and
entangled states, d) and e) The output signal for phase measurement above and below
SQL. (Reprinted from [3], with the permission of AIP Publishing)

where X1 and X2 are the quadrature amplitudes of the field. This inequality is a

manifestation of the Heisenberg uncertainty principle.

To surpass the SQL, quantum-enhanced techniques such as squeezed states or en-

tangled particles can be employed. For instance, in a squeezed state, the uncertainty

in one quadrature is reduced at the expense of increased uncertainty in the conjugate

quadrature, allowing for phase measurements with precision below the SQL:

∆ϕsqueezed ≥
1√
N
e−r

where r is the squeezing parameter, indicating the degree of noise reduction in the
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phase quadrature.

Surpassing the SQL is crucial for applications in precision measurements, such as

gravitational wave detection, where the ability to measure minute displacements or

phase shifts with extremely high accuracy is necessary. The development of techniques

to beat the SQL has significant implications for advancing the sensitivity of devices like

atomic clocks, magnetometers, and other quantum sensors. Quantum entanglement of

atoms in an interferometer provides a promising tool to enhance the sensitivity beyond

SQL through relative phase measurements. The early experiments which demonstrated

the spin squeezing and momentum entanglement for metrological measurements are

given in [57–59].

In an atom interferometer the relative phase difference between two momentum states

is determined through some observable Ŝ related to ϕ as ∆ϕ =

√
V ar(Ŝ)

|∂Ŝ/∂ϕ| = ξ√
N

and ξ

quantifies the role of quantum entanglement through enhancement of sensitivity. Fig.

1.6 shows the diagram of a quantum enhanced signal in atom interferometry. In the

case of Quantum Gravimeter, where atoms fall under gravity in the standard Mach-

Zehnder interferometer configuration, one can relate the acceleration due to gravity

with the phase of an interferometer as ϕ = k · gT 2. For a quantum-enhanced signal

through quantum entanglement the sensitivity in acceleration due to gravity can be seen

as ∆g = ξ√
Nk||T 2 where N is the number of atoms, k|| is the component of k parallel to

g. Similarly for a rotation sensor where the phase shift is given as ϕ = 2mΩ · A/ℏ, the

sensitivity scales as ∆Ω = ξℏ√
N2mA||

, where A|| is the component of A parallel to Ω. Re-

cent developments such as the work reported in [60] show through numerical simulation

of spin squeezed ultracold atoms that the sensitivity gain can reach upto 14 dB beyond

the SQL limit. The experimental work on the realization of momentum entanglement in

atom Interferometry is shown in reference [61]. The article reports on the demonstration

of spin squeezing of -3.1 dB in ultracold atoms. Thus, the coming decades can see the

quantum-enhanced atomic inertial sensors in a more matured form [56].

1.5.2 Large Momentum Transfer

Another way to enhance the sensitivity is to increase the interferometric area through

multi-photon excitation. Methods like multiple two-photon Raman or Bragg transitions,
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double Raman or Bragg diffraction, Bloch oscillations or a combination of Bragg and

Bloch oscillations [62–66] allow improvements in the sensitivity by increasing the ef-

fective separation between the two interfering atomic samples. The disadvantage of this

technique, especially with cold atoms is the addition of extra phase noise due to the

multi-port nature induced by the effective multi-photon process.

1.6 Real field application of quantum sensors

1.6.1 Geoexploration and Civil engineering

Gravimetry techniques play crucial roles across various fields including metrology,

geology, and industrial applications like resource exploration. Traditional absolute

gravimeters and absolute gravity gradiometers have historically faced limitations due

to mechanical wear and low sampling rates, rendering them inadequate for continuous

long-term observations and applications on mobile platforms. The emergence of atom

interferometers (AIs) towards the end of the previous century presented a new techno-

logical solution. As discussed in previous sections, AIs utilize laser pulses to manipulate

groups of atoms within a vacuum, achieving splitting, redirection, and recombination.

AIs, devoid of macroscopic moving components, are well-suited for prolonged continu-

ous measurements and high-sampling-rate operations, circumventing thermal and wear

effects that degrade measurement precision in classical instruments. Moreover, lever-

aging atomic standards as references (such as energy levels and associated transitions)

enables these instruments to attain precision and stability.

In civil engineering applications, gravity and gravity gradient maps serve as valuable

tools for understanding subsurface conditions. The most prominent features typically

observed are those exhibiting significant contrasts in mass or density compared to their

surroundings, often indicating boundaries between soil and air. Consequently, gravi-

tational anomalies of interest often include features such as mine shafts, tunnels, sink-

holes, and pipes. Presently, gravity sensing in the field is predominantly conducted using

relative spring-based gravimeters. Conducting micro-gravity surveys before construc-

tion can help mitigate additional expenses arising from unexpected subsurface voids.

However, such surveys are seldom conducted due to the considerable time required for
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Figure 1.7: The usual magnitudes of gravity gradient anomalies produced by different
gravitational sources. (1E = 10−9s−2). (This figure is adapted from [4])

measurements. Current gravity mapping techniques entail approximately 10-15 min-

utes per measurement point, rendering gravity mapping for large-scale civil engineering

projects impractical due to time and cost constraints. Atom interferometers (AIs) ex-

hibit the capability to measure gravity gradients equivalent to 1ngs−1 across a distance

of 1 meter. This level of precision, already attainable in laboratory settings, holds the

promise of significantly decreasing measurement durations in civil engineering field sur-

veys by more than a hundredfold. This advancement presents a commercially appealing

option with considerable economic potential.

1.6.2 Inertial Navigation System

A comprehensive inertial navigation system (INS) integrates an inertial measurement

unit (IMU) and a central processing unit (CPU) to autonomously compute trajectories.

Its core task involves determining both the position and orientation of a mobile entity

from an initially established reference point. An inertial measurement unit (IMU) en-

compasses a collection of sensors, typically comprising a trio of accelerometers and
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Figure 1.8: Gimbaled Based INS. In this system, the INS includes a 3-axis gyroscope
that measures angular velocities Ωx, Ωy, and Ωz, which are used to adjust the orien-
tation via a feedback loop controlling the gimbals. At the same time, accelerometers
measure accelerations along each axis, ax, ay, and atot

z , while accounting for mobile ro-
tations. The gravitational acceleration g is subtracted from atot

z to obtain the mobile’s
true acceleration az. By performing a double integration of this acceleration, the posi-
tion components x, y, and z can be derived.
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gyroscopes, complemented by basic electronic components to relay measurements via a

communication bus. It assesses acceleration and angular velocity across three axes and

constitutes a cornerstone in inertial navigation systems.

Inertial navigation techniques historically encompassed two approaches. In earlier

times, when computational capabilities were limited, gimbaled-based INS systems were

prevalent [67]. These systems relied on an inertial measurement unit (IMU) mounted

on gimbals consisting of three or four rotational frames. Figure 1.8 illustrates the oper-

ational schematic of a gimbaled INS. As computational speeds advanced, INS systems

transitioned to strap-down configurations [67]. In this setup, the INS is mechanically

fixed directly to the moving platform, eliminating the need for gimbals. Figure 1.9 illus-

trates the operational schematic of a strap-down INS. Inertial navigation systems rely

Gyroscope

Initial
velocity

Initial
attitude

New
velocity

New
acceleration

New
attitude

Coriolis correction

Initial
position

New
position

Gravitational 
acceleration model

Transform to the 
navigation frame Accelerometer

IMU

+
-

-

Figure 1.9: Strapdwon based INS.The gyroscopes provide angular velocities which,
when integrated over time from the initial attitude, define the current attitude in terms of
Euler angles α, β, and γ. In a strap-down INS, accelerations along three axes are mea-
sured, with gravitational acceleration projected onto each component atot

x , atot
y , and atot

z ,
while Coriolis accelerations introduce perturbations. Initially, these accelerations are
projected onto the navigation frame determined by the current Euler angles of the mo-
bile. They are then corrected for Coriolis acceleration, calculated using the gyroscopes,
and gravitational acceleration g(t). By double integrating these corrected accelerations,
the position components x, y, and z are derived.

on knowing the initial position, velocity, and orientation of the mobile platform with

a certain degree of accuracy. To determine the initial position, dead-reckoning instru-
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ments like altimeters, odometers, radars, sonars, or lidars are typically used. Another

approach is to compare the position to a calibrated reference system, such as a global

navigation satellite system (GNSS), terrestrial radio beacons, or by aligning local mea-

surements with established maps, including those that indicate magnetic or gravity field

anomalies. Positioning errors in inertial navigation systems stem from various sources.

Time integration of accelerations and rotation rates leads to cumulative errors over time.

Additionally, these systems are prone to bias drift. The sensor’s actual response deviates

from linearity and is influenced by the environment. Non-linearities can be addressed

using higher-order scale factor models, but calibration is challenging due to their depen-

dence on environmental factors. Table 1.2 displays the performance grades of IMUs,

with data assessed over one hour of integration. The table provides the classification of

Inertial Measurement Unit (IMU) grades based on their performance metrics, specifi-

cally accelerometer bias stability, gyroscope bias stability, and their resulting position

accuracies. Below is a brief explanation of the grades:

1. Consumer Grade: Used in smartphones, fitness trackers, and other consumer

electronics.

2. Industrial Grade: Utilized in industrial automation, robotics, and automotive

systems.

3. Tactical Grade: Found in tactical systems like drones, guided munitions, and

mid-level navigation systems.

4. Intermediate Grade: Bridges the gap between tactical and navigation grades;

used in advanced navigation systems.

5. Navigation Grade: Used in aircraft, ships, and advanced navigation systems.

6. Strategic Grade: Used in military and strategic systems like missiles and space

exploration.

Besides the aforementioned sources of error, the accuracy of the gravity model and

gravitational anomalies map plays a crucial role in preventing navigation errors from

escalating. Auxiliary sensors and navigation aids, such as feature matching techniques

or dead reckoning instruments, prove invaluable in minimizing position errors.
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Table 1.2: Classification of accelerometer and gyroscope performances. The posi-
tion accuracy is calculated after a one-hour integration period, assuming there are no
initial errors in position, velocity, or attitude. The table is cited from [5]

Methods of feature matching

Utilizing feature matching techniques involves comparing environmental features with

a pre-existing map or database, grounded on physical models and local anomaly sur-

veys [68–70]. Factors like Earth’s non-perfect spherical shape and density variations

influence local gravity alongside large-scale movements within the planet. Present-day

navigation heavily relies on gravity field matching, facilitated by advanced gravity maps

obtained through airborne and space surveys. The widely adopted EGM2008 map [71]

combines satellite and terrestrial observations to provide accurate global gravity data.

Gravity gradiometry offers even more refined navigation, providing the full gravity gra-

dient tensor ∂g⃗/∂r⃗ [69], aiding in noise rejection and bias drift mitigation.

Geomagnetic field matching navigation [72] is feasible at certain altitudes, where or-

bital spacecraft can compare local measurements with a global magnetic model. How-

ever, anomalies in the Earth’s geomagnetic field at lower altitudes can be measured

to generate a database, although their time-varying nature limits navigation efficiency.

Stellar navigation utilizes celestial bodies’ positions, employing star trackers equipped

with telescopes and light detectors on gimbals. Hypsometry and bathymetry surveys,

measuring land elevation and ocean depth, respectively, contribute to global relief mod-

els used in matching navigation through comparisons with local profiles obtained from

sonars, lidars, or radars.
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Benefits of atomic sensors

Atom-based instruments are emerging as a new class of inertial sensors, offering unpar-

alleled sensitivity, stability, and accuracy. These include devices such as gravimeters,

gravity gradiometers, and gyroscopes. The exceptional performance of these sensors is

expected to drive significant technological advancements in various domains, including

geophysics, metrology, and especially inertial navigation

In the realm of atom interferometry, cold atoms housed within vacuum apparatus

function as ideal proof masses in free fall, facilitating precise measurements. Remark-

able advancements have been made, resulting in commercial gravimeters utilizing simi-

lar technology boasting stability of less than < 1ng and an absolute accuracy of around

< 1ng, alongside a noise level on the order of 10ng/
√
Hz. Similarly, rotation sen-

sors have achieved an absolute accuracy of 1nrad/s with noise levels on the order of

10nrad/
√
Hz. Nonetheless, these instruments typically consist of large, intricate lab-

oratory setups necessitating quiet and stable conditions for operation. Applications in

field and onboard scenarios demand significant reductions in size, weight, and power

consumption of such devices, along with heightened robustness and resistance to en-

vironmental disturbances. Notably, significant strides have been made in recent years

toward commercializing cold-atom-based sensors.

Several research teams and companies have developed portable cold-atom gravimeters.

However, these systems are typically unsuitable for operation during movement and of-

ten necessitate a stable and quiet environment to achieve their optimal performance lev-

els. Companies like AOSense [73], Atomionics [74], and Msquared [75] offer commer-

cial products in relatively compact packages, ranging in weight from tens of kilograms

to around 100 kilograms. In contrast, a mobile system can function while in motion

and within relevant navigation environments. Recently, Simon Templier [76] success-

fully demonstrated 3D tracking of the acceleration vector using a compact hybrid first

quantum accelerometer triad (QuAT).

1.7 Objective of the thesis
The primary objective of this thesis is to explore and develop techniques in atom in-

terferometry, with a particular focus on utilizing ultracold atoms (Bose-Einstein con-
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densates) to achieve high-precision measurements. The work begins by providing a

comprehensive theoretical understanding of atom interferometry, including the founda-

tional principles of laser cooling, magnetic trapping, and evaporative cooling, as well as

the interaction of light with atoms in both two-level and three-level systems.

The thesis then details the experimental procedures for achieving Bose-Einstein conden-

sation in 87Rb, covering the construction of essential components such as the oven, laser

systems, and the Ultra-High-Vacuum (UHV) chamber, along with the design of a Bragg

laser system specifically for atom interferometry. It further investigates the formation of

an atom interferometer, analyzing the Rabi frequency associated with Bragg diffraction

in ultracold atoms and conducting Bragg spectroscopy to study the properties of these

systems.

The development of an atomic gravimeter using ultracold atoms (BEC) is also a key

focus, where a Bragg lattice is employed to create an atom interferometer along the

vertical direction. This includes a thorough characterization of phase noise in different

Bragg beam configurations and an evaluation of the sensitivity and resolution of the

system. Additionally, the thesis introduces and experimentally demonstrates the use of

double Bragg diffraction to construct an atomic Sagnac interferometer.

Finally, the thesis summarizes the findings and presents a future outlook, suggesting

potential directions for continued research in the field of atom interferometry and its

applications in precision measurement technologies. Through these efforts, the thesis

aims to contribute to the advancement of atom interferometry as a powerful tool for

high-precision measurements.
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1.8 Outline of the thesis

Chapter Description

2 Chapter 2 provides a theoretical overview of the atom interferometer and the

foundational principles of laser cooling, magnetic trapping, and evaporative

cooling. Additionally, this chapter offers a comprehensive explanation of

light-atom interactions in a two-level system, extending to a three-level

system that encompasses Raman and Bragg diffraction.

3 Chapter 3 provides a comprehensive description of the experimental setup

for achieving 87Rb Bose-Einstein condensation. It details the construction of

the oven, laser systems, and the Ultra-High-Vacuum (UHV) chamber.

Additionally, this chapter explains the design of the Bragg laser system used

in the atom interferometer.

4 Chapter 4 reports the formation of an atom interferometer and the results of

the abservation of it. It details about the Rabi frequency of a Bragg

diffraction of atoms and also talks about the Bragg spectrosopy of ultracold

atoms.

5 Chapter 5 provides the detailed study of the development of an atomic

gravimeter with ultracold atoms (BEC). It utilises the Bragg lattice to create

the atom interferometer along the vertical direction. It also characterizes the

phase noise in two different configuration of Bragg beams and finally

measures the sensitivity and resolution of the system.

6 Chapter 6 introduces the concept of double Bragg diffraction and

demonstrates an experimental procedure for implementing an atomic Sagnac

interferometer.

7 Chapter 7 summarizes the work and presents the future outlook.



Chapter 2
Theoretical Background

In this chapter, we provide a concise overview of the theoretical concepts essential for

comprehending the research presented in this thesis. The initial portion of this chap-

ter describes briefly about the theory behind trapped Bose gases, fundamentals of laser

cooling and trapping. Subsequent sections of this chapter discusses and delve into the

theoretical frameworks of light atom interaction where we first discuss about the in-

teraction of an two-level atomic ensemble with a light field and specifically with light

pulse and secondly, we extend it to three level system where we emphasis on the phase

evolution during the sequence [77].

2.1 A brief overview of cold atoms and Bose-Einstein

Condensate.
In the 1970s, A. Ashkin [78] reported the initial observation of freely suspended parti-

cles experiencing acceleration due to radiation pressure from continuous wave (cw) vis-

ible laser light. Hänsch and Schawlow (1975) [79] along with Wineland and Dehmelt

(1975) [80] recognized the potential of such light sources to exert significant forces on

atoms, laying the groundwork for potential cooling applications. Subsequently, in 1978,

A. Ashkin [81] proposed the utilization of lasers for atom trapping, marking the seminal

introduction to the concepts of laser cooling and trapping of atoms. Initially, advance-

ments were gradual, with significant experimental breakthroughs emerging several years

later: the achievement of the first stopping of a thermal atomic beam in 1982 [82], fol-

27



28 Chapter 2. Theoretical Background

lowed by the pioneering demonstration of three-dimensional cooling in 1985 [83], and

the groundbreaking accomplishment of the first optical trapping in 1986 [84].

The foundational principle of laser cooling hinges on the conservation of energy and

momentum during the absorption and emission of radiation. The prevalent technique,

”Doppler cooling,” exploits the velocity-dependent nature of radiation pressure induced

by light due to Doppler shift. This effect dampens atomic motion when the laser fre-

quency is adjusted below an atomic resonance [85]. This breakthrough prompted sub-

sequent experimental inquiries and fostered a deeper theoretical comprehension. Re-

searchers recognized the significance of the multi-level structure of actual atoms and the

spatial variation of the light field’s polarization in the cooling process [86–88]. These

insights led to the development of new cooling mechanisms termed sub-Doppler or po-

larization gradient cooling, yielding temperatures on the order of 10−5 K. Nevertheless,

a fundamental temperature constraint persists: an atom cannot attain less kinetic energy

than that associated with a single photon recoil. Typically, this recoil limit corresponds

to temperatures ranging between 10−7 and 10−6 K. However, researchers found ways to

get around this recoil limit. They let atoms scatter photons until, by chance, the final re-

coil gives the atoms a velocity close to zero. These methodologies, known as sub-recoil

cooling, have achieved three-dimensional temperatures below 10−6 K [89, 90], as evi-

denced by subsequent studies [91,92]. The phenomenon of Bose-Einstein condensation

Figure 2.1: Temperature scale of cooling of atoms.
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has been anticipated since 1924. This landmark discovery emerged from the collabora-

tive efforts of Satyendra Nath Bose and Albert Einstein [93, 94]. Prompted by Bose’s

seminal contributions and inspired by Louis de Broglie’s elucidation of particle wave

nature [95], Einstein formulated a comprehensive quantum theory for bosonic particles

in an ideal gas. In his two seminal papers [94], Einstein not only laid out this theory

but also foresaw a remarkable phenomenon: the coherent condensation of atoms into

a single quantum state. As this effect arises solely due to pure quantum statistics, the

transition from classical to quantum statistics. The quantum effects become significant

when the thermal de Broglie wavelength which can be written as:

λdB =

√
2πℏ2
mkBT

(2.1)

When the thermal de Broglie wavelength becomes comparable to the mean inter-particle

distance n−1/3, where n represents the system’s density, it highlights one of the most

intriguing predictions of quantum mechanics: atoms not only exhibit discrete parti-

cle behavior but also manifest wave properties. Essentially, the de Broglie wavelength

signifies the extent of positional uncertainty associated with the thermal momentum dis-

tribution, an uncertainty that escalates as the temperature T decreases. Consequently,

macroscopic quantum phenomena emerge when n−1/3 ∼ λdB, indicating that the phase

space density satisfies the following criteria:

nλ3dB = n

(√
2πℏ2
mkBT

)3/2

≥ 1 (2.2)

Meeting this criterion results in a spatial overlap of the particle wave functions. At this

juncture, particles begin to lose their distinct identities, becoming indistinguishable,

and their motion can no longer be correlated with their classical trajectories. Figure 2.1

illustrates the decreasing temperature scale of atoms and the techniques used to cool

them.

The Bose-Einstein condensate can be characterized by a unified wave function, ef-

fectively encapsulating the attributes of the entire macroscopic assembly as a singular

coherent quantum mechanical entity. Conversely, in accordance with Pauli’s exclusion
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principle, such consolidation is precluded for Fermions governed by Fermi-Dirac statis-

tics, where an anti-symmetric wave function is mandated. Regarding temperature, the

aforementioned criterion for Bosons can be re-framed as [96]:

T ≤ n2/3

(√
2πℏ2
mkBT

)
(2.3)

This shows that quantum effects are tied to low temperatures, where wave-like be-

havior becomes noticeable. In everyday situations, the energetic movement of particles

hides this wave behavior. At high temperatures, the thermal de Broglie wavelength gets

smaller, and the gas acts according to classical physics. Here, we discuss cold and ultra-

cold atoms and demonstrate how quantum effects can be utilized to conduct remarkable

experiments for precision measurements.

2.2 Two-photon Transition
A two-photon transition refers to a quantum process where an atom or molecule under-

goes a change in its energy state by absorbing or emitting two photons simultaneously.

This phenomenon is significant in the realm of quantum mechanics and spectroscopy,

offering insights into the intricate behavior of atomic and molecular systems. Unlike

single-photon transitions, which are governed by strict selection rules and occur with

specific frequencies corresponding to the energy difference between initial and final

states, two-photon transitions involve the simultaneous absorption or emission of two

photons, typically of lower energy. This process enables transitions that may not be ac-

cessible via single-photon absorption or emission, allowing for the exploration of oth-

erwise inaccessible energy levels and providing a deeper understanding of the quantum

properties of matter. Two-photon transitions find applications in various fields, includ-

ing quantum optics, laser spectroscopy, and quantum information processing, where

their unique characteristics contribute to the development of advanced technologies and

the study of fundamental physical phenomena.

Two-photon processes are typically classified into two arrangements, illustrated in

Figure 2.2. These configurations are identified as direct two-photon absorption (referred

to as Ξ) and single-photon absorption combined with a single spontaneous or stimulated
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emission event (referred to as Λ). The effectiveness of these transitions relies on guiding

atoms from an initial ground state (|g⟩) through a virtual excited state (|i⟩) to reach the

desired real final state (|e⟩), thereby bypassing the prohibited single-photon transition.

Ξ-type systems are commonly employed in two-photon absorption [97] spectroscopy.

Figure 2.2: The two-photon transition configurations can be classified as follows:
(a) Two-photon absorption (Ξ), where an initial photon, not in resonance with any
atomic transition, is absorbed, leading to a virtual state, followed by a subsequent ab-
sorption event to a permissible real energy state. In this scenario, the combined energy
of the photons, ℏ(ω1 + ω2), must match the energy difference between the real states,
denoted as |g⟩. (b) Single-photon absorption coupled with a single spontaneous or stim-
ulated emission event (Λ). Here, the disparity in photon energy, ℏ |(ω1 − ω2)|, must
correspond to the energy separation between real states, |e⟩ - |g⟩. The deviations from
resonance for single and two-photon processes are indicated by ∆ and δ, respectively.

The two-photon process pertinent to this apparatus involves Λ orientation, encom-

passing the well-known phenomena of Raman and Bragg diffraction of atoms [98]. The

primary distinction lies in the fact that in Raman diffraction, the internal state under-

goes alteration during the two-photon process, whereas in Bragg diffraction, it remains

unchanged. Consequently, the two frequencies, ω1 and ω2, responsible for generating

the diffraction gratings, must be adjusted to initiate the process. Hence, their differ-

ence, ℏ |(ω1 − ω2)|, is contingent on the mechanism employed. In a typical Raman

scattering scenario, an atomic sample is illuminated by a monochromatic light source

that is detuned from all electronic resonances. The atoms can simultaneously absorb an
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incoming photon and emit a photon of a different frequency. This process coherently

transfers the atom to an energy level equivalent to the energy difference between the two

photons. The absorption and decay event gives rise to the conventional Λ-level scheme

depicted in Figure 2.2. The manipulation of the atomic ensemble in this setup em-

ploys two closely related transition schemes, with the exception that the decay process

is stimulated toward a desired state.

2.2.1 Light atom diffraction theory

A general description of the interaction of a light field with an atom that can be config-

ured in a variety of different energy states is extremely complex. As we use the alkali

metal rubidium in our experiment, we will limit this treatment to atoms with a single

valence electron. As a first step, we will simplify the problem to a two-level atom,

later expanding for the three-level Raman and Bragg transition employed in the atom

interferometer.

Light atom interaction of two-level system:

The behavior of stimulated Λ transitions becomes apparent when examining the time-

dependent changes of a two-level atom subjected to an oscillating electric field. Con-

sider a discrete two-level atom interacting with electromagnetic radiation of frequency

ωL and arbitrary phase ϕ, treated as a classical field (utilizing a semi-classical approach).

Under the dipole approximation, the Hamiltonian governing an atom in such an oscil-

lating electric field is expressed as:

Ĥtotal = Ĥatom + Ĥint (2.4)

where Ĥatom is the atomic Hamiltonian with eigenenergies , while Ĥint is the inter-

action Hamiltonian of the atom with the light field.

Ĥatom = ℏωe|e⟩⟨e|+ ℏωg|g⟩⟨g| (2.5)

Ĥint = −d⃗ · E⃗ (2.6)

Here, d⃗ = −qr⃗ (electric dipole moment) and E⃗ = E⃗0cos(ωLt + ϕ) (oscillating
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electromagnetic field).

Typically, the wavelength of light far exceeds the size of an atom, denoted as λ ≫
a0. Under the assumption that the atom’s position, approximately R, remains constant

throughout the interaction duration, changes in phase are minor, and the electric field’s

amplitude remains same across the atom’s size. Consequently, the electric dipole ap-

proximation simplifies by disregarding spatial variation of the electric field, such that

E(∼ r, t) ≈ E(∼ R, t) ≈ E(t). The total Hamiltonian of the system can now be

written as:

Ĥtotal = ℏωe|e⟩⟨e|+ ℏωg|g⟩⟨g| − d⃗ · E⃗0cos(ωLt+ ϕ) (2.7)

The temporal evolution of the two level system can be described by a time-dependent

Schrödinger equation with the following ansatz for the wave function

iℏ
d

dt
|Ψ(t)⟩ = Ĥtotal|Ψ(t)⟩ = (Ĥatom + Ĥint)|Ψ(t)⟩ (2.8)

The time-dependent wavefunction Ψ(t) for a two-level system is given by Equation

2.9, where |g⟩ and |e⟩ denote the ground and excited states, respectively. Eg = ℏωg

and Ee = ℏωe represent the energies of these states, while cg and ce are normalization

factors ensuring ⟨Ψ(t)|Ψ(t)⟩ = c2g + c2e = 1.

|Ψ(t)⟩ = ce|e⟩e−iEet/ℏ + cg|g⟩e−iEgt/ℏ (2.9)

Given the driving field’s frequency ωL and ωe − ωg = ωeg as depicted in Figure

2.2 (b). Equation 2.7,2.8, and 2.9 establish a set of coupled equations governing the

coefficients ce and cg [99]. These coupled equations can be written by solving Equation

2.8 and 2.9 as:

iℏ
d

dt
ae(t) = ℏωeae(t) + ℏΩeg

(
ei(ωLt+ϕ) + e−i(ωLt+ϕ)

2

)
ag(t)

iℏ
d

dt
ag(t) = ℏΩ∗

eg

(
e−i(ωLt+ϕ) + ei(ωLt+ϕ)

2

)
ae(t) + ℏωgag(t)

(2.10)

where, ae(t) = cee
−iEet/ℏ and ag(t) = cge

−iEgt/ℏ. Here we we introduce the Rabi
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Figure 2.3: Schematic of a discrete two-level system under the presence of a non-
resonant light field. This scheme involves the absorption of a single photon followed
by either a spontaneous or a stimulated emission event. For this to occur, the energy dif-
ference of the absorbed photon, ℏ|ωeg −ωL|, must match the energy difference between
the two real states, |e⟩ and |g⟩. The detuning of the single photon is represented by δ.

frequency on resonance Ωeg and out of resonance Ωr by detuning δ = ωL − ωeg =

ωL − (ωe − ωg) as:

Ωeg = −
⟨e|d⃗ · E⃗0|g⟩

ℏ
Ωr =

√
δ2 + Ω2

eg

(2.11)

Given that Ωeg ≪ ωe, ωg, we ignore the rapidly oscillating terms with frequencies

ωe, ωg, focusing solely on the slowly oscillating coefficients ae(t) and cg(t). Upon fur-

ther solving Equation 2.10, which encompasses both off-resonant terms ωeg + ωL and

resonant terms ωeg − ωL = −δ, and assuming a small detuning compared to the tran-

sition frequency δ ≪ ωeg, we can consider the two level dynamics to neglect the fast

oscillating tems based on rotating wave approximation (RWA). Consequently, consider-

ing only the resonant term, the Schrödinger equation simplifies to:

i
d

dt
ce =

Ωeg

2

{
e−i(δt+ϕ)

}
cg

i
d

dt
cg =

Ω∗
eg

2

{
ei(δt+ϕ)

}
ce

(2.12)

This finally results in an expression with the coefficients ce and cg and a time-dependent
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Hamiltonian can be written as:

d

dt

(
ce
cg

)
=
−i
2

(
0 Ωeg

{
e−i(δt+ϕ)

}
Ω∗

eg

{
ei(δt+ϕ)

}
0

)(
ce
cg

)
(2.13)

Thus, the updated approximate Hamiltonian can now be expressed in the basis of

|e⟩ and |g⟩ as follows:

Ĥtotal =
ℏ
2

(
0 Ωeg

{
e−i(δt+ϕ)

}
Ω∗

eg

{
ei(δt+ϕ)

}
0

)
(2.14)

We transform this Hamiltonian, which exhibits weak time-dependence, into a time-

independent form by employing a suitable unitary function. Through a general uni-

tary transformation, the resultant transformed Hamiltonian takes the form Ĥ ′
total =

UĤtotalU
† + iℏ∂U

∂t
U † [100]. Here the unitary operator is written as:

U = eiδt/2|e⟩⟨g|+ e−iδt/2|g⟩⟨e| (2.15)

In this updated framework, the new Hamiltonian becomes:

Ĥ ′
total =

ℏ
2

(
−δ Ωege

−iϕ

Ω∗
ege

iϕ δ

)
(2.16)

The eigenvalues of the scaled Hamiltonian is given as:

λ± = ±ℏΩr

2
(2.17)

The eigenenergies of the scaled Hamiltonian is given as:

∆Ee =
ℏ
2
(−δ + Ωr)

∆Eg =
ℏ
2
(δ − Ωr)

(2.18)

The alteration in energy experienced by the eigenstates of a time-independent Hamil-

tonian when influenced by a light field is termed the AC Stark shift which give rise to

new eigenstates called as dressed states. For far detuned light i.e. δ ≫ Ωeg, the sym-
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metric energy adjustment observed in the so-called dressed states can be expanded in

expressions involving:

∆Eg = −∆Ee =
ℏ
2
(δ − Ωr) =

ℏ
2

(
δ −

√
δ2 + Ω2

eg

)
≈ −

ℏΩ2
eg

4δ
(2.19)

Now, we apply a pulse of light of length τ and find the coefficients of ce(t0 + τ) and

cg(t0 + τ). This is done by transforming intial wavefunction |Ψ(t0)⟩ into the rotating

frame and projecting it to the eigenstates of Ĥ ′
total. We thus calculate |Ψ(t0 + τ)⟩′ and

do a back transformation to obtain |Ψ(t0 + τ)⟩. Thus one can write the coefficients

as [100]:

ce(t0 + τ) = e−i δτ
2

{
ce(t0)

[
cos

(
Ωrτ

2

)
+
iδ

Ωr

sin

(
Ωrτ

2

)]

+cg(t0)e
−i(δt0+ϕ)

[
−iΩeg

Ωr

sin

(
Ωrτ

2

)]} (2.20)

cg(t0 + τ) = ei
δτ
2

{
ce(t0)e

i(δt0+ϕ)

[
−iΩeg

Ωr

sin

(
Ωrτ

2

)]

+cg(t0)

[
cos

(
Ωrτ

2

)
− iδ

Ωr

sin

(
Ωrτ

2

)]} (2.21)

Formulas 2.20 and 2.21 provide the updated probability amplitudes of the two stable

atomic states after a time duration τ under the condition of constant amplitude electro-

magnetic coupling. When the applied field is absent, represented by Ωeg = 0 and

Ωr = |δ|, these equations simplify to:

ce(t0 + τ) = ce(t0)e
−i δτ

2 [cos(|δ|τ/2) + i(δ/|δ|)sin(|δ|τ/2)] = ce(t0) (2.22)

cg(t0 + τ) = cg(t0)e
i δτ

2 [cos (|δ|τ/2)− i(δ/|δ|)sin(|δ|τ/2)] = cg(t0) (2.23)

In case of zero detuning i.e. δ = 0, Ωr = Ωeg, the equations 2.20 and 2.21 becomes:

ce(t0 + τ) = ce(t0)cos (Ωegτ/2)− icg(t0)e−iϕsin (Ωegτ/2)

cg(t0 + τ) = −ice(t0)eiϕsin (Ωegτ/2) + cg(t0)cos (Ωegτ/2)
(2.24)
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We can initiate a two-level system wherein all atoms are initially in one state (for

instance, ce(t0) = 0, cg(t0) = 1), and then ascertain the likelihood of locating an atom

in either state |e⟩ or |g⟩.

Pe(τ) = |ce(τ)|2 =
(
Ωeg

Ωr

)2

sin2

(
Ωegτ

2

)
=

(
Ω2

eg

2Ω2
r

)
[1− cos(Ωegτ)] (2.25)

Pg(τ) = |cg(τ)|2 =
(
Ωeg

Ωr

)2

cos2
(
Ωegτ

2

)
=

(
Ω2

eg

2Ω2
r

)
[1 + cos(Ωegτ)] (2.26)

Figure 2.4: Population probability Pe(τ) of excited state |e⟩ from figure 2.3 for different
detuning values.

The oscillations displayed in Figure 2.3 illustrate Rabi oscillations under varying

detuning conditions. When δ = 0, the transition probability reaches a maximum am-

plitude, fluctuating between 0 and 1. Conversely, for δ ̸= 0, the transition probability

diminishes, and the oscillation frequency consistently exceeds the resonant frequency.

Consequently, based on Figure 2.3, specific pulse durations can be identified. At δ = 0,

the duration corresponds to complete population inversion is termed a π pulse, denoted

as Ωeg · τ = π. Conversely, when atoms are equally distributed between both states,

it signifies a π/2 pulse, represented as Ωeg · τ = π/2. In case of on-resonant light i.e.
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δ = 0 the above equation becomes:

Pe(τ) =
1

2
[1− cos(Ωegτ)]

Pg(τ) =
1

2
[1 + cos(Ωegτ)]

(2.27)

Atoms in momentum state:

Now, if we contemplate the atoms possessing a specific momentum p⃗, we can write the

atomic wave-function as a propagating plane wave:

|Ψ(r⃗, t)⟩ = ae−ip⃗·r⃗/ℏ|Ψ(t)⟩ (2.28)

where a is the amplitude factor. The new Hamiltonian is modified with the momentum

term as:

Ĥtotal = Ĥmom + Ĥatom + Ĥint (2.29)

Ĥtotal =
p⃗2

2m
+ ℏωe|e⟩⟨e|+ ℏωg|g⟩⟨g| − d⃗ · E⃗0cos(ωLt+ ϕ) (2.30)

The electric field includes the spatial variation E⃗ = E⃗0cos(k⃗ · r⃗ − ωLt + ϕ) in the

interaction term. The interaction term involving light can be adjusted by employing the

closure relation:

1 · e±i⃗k·r⃗ =

∫
d3pe±i⃗k·r⃗|p⟩⟨p| =

∫
d3p|p± ℏk⟩⟨p| (2.31)

Consequently, when a photon is absorbed or emitted, the atom’s total momentum

undergoes a change of ℏk⃗. Consequently, the two atomic states within our system be-

come coupled, and the two potential eigenstates are now |g, p⃗⟩ and |e, p⃗ + ℏk⃗⟩. Given

the introduction of a new set of eigenstates, the behavior of the system, inclusive of

external degrees of freedom, isdescribed by the wave function [100]:

|Ψ(t)⟩ = ce(t)e
−i(ωe

2
+

|p⃗+ℏk⃗|2
2mℏ )t|e, p⃗+ ℏk⃗⟩+ cg(t)e

−i(
ωg
2
+

|p⃗|2
2mℏ )t|g, p⃗⟩ (2.32)
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The energy eigenvalues of the system are currently:

E|e, p⃗+ ℏk⃗⟩ = ℏωe +
|p⃗+ ℏk⃗|2

2m
= ℏω̄e

E|g, p⃗⟩ = ℏωg +
|p⃗|2

2m
= ℏω̄g

(2.33)

In this updated framework, the calculation of the non-resonant Rabi frequency ne-

cessitates consideration of both the Doppler shift p⃗·⃗k
m

and the photon recoil ℏ|⃗k|2
2m

. This

results in a new effective detuning, which is now determined as:

δeff = ωL −

(
E|e, p⃗+ ℏk⃗⟩ − E|g, p⃗⟩

ℏ

)
= ωL − ωeg +

p⃗ · k⃗
m

+
ℏ|⃗k|2

2m
(2.34)

Expanding to a three-level system: Raman and Bragg Diffraction

In the preceding section, we focused on the dynamics of a two-level system, which

will now be expanded to include a three-level system. We introduce an atom with two

ground states |g⟩ and |e⟩, along with an intermediate excited level |i⟩, interacting with

two lasers as shown in Figure 2.2.

The new driving electric fields now consists of two frequency components:

E⃗1 = E⃗1,0cos(k⃗1 · r⃗ − ω1t+ ϕ1)

E⃗2 = E⃗2,0cos(k⃗2 · r⃗ − ω2t+ ϕ2)
(2.35)

The Hamiltonian for the three level system can be written as:

Ĥtotal =
p⃗2

2m
+ ℏωe|e⟩⟨e|+ ℏωg|g⟩⟨g|+ ℏωi|i⟩⟨i| − d⃗ · (E⃗0 + E⃗2) (2.36)

In the three-level system, akin to the preceding section, the external degrees of free-

dom exhibit a close connection with the internal ones. This is because the atom’s state

can only undergo changes through the absorption or stimulated emission of laser pho-

tons. When the atom is in state |g, p⃗⟩, it can be excited to state |i⟩ by either laser

1 or laser 2, leading to the following potential states: |i, p⃗ + ℏk⃗1⟩ and |i, p⃗ + ℏk⃗2⟩.
Through stimulated emission, the atom eventually transitions to state |e, p⃗+ℏ(k⃗1− k⃗2)⟩
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=|e, p⃗+ ℏ(k⃗eff )⟩. This is signified by all five possibilities forming a closed-momentum

family, where the quantum state of a single atom can be depicted by the following wave

function:

|Ψ(t)⟩ = ag(t)|g, p⃗g⟩+ ae(t)|e, p⃗e⟩+ ai1(t)|i, p⃗i1⟩+ ai2(t)|i, p⃗i2⟩++ai3(t)|i, p⃗i3⟩
(2.37)

with time-dependent coefficients an(t) and the momenta:

p⃗g = p⃗

p⃗e = p⃗+ ℏk⃗eff

p⃗i1 = p⃗+ ℏk⃗1

p⃗i2 = p⃗+ ℏk⃗2

p⃗i3 = p⃗+ ℏ
(
k⃗eff + k⃗1

)
(2.38)

The energies of these states are influenced by the Doppler effect and the recoil energy.

E|e,p⃗+ℏk⃗1−ℏk⃗2⟩ = ℏωe +

(
p⃗+ |ℏ(k⃗1 − k⃗2)|

)2
2m

≡ ℏω̄e

E|g,p⃗⟩ = ℏωg +
|p⃗|2

2m
≡ ℏω̄g

(2.39)

and the detunings for this system is defined as :

∆eff = ω1 −

(
ωi − ωg +

|p⃗|2 − |p⃗+ ℏk⃗|2

2mℏ

)
= ω1 −

(
ωi − ωg +

p⃗ · k⃗1

m
+

ℏk⃗2
1

2m

)
(2.40)

δeff = (ω1 − ω2)− (ω̄e − ω̄g) = ωeff −

(
ωeg +

p⃗ · k⃗eff

m
+

ℏk⃗2
eff

2m

)
(2.41)

The defined effective frequency, wave vector, and offset phase of both lasers as

follows:

Φ1 − Φ2 =
(
k⃗1 − k⃗2

)
· r⃗ − (ω1 − ω2) t+ (ϕ1 − ϕ2) (2.42)

Solving the Schrödinger equation iℏ ∂
∂t
|Ψ(t)⟩ = Ĥtotal|Ψ(t)⟩ now gives in terms

of the new coefficients and the the appropriate closure relations as Equation 2.31 into
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Figure 2.5: 87Rb D2 Structure for Raman and Bragg Transitions (a) Co-
propagating Raman beams induce transitions between the states |F = 1,mF = 0⟩ and
|F = 2,mF = 0⟩. (b) Counter-propagating Bragg beams drive transitions between mo-
mentum states, where the energy separation corresponds to the two-photon recoil en-
ergy.

gives:

iċg(t) =
ci1(t)

2
Ω∗

g1e
i∆te−iϕ1 +

ci2(t)

2
Ω∗

g2e
i(∆−δ−ωeg+

δ
2
)te−iϕ2

iċe(t) =
ci3(t)

2
Ω∗

e1e
i(∆+ωeg−δ3)te−iϕ1 +

ci1(t)

2
Ω∗

e2e
i(∆−δ)te−iϕ2

i ˙ci1(t) =
cg(t)

2
Ωg1e

−i∆teiϕ1 +
ce(t)

2
Ωe2e

−i(∆−δ)teiϕ2

i ˙ci2(t) =
cg(t)

2
Ωg2e

−i(∆−δ−ωeg+
δ
2
)teiϕ2

i ˙ci3(t) =
ce(t)

2
Ωe1e

−i(∆+ωeg−δ3)teiϕ1

(2.43)

where δ2 =
ℏk⃗2 ·⃗keff

m
, δ3 =

ℏk⃗3 ·⃗keff

m
and Ωxy = − ⟨x|d⃗·E⃗|y⟩

ℏ which is the coupling strength

between two states is described as the Rabi frequency

Hence, the equation system described in Equations 2.43 can be streamlined to a two-
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level equation system through the process of adiabatic elimination of the intermediate

states [101]. Consequently, a new and simplified Hamiltonian can be defined within the

two-level system framework, achieved by removing all coefficients associated with the

intermediate stage in the basis of |g, p⃗⟩ and |e, p⃗+ ℏk⃗eff ⟩.

Ĥreduced = ℏ

(
ΩAC

e
Ωeff

2
e−i(δeff t+ϕeff )

Ωeff

2
ei(δeff t+ϕeff ) ΩAC

g

)
(2.44)

Thus the co-efficient ce(t) and cg(t) can be expressed as:

ċe(t) = −iΩAC
e ce(t)− i

Ωeff

2
e−i(δeff t+ϕeff)cg(t)

ċg(t) = −iΩAC
g cg(t)− i

Ωeff

2
ei(δeff t+ϕeff )ce(t)

(2.45)

where, the above equations are provided with descriptions of the effective Rabi fre-

quency Ωeff, the effective phase disparity between the two light fields, and the light-

induced shifts of the hyperfine levels. Thus,

Ωeff ≡
Ω∗

eΩg

2∆

ϕeff ≡ ϕ2 − ϕ1

ΩAC
g ≡ |Ωg1|2

4∆
+

|Ωg2|2

4(∆− ωeg)
, ΩAC

e ≡ |Ωe1|2

4(∆ + ωeg)
+
|Ωe2|2

4∆

(2.46)

The equation 2.45 is further solved to find the coefficients with time in the rotating

frame.

cg(t0 + τ) = e−i(ΩAC−δeff )τ/2

[(
cos

Ωrτ

2
− i(δAC − δeff )

Ωr

sin
Ωrτ

2

)
cg(t0)

−iΩeff

Ωr

sin
Ωrτ

2
ei(δeff t0+ϕeff )ce(t0)

] (2.47)
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ce(t0 + τ) = e−i(ΩAC+δeff )τ/2

[(
cos

Ωrτ

2
+ i

(δAC − δeff )
Ωr

sin
Ωrτ

2

)
ce(t0)

−iΩeff

Ωr

sin
Ωrτ

2
e−i(δeff t0+ϕeff )cg(t0)

] (2.48)

δAC represents the differential AC Stark shift, while ΩAC signifies the cumulative

AC-Stark shifts and Ωr is the Rabi frequency in the rotating frame

δAC ≡ ΩAC
e − ΩAC

g

ΩAC ≡ ΩAC
e + ΩAC

g

Ωr ≡
√

Ω2
eff + (δeff − δAC)2.

(2.49)

Thus, from the resulting coefficients obtained in rotation wave approximation in

Equation 2.47 and 2.48 can be used to find the populations of both states. For the

starting parameters cg(t = 0) = 1 and ce(t = 0) = 0, the populations of both states can

be expressed as:

Pg(t) =
Ω2

eff

Ω2
eff + (δeff − δAC)2

cos2
(√

Ω2
eff + (δeff − δAC)2 ·

τ

2

)
Pe(t) =

δ2eff

Ω2
eff + (δeff − δAC)2

sin2

(√
Ω2

eff + (δeff − δAC)2 ·
τ

2

)
.

(2.50)

Rabi oscillations induced by two-photon Raman transitions exhibit a frequency de-

noted as Ωeff. For instance, during a π-pulse, the entire population ideally transfers from

one momentum state to another. In Bragg diffraction, the ratio ωeff/δeff is approximately

0.01 ppb, facilitating the approximation of the effective Rabi frequency as follows:

Ωeff ≡
Ω∗

eΩg

2∆
≈ Ω2

2∆
, (2.51)

with Ω∗
e = Ωg ≡ Ω as the single photon Rabi frequency. In the case of a resonant

interaction (δeff = 0) and δAC = 0. Thus Equation 2.50 simplifies to the following

expressions:



44 Chapter 2. Theoretical Background

Pg(t) = cos2
[
Ωeff · τ

2

]
=

1

2
[1 + cos(Ωeff · τ)], (2.52)

Pe(t) = sin2

[
Ωeff · τ

2

]
=

1

2
[1− cos(Ωeff · τ)]. (2.53)

The effectiveness of the Rabi frequency scales with the total intensity of laser light

i.e. I1+2 when the relative intensity q = I2
I1

is constant, offering a means to adjust the

transition probability [77].

Ωeff =
Ω∗

eΩg

2∆
∝
√
I1I2 =

√
q

1 + q
· I1+2 (2.54)

Deducing from equations 2.47 and 2.48, table no 2.1 give the phase of the atomic

wave from transitions between two specific states.

Transition Phase shift
|g, p⃗⟩ → |g, p⃗⟩ −(ΩAC − δeff )τ/2− θ0

|g, p⃗⟩ → |e, p⃗+ ℏk⃗eff⟩ −(ΩAC − δeff )τ/2− π
2
− δeff t0 − ϕeff

|g, p⃗+ ℏk⃗eff⟩ → |g, p⃗+ ℏk⃗eff⟩ −(ΩAC − δeff )τ/2 + θ0
|g, p⃗+ ℏk⃗eff⟩ → |e, p⃗⟩ −(ΩAC − δeff )τ/2− π

2
+ δeff t0 + ϕeff

Table 2.1: Phase shifts for different transitions

where, θ0 = cos
(
ΩRτ
2

)
+

i(δeff−∆AC)

ΩR
sin
(
ΩRτ
2

)
2.2.2 Summary

In this chapter, an overview about the basic interactions of light and matter was given

which led to the description of Raman and Bragg diffraction as a coherent two-photon

process between two momentum states. These transitions have been used to form beam

splitters and combiners for the matter waves for our experiment.



Chapter 3
Experimental apparatus and methods

This section provides an in-brief description of the experimental configuration em-

ployed to generate ultracold atoms and achieve Bose-Einstein Condensation (BEC) for

the investigations documented in this thesis. A significant component of the experi-

mental apparatus draws inspiration from the setup utilized in the research conducted

by Sunil Kumar [6] and Sumit Sarkar [102], albeit with certain modifications tailored

specifically for the creation of ultra-cold atoms through optical dipole trapping tech-

niques and development of Bragg lattice for Atom Interferometer.

3.1 The vacuum assembly
To ensure efficient cooling throughout all stages of the cooling process, it’s essential to

minimize the atoms interaction within the surrounding 300K environment. There are

three primary mechanisms of thermal energy transfer need to be addressed to single

out and isolate the atoms effectively: radiative, mechanical, and convective heating

mechanism. Radiative heating poses significant challenges, particularly when dealing

with big objects like those found in cryogenic buffer gas systems, necessitating thorough

radiation shielding measures. However, the laser-cooled atomic samples utilized in this

setup exhibit minimal photon absorption cross-sections and relatively limited atomic

transitions, significantly reducing the impact of black-body radiation. To mitigate or

minimize heating effects from mechanical and convective processes to acceptable levels,

the atomic sample is placed inside an ultra-high vacuum (UHV) chamber and shielded

45
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from the external environment.

3.1.1 Modes of Gas Flow

As a system transitions from atmospheric pressure condition to high vacuum through

pumping, the gas within undergoes distinct stages of gas flow. In vacuum technol-

ogy, three primary types of flow are typically observed: viscous or continuum flow,

molecular flow, and the transitional state between these known as Knudsen flow. One

can distinguishes the viscous state at a high pressures from the molecular state at low

pressures and the transitional state between these two. Fluid flow is described by two

unitless numbers, the Reynolds number and the Knudsen Number.

Pressure
103 mbar 100 mbar 10−3 mbar 10−6 mbar 10−9 mbar

Particle Density, n (cm−3) 1019 1016 1013 1010 107

Mean Free Path, λ(cm) 10−5 10−2 10 104 107(= 100 km)
Collision Rate, Zv (s

−1 cm−3) 1029 1023 1017 1011 105

Type of Gas Flow ←− viscous −→ ←− Knudsen −→ ←− molecular −→

Table 3.1: Approximate values for typical vacuum parameters for several gas flow
regimes.

The Knudsen number defines the ratio of the mean free path λmfp of an atom trav-

eling through a capillary to the length l of the capillary:

Kn =
λmfp

l
=

kBT

π
√
2d2pl

(3.1)

When Kn ≪ 1, it signifies the presence of viscous flow regime, demonstrating traits

akin to those of a continuous fluid. Conversely, when Kn ≫ 1 in scenarios of extremely

low pressures, where the mean free path surpasses the dimensions of the vacuum enclo-

sure, the flow tends towards molecular behavior.

In the viscous state of a gas, one distinguishes further between turbulent and laminar

flow. the value of another dimensionless quantity, the Reynolds number is defined as:

Rn =
dvρ

η
(3.2)

d represents the pipe diameter or the characteristic size of the vacuum component, while

v, ρ , and η denote the gas velocity, density, and viscosity respectively, at the flow
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temperature. Assessing the Knudsen and Reynolds numbers allows for the prediction

of different flow regimes, which can be approximately discerned using the following

relationships:

1. Rn < 1200 ( Kn < 0.01 ): laminar (viscous gas state)

2. Rn > 2200 ( Kn < 0.01 ): turbulent (viscous gas state)

3. 1.0 > Kn > 0.01: intermediate (transition gas state)

4. Kn > 1.0: molecular (rarefied gas state)

When the pressure of a gas within a chamber or vessel is lower than the surrounding

pressure, or if it falls below 300 mbar, the gas is classified as being in a vacuum state.

According to this definition, 300 mbar represents the lowest atmospheric pressure typi-

cally encountered at the Earth’s surface. Table 3.2 shows the different level of vacuum.

Pressure Level Pressure (mbar) Particles per cm3

Atmospheric Pressure 1013.25 2.7× 1019

Low Vacuum (LV) 300 - 1 1019 - 1016

Medium Vacuum (MV) 1 - 10−3 1016 - 1013

High Vacuum (HV) 10−3 - 10−7 1013 - 109

Ultra-High Vacuum (UHV) 10−7 - 10−12 109 - 104

Extreme-High Vacuum (XHV) < 10−12 < 104

Table 3.2: Vacuum levels with their respective pressure and particle density.

3.1.2 Vacuum system

The process of creating, cooling, and trap loading the atomic ensemble necessitates

the use of two distinct pressure environments: a medium vacuum (MV) region and an

ultra-high vacuum (UHV) (10−11 Torr) region. To achieve the lowest possible pressure

in the UHV chamber, which serves as the science chamber, it is separated from the

MV chamber, connected to the oven, by a high-impedance section. This arrangement

minimizes convective heating of the atomic sample during the final cooling stages. The

high impedance is facilitated by a differential pumping system, featuring a long stainless
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steel tube with an aperture of 5 mm in diameter and 8 cm in length, which ensures low

conductance. This aperture significantly reduces the undesired gas flow from the MV to

the UHV region. Figure 3.1 illustrates the experimental setup of the Rubidium system.

The detailed description of the design is mentioned in the theses by Sunil Kumar [6]

and Sumit Sarkar [102].

3.2 The oven
In our experiment, a thermal beam of 87Rb atoms is generated using an effusive atomic

source. The oven setup, depicted in Figure 3.2, illustrates the system used to produce

the atomic beam. The cavity stores the atomic sample, which is heated to a specific

temperature to generate the beam of atoms. The cavity contains a glass ampule with

5 grams of rubidium. The oven is constructed in a cylindrical, L-shaped design us-

ing 304L stainless steel and is welded onto a hollow flange of DN35CF-DN40CF. The

reservoir is heated to ∼ 120◦ to produce sufficient flux.

The hollow flange of DN35CF-DN40CF is attached to the cavity and secured to

a separate blank flange featuring a microchannel array using copper gaskets and M6

screws. This secure sealing process prevents vacuum leaks, thereby protecting the

atomic sample from oxidation. The microdrill arrays integrated into the blank flange

ensure proper collimation of the atomic beam and direct it into the cold atomic cham-

ber.

The oven is connected to a vacuum pump to maintain low pressure inside the oven

which is measured using a pressure gauge connected to the vacuum pump. This ensures

a proper pressure is maintained inside the oven well within the experimental conditions.

The pressure is initially maintained at approximately 2 × 10−10 torr and increases to

around 2 × 10−8 torr after six months of operation. To regulate the pressure inside

the chamber, a copper cup with a small central opening is employed. This cup plays

a crucial role in controlling the chamber’s pressure. It is connected to a cold block

situated outside the vacuum chamber via high current feedthroughs. The cold block is

cooled to −18◦C using a Peltier device. The low temperature of the copper cup stops

atoms from reaching the ion pump by causing them to adhere to the cup’s surface,

thereby maintaining the vacuum level by functioning as a thermal conductor. The oven
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Figure 3.1: Images of the Vacuum System: (a) The figure shows the experimental
setup of the oven system and its connected ion pump. (b) This image displays the
experimental setup of the science chamber. (c) This image presents the complete exper-
imental setup.
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Figure 3.2: CAD Images of the Rb Oven System: The figures illustrate the design of
the atomic reservoir, including the microdrill array and the flexible bellow. The second
figure presents a cross-sectional view of the entire design.
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is also connected to an atomic beam shutter through a rotational feedthrough which is

controlled using regulated air pressure which is further used to control the outflow of

the atomic beam for the experiment.

The microchannel array is arranged in a hexagonal pattern to achieve the highest

possible packing fraction. The microchannels located towards the periphery of the array

are drilled at an angle in relation to the central microchannels on the blank flange. This

design feature effectively enhances the collimation of the atomic beam. A common issue

with effusive ovens is that a significant fraction of the atomic beam is lost as the emitted

atoms diverge into a large solid angle, resulting in reduced atomic flux into the vacuum

chamber where the MOT is generated and a shorter lifespan for the oven. However,

by enhancing the collimation of the beam, both the lifespan of the atomic oven and the

efficiency of atomic flux into the vacuum chamber are improved in the current setup.

3.3 Laser System
The laser cooling setup plays a crucial role in creating and controlling the light em-

ployed to cool the atomic sample. This includes the laser system which encompasses

the magneto-optical trap MOT light and the re-pumper light. In 87Rb the cooling and

re-pumping transition cycle is given in the Figure 3.4

Within our experimental setup, we utilize semiconductor laser diodes made of GaAs,

procured commercially and integrated into an external resonator to serve as light sources.

One notable advantage of employing rubidium-87 within our interferometer lies in the

fact that its D2 transition boasts an energy gap of 384 THz, equivalent to a laser wave-

length of 780 nm

3.3.1 Laser diode’s emission spectrum

One can express the oscillating electric field of a laser diode as a temporal evolution

using the subsequent equation:

E⃗(t) = E⃗0e
−iωt+ϕ0 (3.3)

When a disturbance arises from the interaction between the electric field and its sur-

roundings (such as spontaneous emission), the field encounters variations in both am-
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Figure 3.4: The energy level diagram for cooling and trapping of atoms: The 87Rb
D2 transition structure including the Zeeman level splitting. The atoms are cooled in a
hybrid trap of magnetic and optical trap. At the completion of cooling the atoms occupy
the F = 1,mf = −1 ground state.
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plitude, denoted by E⃗n(t), and phase, ϕn(t). Assuming we can differentiate between

these alterations, the electric field can be expressed as:

E⃗(t) =

{
E⃗0 + E⃗n(t)

}
e−iωt+ϕ0+ϕn(t) (3.4)

In the frequency domain, amplitude noise primarily contributes to an elevated noise

floor, but it does not cause any broadening of the spectral line. In contrast, phase noise

not only impacts the signal but also results in a broader linewidth, leading to a more

significant spread in the frequency spectrum. The power spectral density of the electric

field can now be written as:

PSD(ν +∆ν) =
|E⃗0|2

T
·

θ20Rspontaneous/2

(2π∆ν)2 + (θ20Rspontaneous/2)
2 (3.5)

Here, θ20 represents the average phase contribution from a single spontaneous emis-

sion event, Rspontaneous denotes the event rate, and T is the integration time of the an-

alyzer. This forms a Lorentzian distribution, where the full width at half maximum

(FWHM) corresponds to the linewidth of our laser, calculated as:

∆νFWHM =
∆ω

2π
=
θ20Rspontaneous

2π
(3.6)

We can rewrite the Equation 3.6 as derived by Schawlow and Townes in 1958 :

∆νFWHM =
θ20Rspontaneous

2π
=
πhνFWHM∆ν2c

PL

(3.7)

where ∆νc is the cavity linewidth and PL is the output power of the laser.

In semiconductor lasers, the linewidth is further broadened due to an additional

coupling between amplitude and phase. As a result, the linewidth of a semiconduc-

tor laser diode is described by a modified Schawlow-Townes formula, which typically

falls within the range of 100’s of MHz.The modified formula is:

∆νFWHM ≥
πhνFWHM∆ν2c

PL

· (1 + α2) (3.8)

where, the factor (1 + α2) is due to the variation in the complex refractive index caused



54 Chapter 3. Experimental apparatus and methods

by a change in carrier density within a semiconductor diode.

The considerable width of semiconductor laser diodes’ spectra poses an issue, as

successful atom cooling demands that the optical linewidth remains narrower than the

atomic 87Rb D2 linewidth of Γ/2π = 6MHz. Thus one can reduce the linewidth

by forming an external cavity using a diffraction grating. The basic block diagram

of external cavity diode laser is given in Figure 3.5 The line width of the laser diodes

Figure 3.5: Schematic layout of an external cavity diode laser

depends on the linewidth of the cavity which scales linearly with the inverse of the mean

lifetime of a photon in the cavity τc. The relation for a lifetime of a photon insides a

combination of internal and external resonator is given as :

τc = −
2(nili + nele)

c ln (R1i(1−R2i)2R2e)
(3.9)

where, ni,e is the refrective index of the cavity material, li,e length of internal and

external cavity andR1i,2i,2e are the reflivity of different faces in the ECDL. With a rough

estimate using typical values for a laser diode, such as li = 250 µm, ni = 3,R1i = 0.95,

and R2i = 0.3, and considering an external resonator employed in our experiment with

R2e = 0.18, ne = 1, and le = 40 mm, the average photon lifetime within the cavity

increases by approximately 22-fold. Consequently, according to equation (4.19), the

linewidth improves by a factor of about 500, thereby reducing it to below 200 KHz.
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The lasers utilized in our experiments are diode lasers configured in Littrow setup

(manufactured by TOPTICA Photonics AG, Model: TA-pro and DL-100). This setup

involves the formation of an external cavity between the rear face of the laser diode

and a diffraction grating with a density of 1800 lines/mm. The first-order diffracted

beam from the grating is redirected back into the laser diode, while the zeroth-order

beam constitutes the laser output. This optical feedback from the first-order diffracted

beam effectively extends the resonator between the rear face of the laser diode and the

diffraction grating. The length of this external cavity dictates the mode frequencies of

the laser.

Adjusting the angle of the grating, facilitated by a piezoelectric transducer (PZT)

mounted behind the grating, enables the modulation of the laser diode’s frequency

range. The angle of the grating is contingent upon the expansion and contraction of

the PZT, thereby altering the cavity length and the grating’s angle. Apart from the laser

diode and grating, the Littrow configuration comprises various mechanical components,

including a mounting base for the heat sink, a Peltier cooler, a base plate, a laser diode

holder with a collimator, a grating mount with a piezo actuator, and a mirror for direct-

ing the output laser.

Ensuring a stable output frequency of the laser necessitates external mechanical vi-

bration isolation, temperature control(Toptica DTC 110), and current regulation (Top-

tica DCC 110). Without these measures, the laser’s output frequency may drift over

time [102].

3.3.2 Cooling and re-pumping laser

The laser cooling mechanism plays a crucial role in generating and manipulating light

for cooling the atomic sample, encompassing the provision of both the MOT light and

the incorporation of a repump beam. For the 87Rb hyperfine transition F = 2 −→ F ′ =

3 of the D2 line at the wavelength λ = 780 nm, utilized for cooling, due to its closed

and cyclic nature. Despite the F = 2 −→ F ′ = 3 transitions being a closed transition

in nature, the nearby F = 2 −→ F ′ = 2 line, with a frequency offset of ∆ω = 2π×266

MHz, leads to considerable atom loss to the F = 1 ground state through off-resonant

transitions. Consequently, a beam resonant with the F = 1 −→ F ′ = 2 transition
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becomes necessary to repump the lost atoms back.

The optics corresponding to the 3D MOT, imaging and generation of Bragg beam

as shown in figure 3.6 are all generated on the main table from a single external cavity

diode laser (ECDL) from TA-pro as discussed in section 3.3.1 producing approximately

150 mW of linearly polarized light. The output of the ECDL initially passes through an

double stage optical isolators producing 60 dB isolation which limits the back transmit-

ted light from a tapered amplifier (TA) further down the optics line. The high degree

of isolation for ECDLs is required as any reverse transmitted light from the TA will

destroy the ECDL from running single mode. On the output of the isolators the light

is split via a half-waveplate (l/2) and polarizing beam splitter (PBS) along two paths.

The light travels along four paths which are used for the zeeman cooling beam, cooling

beam, the imaging, Bragg beam and frequency locking for the ECDL [6].

For switching and frequency control lines light is passed through an acoustic-optic mod-

ulator (AOM) such that the first order diffraction mode (+1) is dominant; all light then

passes through a quarter-wave plate (l/4) and a lens; following the lens an iris blocks the

zeroth order diffraction before the light is retro reflected along the same path; after the

second pass through the λ
4

the light has the opposite linear polarization so it will pass

the PBS; with proper alignment the first order diffraction on the second AOM pass will

be along the same vector as the input beam; the frequency shifted light is then coupled

to the apparatus table through a polarization maintaining optical fiber. Placing the lens

such that both the AOM and retroreflector are at the focal length will ensure proper

overlap and mode matching on the incoming and reflected beam. In order to reduce

unwanted birefringent effects in the fiber such as polarization rotation or mixing, the

incident beams are aligned to the fast and slow polarization axes of the fiber using a λ
2
.

Proper axis alignment will result in an extinction ratio of 30-35 dB while the fiber is

mechanically or thermally stressed. The light on the output of the double pass AOM

will have been frequency shifted by twice the AOM driving frequency. All AOMs in the

cooling system are driven through a voltage controlled oscillator (VCO) in series with

a transistor-transistor logic switch (TTL) and radio frequency amplifier. The voltage

control and switch signal for the VCO and TTL is provided from the control computer.
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Figure 3.6: Optical Layout of the Laser System: A schematic diagram depicting the
optical layout of the cooling and repumping laser system. Further details can be found
in Sunil Kumar’s thesis [6].
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Figure 3.7: Optical Layout of the Laser System:The experimental setup of the optical
layout
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3.3.3 Laser for Bragg lattice

Figure 3.8: Laser Beam Preparation for Bragg Lattice: A schematic diagram il-
lustrating two independent laser beams separated by ∆ω ∼ 15 kHz to generate the
Bragg beams. The left dashed block represents the spectroscopy of 87Rb, locked to the
52S1/2,F = 2→ 52P3/2,F

′ = 2 D2 transition at 780 nm. The right dashed block de-
picts the configuration of the Bragg laser system.

The Bragg laser system manipulates the frequency of light to create the desired

Bragg lattice for atomic sample interaction. Figure 3.8 illustrates the optical layout of

the Bragg beams. These beams are seeded by the primary cooling laser, which is red-

detuned by 6.6 GHz from the atomic transition to minimize spontaneous emission. To

address noise and space constraints, the main laser source is positioned on a separate

table. The laser output is fiber-coupled to another optical table, where the experimental

procedures are conducted.

The light is collimated using an achromatic collimator and then split equally into

two different paths using a combination of a λ/4 wave plate and a polarizing beam

splitter (PBS). These beams are subsequently directed into two separate acousto-optic

modulators (AOMs), which are driven by an arbitrary function generator phase locked

to each other at 80 MHz and 80.015 MHz, respectively. Two separates waveplates λ/2

are used in individual paths to avoid any polarization noise into the fibers. Fig. 3.9
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Figure 3.9: Laser Beam Preparation for Bragg Lattice: The experimental setup is
depicted in the photograph.
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shows the experimental picture of the Bragg layout.

3.3.4 Optical dipole trap

An Optical Dipole Trap (ODT) utilizes the interaction between neutral atoms and the

electric field E(t) generated by a focused laser beam to confine atoms in a specific re-

gion of space. The oscillating electromagnetic field induces a dipole moment in the

atoms, leading to a potential well that attracts the atoms toward the region of highest

intensity, typically the center of the laser beam. In this scenario, the oscillating electro-

magnetic field emanates from a laser beam. The electric field induces opposing forces

on its constituent parts: the positively charged nucleus moves in the direction of the

field, while the negatively charged electron cloud moves in the opposite direction.

When the external electric field E isn’t excessively strong, the electric forces pulling

the electron cloud and the nucleus apart don’t surpass the Coulomb force. Instead, they

reach a stable equilibrium. Consequently, the neutral atom becomes polarized, resulting

in an induced dipole moment p, which can be approximated by equation p = αE where

α is the atomic polarisability.

In this classical approach, which is also called Lorentz model, considering a oscillatory

field i.e. E(r, t) = E0(r)e−iωtr̂+ c.c and with the complex dipole moment p and the

complex polarisability p(r, t) = p0(r)e−iωtr̂+ c.c, which is a function of the driving

frequency ω [103] The potential felt by the atom due to the induced dipole interaction

mentioned earlier can be determined by integrating dU = −p.dE to obtain:

Udipole = −
1

2
⟨p.E⟩ = − 1

2ϵ0c
Re(α)I(r) (3.10)

The angle brackets signify the time average where the factor 1
2

arises from the integra-

tion and is absent for a permanent dipole and where I(r) = 2ϵ0c|E0(r)|2 is the electric

field intensity. Since the potential is conservative, the force is given by Fdipole(r) =

−∇Udipole(r).

With the above expression, the general expressions for the dipole potential simplify

to

Udip(r) =
3πc2

2ω3

(µ0

4π

)
I(r) (3.11)
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Figure 3.10: Static Trap Depth for Dipole Beam: The calculated trap depth for a
single-beam dipole trap with a wavelength of 1064 nm. The dipole beam is traveling
along the x direction. This trap utilizes a Gaussian beam with a power of P = 5W and
a beam waist of ω0 = 50µm.

For a Gaussian beam of power P, its intensity distribution is characterized by the

following expression:

I(r, z) =
2P

πw(z)2
exp

(
− 2r2

w(z)2

)
(3.12)

where w(z) is the radius of the beam at position z. Since the Gaussian profile extends

to infinity, this radius is defined as the distance from the beam axis where the intensity

drops to 1/e2 (approximately 13.5%) of the maximum. Figure 3.10 shows the calculated

trap depth for a single beam dipole trap using a Gaussian beam.

Figure 3.11 presents the schematic layout for extracting two laser beams to meet the

specified criteria. The 20 W laser beam is split into two parts using a combination of

a half-wave plate and a polarizing beam splitter (PBS) cube. This method is favored

over a single beam splitter, as the latter only produces two beams with equal power,

whereas the combination of a half-wave plate and PBS cube allows for adjustable power

distribution between the two paths.
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Figure 3.11: Laser Beam Preparation for Optical dipole trap: A schematic diagram
illustrating the generation of dipole beams for evaporative cooling.
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Each laser beam exiting the PBS cube is directed through an acousto-optic modula-

tor (AOM), operating at center frequencies of 110 MHz and 120 MHz, respectively. The

+1st and -1st order diffracted beams from each AOM are utilized for further experimen-

tation. Consequently, the two laser beams differ in frequency by 230 MHz, preventing

interference during the experiment. The power of each beam can be individually con-

trolled by adjusting the RF power supplied to the AOMs, which also allows for fast

beam switching.

Due to the smaller active aperture of the AOMs compared to the natural beam di-

ameter, a telescope is employed to reduce the beam size and achieve high diffraction

efficiency. The AOMs used in the experiment are not designed for high power opera-

tion and have a smaller active aperture, resulting in a maximum diffraction efficiency of

70%. A larger beam diameter is desired before passing through the final lens to achieve

a tight focus. Therefore, after the AOMs, another telescope is used in each beam path

to increase the beam diameter again. Following these final telescopes, two beams with

approximately 5 W power each are obtained. The final beam waist used in our experi-

ment is approximately of 100 µm which correspond to a trap depth of approximately 50

µK. The temperature of atoms obtained after evaporative cooling is approx 200 nK. The

detailed description of the optical setup can also be found in Sumit Sarkar thesis [102].

We utilize a hybrid trap, combining a quadrupolar magnetic field with a crossed optical

dipole trap, for evaporative cooling. While the optical dipole trap is spin-independent,

the magnetic field generates a trapping potential exclusively for the mF = −1 hyperfine

level.

3.4 Summary
To summarize, this chapter provides a concise overview of the experimental setup. It

includes both schematic diagrams and actual photographs of the equipment where appli-

cable. A brief description of the newly designed oven, which incorporates modifications

to the previous setup, is presented. Additionally, the chapter introduces the Bragg laser

system, which is employed in later experiments to demonstrate the atom interferometer.



Chapter 4
Bragg Diffraction and Atom

Interferometry

4.1 Bragg diffraction of Atoms in momentum space

The periodic spacing of the crystals coincided with the X-ray wavelengths, resulting

in constructive interference of the scattered radiation at specific incidence angles θb, as

described by Bragg’s law:

nλ = 2dcrystal sin(θb) (4.1)

Here, n is the order of diffraction, λ represents the wavelength of the X-rays, and dcrystal

is the crystal’s periodic spacing.

Manipulating atoms similarly to light with optical components is termed atom op-

tics. An atom-optical element, or light crystal, can be formed by the interference of

two laser beams at wavelength λL at the atom’s location. This interference generates a

one-dimensional intensity pattern expressed as:

I(x) = 2cϵ0E
2
0 cos

2(kx) (4.2)

where c is the speed of light, ϵ0 is the permittivity of free space, and E0 is the electric

field amplitude. Here, the crystal spacing dcrystal is replaced by the optical lattice spacing

dlight = λL/2. For atoms with massm and velocity v, the thermal de Broglie wavelength

65
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λdB is given by λdB = 2πℏ
mv

. The new resonance condition then becomes:

nλdB = λL sin(θb) (4.3)

This condition can be met by accelerating atoms towards a standing wave. In most cold

atom experiments, atoms are typically stationary when exposed to an optical lattice. A

moving optical lattice can be created by interfering two laser beams with a frequency

difference δ, producing a time-dependent intensity pattern:

I(x) = 2cϵ0E
2
0 cos

2(kx−∆ω t/2) (4.4)

Figure 4.1: Bragg diffraction of atoms. Atoms engage with photons emitted by two
laser beams, which have frequencies of ω and ω+∆ω and intersect at an angle ϑ. These
atoms can experience coherent diffraction, transitioning from an initial momentum state
|p0⟩ = |0ℏk⟩ to a final momentum state |pr⟩ = |2ℏk sin(ϑ/2)⟩, provided that the energy
difference between the laser beams meets the condition ℏ∆ω = p2r

2m
. This happens when

atoms are exposed to two counter-propagating laser beams, they can undergo a process
where they first absorb a photon from one beam, gaining its momentum, and then un-
dergo stimulated emission into the opposing beam, emitting a photon and experiencing
a recoil in the opposite direction.

In a simplified model, an atom absorbs a photon from one laser beam and is co-

herently stimulated back to the ground state by a photon from another beam. This

two-photon Raman process imparts a momentum pr = 2ℏk sin(ϑ/2) to the scattered

atom relative to the unscattered atoms in the Bose-Einstein condensate (BEC). The laser

beams have a wave vector k = 2π/λL and are aligned at an angle ϑ, with kω ≈ kω+∆ω ≡
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k since ∆ω ≪ ω.

To conserve energy during Bragg diffraction, the laser beams must have a specific

frequency difference δ, given by the effective energy difference between the two coupled

ground states:

∆E =
p2r
2m

=
(2ℏk sin(ϑ/2))2

2m
= ℏ((ω +∆ω)− ω) = ℏ∆ω (4.5)

For atoms with initial momentum p0, the condition modifies to:

∆E =
(pr + p0)

2 − p20
2m

=
(2ℏk sin(ϑ/2) +mv0)

2 −m2v20
2m

= ℏ∆ω (4.6)

Thus, the frequency difference δ for the Bragg laser beams is:

∆ω = 4ωr sin
2(ϑ/2) + 2kv · sin(ϑ/2) (4.7)

where the recoil frequency ωr = ℏk2/m. In our setup, with an incidence angle ϑ =

180◦, the laser beams are anti-parallel. For first-order Bragg diffraction with stationary

(p0 = 0) 87Rb atoms, the required frequency difference is ∆ω = 4ℏk2/m = 4ωr =

2π · 15.08 kHz. Figure 4.2 illustrates the Bragg diffraction and the first-order Rabi

oscillations of the condensate. The Rabi frequency is determined to be 2π × 5 kHz.

4.1.1 Higher order Bragg diffractions

In the preceding discussion, we explored the concept of first-order Bragg diffraction,

which can be generalized to encompass higher-order scenarios. The equation 4.6 can be

adapted as follows:

∆E =
(npr + p0)

2 − p20
2m

=
(2nℏk sin(ϑ/2) +mv0)

2 −m2v20
2m

= ℏn∆ωn (4.8)

Here, n represents the order of diffraction, thus the frequency difference between

the laser beams for the n-th order Bragg diffraction is given by:

∆ωn = 4nωr sin
2(ϑ/2) + 2kv · sin(ϑ/2) (4.9)
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Figure 4.2: Image of Bragg diffraction and Rabi oscillation for π/2 and π pulse

For a sixth-order Bragg pulse applied to zeroth order 87Rb atoms (p0 = 0), an optical

lattice with a frequency difference of ∆ω6 = 24 · ωr ≈ 2π · 90 kHz would be required.

The effective Rabi frequency can be obtained from:

Ω
(n)
eff =

Ω2n

2n−1∆1∆2 . . .∆n−1

(4.10)

In this context, Ω0 signifies the single-photon Rabi frequency, and ∆i represent the

detunings from various virtual levels, as depicted in Fig. 4.3.

Rabi oscillations between the coupled momentum states |0ℏk⟩ and |2ℏk⟩ were mea-

sured using the described experimental setup. Figure 4.2 presents the diffraction effi-

ciency as the ratio of the number of diffracted atoms to the total atom number, plotted

as a function of the pulse duration τ for square-shaped pulses. The experimental data

were modeled using the equation:

N2ℏk

Ntot
∼ A ·

(
1− e−τ/t0 cos(Ωeff · τ)

)
,

where damping, characterized by the decay constant t0, is incorporated to account

for the momentum selectivity of the Bragg pulses. The pulse duration τ was scanned
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0 1 2 2n-1

Figure 4.3: Schematic representation of n-th order Bragg diffraction. For coherent
coupling between the momentum states |0ℏk⟩ and |2nℏk⟩, energy conservation neces-
sitates that ℏn∆ωn = (2nℏk)2

2m
. The energy levels are indicated by their transverse mo-

mentum states, expressed in units of ℏk. The corresponding detunings for the ground
and excited states are represented by ∆i.
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from 0 to 150µs for an initial expansion time of T0 = 2 ms. Following the application

of the Bragg pulse, the time-of-flight duration was set to Ttof = T0 + Tsep = 10 ms to

allow the spatial separation of the atomic ensembles prior to detection.

By fitting the above equation to the experimental data, the π-pulse duration was

determined to be τπ = 100µs with a diffraction efficiency of approximately 0.90. Using

this result, the effective Rabi frequencies and the corresponding beam intensities at the

atomic position were calculated as:

τπ =
π

Ωeff
=
πℏ∆ω3

3πc2ΓI
,

where ∆ω represents the detuning, I is the laser beam intensity, and Γ is the linewidth

of the atomic transition. This analysis yielded an effective Rabi frequency of Ω10ms
eff =

2π · 5 kHz.

We have also now shown the diffraction for the 7th order (i.e., 14ℏk) in Fig. 4.4.

Additionally, the figure illustrates the Rabi oscillation corresponding to the 6th order.

Figure 4.4: Higher Order Bragg Diffraction. (a) Image showing higher order Bragg
diffraction of the condensate. (b) Rabi oscillation of 6th order Bragg diffraction.

4.2 Bragg spectroscopy of Atoms in momentum space
Till now we considered the Bragg diffraction of single atoms. In a ideal condition when

we consider the atoms can be transferred to the higher momentum state with 100% if the
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resonance condition is fulfilled. Even a sub-recoil Bose-Einstein Condensate (BEC) ex-

hibits a finite expansion rate, which is linked to an effective momentum spread ∆prms.

Consequently, when a Bragg lattice with fixed ∆ω is applied, some atoms within the dis-

tribution remain off-resonance and thus oscillate with a diminished amplitude between

the coupled states.

In the case of Bragg diffraction with n = 1 and ϑ = 180◦, Eq. 4.8 can be used to

establish a resonance condition for atoms with an initial momentum p0:

p0(∆ω) =
mℏ∆ω
pr

− pr
2

= m

[
∆ω − 4(ℏk2/2m)

2k

]
(4.11)

In a simplified scenario, atoms that satisfy Eq. 4.11 are diffracted and become spatially

separated from the portion of the cloud that remains un-diffracted, provided the initial

momentum spread of the cloud is less than the transferred momentum (∆prms < pr).

Under these circumstances, we can vary δ, measure the diffraction efficiency for specific

momentum classes, and analyze the resulting distribution in momentum space. This

technique is known as Bragg spectroscopy (BS).

The Bragg spectroscopy of the Bose-Einstein condensate, illustrated in Figure 4.4,

has been analyzed. Atoms are diffracted through their interaction with Bragg beams,

where the mutual detuning ∆ω between the beams determines which momentum com-

ponent is extracted from the degenerate gas condensate. In this experiment, we applied

a pulse duration of τ = 100µs and varied the frequency detuning from ∆ω = 8 to

21 kHz, which aligns with the first-order Bragg diffraction for stationary Rubidium-87

atoms at ∆ω ∼ 15 kHz. The resulting image was captured after a time of flight of

200µs.

4.2.1 Momentum width of the BEC

The wave function in momentum space for a given interval can be defined as:

∆kn :

(
n− 1

2

)
|2ℏk| < kx ≤

(
n+

1

2

)
|2ℏk|.

Focusing solely on first-order Bragg diffraction within the non-interacting regime,

the atomic state ψ(kx, t) can be represented in two momentum zones, ∆k0 and ∆k1, as:
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Figure 4.5: Bragg spectroscopy of Bose-Einstien condenstae in momentum space. In
each sequence from top to bottom, the duration of the box-shaped Bragg pulses is fixed
at τ = 100 µs, while the detuning ∆ω is varied from 8 kHz to 21 kHz. The momentum
distribution is observed after time of flight of 200µs. Atoms that are diffracted are
highlighted with a yellow box, and the corresponding zeroth order is marked in green
box.
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ψ(kx, t) = ϕkx ·
(

c0(kx, t)

c2ℏk(kx, t)

)
,

where ϕkx represents the wave function in momentum space, while c0(kx, t) and

c2ℏk(kx, t) denote the time-dependent coefficients corresponding to the amplitudes of

the two diffraction orders. The variable kx represents the atomic momentum along the

direction of the beam splitter.

The time evolution of the coefficients ci(kx, t) is governed by the Gross-Pitaevskii

equation in momentum space. Under the assumption that the Bragg lattice acts as a

plane-wave classical field, the non-interacting dynamics are described by:

i
∂

∂t

(
c0(kx, t)

c2ℏk(kx, t)

)
=

(
ℏk2x
2m

Ωeff
2

Ωeff
2

ℏ
2m

(kx + 2k)2 −∆ω

)
·
(

c0(kx, t)

c2ℏk(kx, t)

)
,

where Ωeff is the effective Rabi frequency, k denotes the wave vector of the beam

splitters, and ∆ω represents the detuning.

The momentum-space atomic distribution is approximated as a Gaussian wave packet,

with its modulus squared given by:

|ϕ(kx)|2 =
1√

2πσkx
exp

(
− k2x
2σ2

kx

)
.

In simulations, the atoms are modeled as a Gaussian wave packet with a momentum

width of σkx = 0.11ℏk. This approximation is based on Bragg spectroscopy of freely

expanding atoms released from a shallow trap characterized by ωx = 2π · 200Hz after

an expansion time of T0 = 10ms.

The effective detuning arises solely from the Doppler width of the atomic cloud.

The Rabi amplitude in the momentum zone ∆k1, as a function of time, is determined

by:

|c2ℏk(kx, t)|2 =
Ω2

eff

Ω2
eff +

(
2ℏkkx
m

)2 sin2

√Ω2
eff +

(
2ℏkkx
m

)2

· τ
2

 ,

where Ωeff is substituted based on prior measurements. The expectation value of the

wave function ψ2ℏk after the beam splitter operation can then be expressed as:
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|ψ2ℏk(kx, t)|2 = |ϕ(kx)|2 · |c2ℏk(kx, t)|2,

For atoms that are off-resonance (ϵeff ̸= 0), oscillations occur at higher frequencies

but with reduced amplitudes. A narrower initial momentum width of the atomic dis-

tribution enhances the uniformity of the Rabi frequency across the ensemble, thereby

improving the beam splitter’s efficiency. Alternatively, increasing the Rabi frequency

results in power broadening of the Rabi amplitude, enabling the use of shorter pulse

durations.

The full width at half maximum (FWHM) of the distribution, which defines the

range of kx around the Bragg resonance point where the probability of momentum trans-

fer exceeds 1/2, can be expressed as:

σc2ℏk(k) =
mΩeff

2ℏk
,

indicating a linear dependence on the effective Rabi frequency Ωeff. The Rabi cy-

cling behavior of the entire wave packet is influenced by the ratio between the power-

broadened width σc2ℏk(k) and the initial state’s momentum width σkx , where efficient

cycling occurs when σc2ℏk (k)

σkx
≥ 1 [104].

In the case of a Gaussian wave packet with an rms momentum width of σkx =

0.11ℏk, the result aligns with the experimentally observed diffraction efficiency of 90%,

as illustrated in Figure 4.5.

4.3 Atom Interferometery
Introducing individual pulses separated by an interferogram time T, comprising of π/2,

π, and π/2 pulses, forms an atom interferometer known as the Mach-Zehnder type

interferometer. During the first pulse, the photon recoil transferred causes the ground

state |g⟩ to spatially excite to a higher momentum state, akin to the Bragg case, or an

excited state |e⟩ in the Raman case, over time. Subsequently, the second pulse inverts

states and momentum, while the third pulse serves to close the interferometer.

Let us now consider this sequence to derive the phase evolution used in our experi-

ment. This phase evolution determines the population ratio in the output of the interfer-
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Figure 4.6: Atom interferometer diagram depicting the atom’s position. The vertical
axis is the position of the atom in the free fall trajectory of the atoms and the horizontal
axis represent the time taken in the interferometric sequence.

ometer. The phase evolution can be decomposed into two components: the interaction

between atoms and the Raman or Bragg laser field, and their free evolution during the

intervals devoid of light pulses. Here we used Bragg pulses in the interferometer.

Φ = ∆ϕint +∆ϕevol (4.12)

Let us discuss both the evolution separately.

4.3.1 Bragg pulse interaction in an atom interferometer

As illustrated in Figure 4.6, we will break down the specific terms that contribute to

the phase shift during the transition of atoms between states. Referring to Table 2.1,

we can disregard the terms that cancel out within our pulse sequence. Consequently,

the primary term influencing the phase change will be ϕeff . Thus we can introduce the

phase term introduced onto the wave function during the i-th pulse as:

ϕi = ϕeff(z(ti), ti) = ωeff ti − keffz(ti) + ϕeff,0(ti) (4.13)
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where i= A,B,C. Assuming that the hyperfine transition energy is adjusted (using laser

detuning to counteract the Doppler shift) such that δeff = 0 and the light shift compen-

sation is δAC = 0, with all atoms initially in the state |g, p⃗⟩. By applying equations 2.47

and 2.48, we can calculate the coefficients for the atomic states before, during, and after

the three pulses.

c|g,p⃗⟩(t = t0) = 1 (4.14)

c|e,p⃗+ℏk⃗eff ⟩(t = t0) = 0 (4.15)

c|g,p⃗⟩(tA < t < tB) =
1√
2
e−iπ/2 (4.16)

c|e,p⃗+ℏk⃗eff ⟩(tA < t < tB) =
1√
2
ie−i(π/2+ϕA) (4.17)

c|g,p⃗⟩(tB < t < tC) =
1√
2
e−i(3π/2+ϕA−ϕ′

B) (4.18)

c|e,p⃗+ℏk⃗eff ⟩(tB < t < tC) =
1√
2
ie−i(3π/2+ϕB) (4.19)

c|g,p⃗⟩(tC < t) =
1

2
e−i(2π+ϕB−ϕ′

C) +
1

2
ie−i(2π+ϕA−ϕ′

B) (4.20)

c|e,p⃗+ℏk⃗eff ⟩(tC < t) =
1

2
e−i(2π+ϕB) +

1

2
ie−i(2π+ϕA−ϕ′

B+ϕC) (4.21)

where ′ denotes the contribution from 2nd path. Thus the probabilities after the final

pulse in both the momentum states is written as:

Pg(t) = |c|g,p⃗⟩|2 =
1

2
C(1 + cos∆ϕg) (4.22)

Pe(t) = |c|e,p⃗+ℏk⃗eff ⟩|
2 =

1

2
C(1− cos∆ϕe) (4.23)

where C is the contrast of the measurement and ,

∆ϕg = (ϕA − ϕB)− (ϕ′
B − ϕ′

C) (4.24)

∆ϕe = (ϕA − ϕB + ϕC)− ϕ′
B (4.25)



4.3. Atom Interferometery 77

Gravity interaction

Assuming perfect control over the laser field phase offset and frequency, these equations

can be simplified. For uniform gravitational acceleration, where z(ti) = v0ti − 1
2
gt2i ,

the laser field phase offset experienced by the atoms during the three pulses can be

calculated as:

ϕA = 0 (4.26)

ϕB = keffg
T 2

2
(4.27)

ϕC = keffg
(2T )2

2
, (4.28)

or, if there is an intentional phase offset ∆ϕoffset between pulses B and C,

ϕC = keffg
(2T )2

2
+ ∆ϕoffset (4.29)

therefore,

∆ϕint = ∆ϕg = ∆ϕe = ϕA − 2ϕB + ϕC = keffgT
2 +∆ϕoffset, (4.30)

or, considering the finite duration τ of the Bragg pulses and with T representing the

time interval between pulses,

ϕA − 2ϕB + ϕC = keffgT (T + 2τ) + ∆ϕoffset. (4.31)

This results in a fundamental relation for determining the local gravitational accel-

eration g by measuring the population ratio at the output of an atom interferometer.
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4.3.2 Free evolution between the pulses

Let us now derive the phase difference contributed from the free evolution between two

pulses in an atom interferometer. This is formulated how the wavefunction evolves from

Ψ(zA, tA) to Ψ(zB, tB) along a path between spacetime points A and B, defined by the

positions zA, zB and times tA, tB with tA < tB as mentioned in [77].

Thus, we used the solution of classical path where we considered the Lagrangian for

a particle in a gravitational field. The equation states as:

Scl(zBtB, zAtA) =

∫ tB

tA

[L(z, ż)] dt (4.32)

=
m

2

(zB − zA)2

tB − tA
− mg

2
(zB + zA)(tB − tA)−

mg2

24
(tB − tA)3.

(4.33)

where,

ż(t) = żA − g(tB − tA) (4.34)

z(t) = zA + żA(tB − tA)−
1

2
g(tB − tA)2 (4.35)

which is solved by the principle of least action.

It has been demonstrated [77] that the phase evolution between spacetime points A

and B can be expressed as

∆ϕA→B =
Scl(zBtB, zAtA)

ℏ
. (4.36)

This relationship is used to describe the phase shift due to free evolution along the

two paths of our interferometer. We represent zB, zB′ , and zC using equations 4.34 and

4.35. By choosing our time and reference frames such that tA = 0, zA = 0, and żA = 0,

and setting (tB,B′ − tA) = (tC − tB,B′) = T , these expressions simplify to:

zB = −1

2
gT 2 (4.37)

zB′ = −1

2
gT 2 +

ℏkeff
m

T (4.38)
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zC = −2gT 2 +
ℏkeff
m

T (4.39)

We can now determine the phase difference caused by the free evolution of the

wavepackets by splitting both interferometer paths into their two respective halves (AB,BC)

and (AB′, B′C) and inserting (4.33) and (4.36) into

∆ϕevol = (∆ϕA→B +∆ϕB→C)− (∆ϕA→B′ +∆ϕB′→C) (4.40)

=
m

ℏT
[
z2B − z2B′ − zBzA − zCzB + zB′zA + zCzB′ − zBgT 2 + zB′gT 2

]
(4.41)

= 0. (4.42)

Thus, the free evolution in a uniform gravitational potential does not affect the interfer-

ence observed at the output of the interferometer and

Φ = ∆ϕint. (4.43)

4.4 Mach-Zehnder Interferometer

In theory, the initial momentum state |0ℏk⟩ can be coupled to any momentum state

|2nℏk⟩ (where n is an integer) through nth-order Bragg diffraction. In our study, we

specifically couple the momentum states |0ℏk⟩ and |4ℏk⟩ (with k = 2π
λ

and λ = 780 nm,

the wavelength of the laser). The momentum-space wave function of a condensate, ini-

tially in the state |0ℏk⟩, when irradiated with Bragg diffraction beams, oscillates be-

tween these two coupled momentum states similar to a two-level system. The effective

oscillation frequency is given by Ωeff =
ΩeΩg

2∆
, where Ωe and Ωg are the resonant Rabi

frequencies of the Bragg beams, and ∆ represents the detuning of the beams from the

optical transition. By tuning the intensity, detuning, and duration of the Bragg pulse, we

can transfer a specified fraction of atoms to the |4ℏk⟩ momentum state.

The closed two-level system influenced by the Bragg beams can be conveniently

modeled as a fictitious spin-1
2

system, where |g⟩ represents |0ℏk⟩ and |e⟩ stands for

|4ℏk⟩. A π
2

or π pulse transfers half or all of the atoms from |g⟩ to |e⟩. Specifically,
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Figure 4.7: Schematic of the Mach-Zehnder Bragg Interferometer Experiment.
The following pulse sequence illustrates the consecutive Bragg pulses. In this sequence,
π/2 = 50µs, π = 100µs, and the interferogram time is 300µs.
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under a π
2

pulse, the state vector transforms according to |g⟩ →
(
|g⟩ − e−iϕ |e⟩

)
/
√
2

and |e⟩ →
(
e+iϕ |g⟩+ |e⟩

)
/
√
2. Here, ϕ is the phase of the moving standing wave

at the center of the initial atomic wavepacket |g⟩ during the Bragg pulse. Changes

in ϕ are measured relative to the phase of the resonant, moving standing wave. With

successive applications of this transformation, a π pulse results in |g⟩ → 2e−iϕ |e⟩ and

|e⟩ → e+iϕ |g⟩. Thus, a π
2

and π pulse can be used as an ideal beam splitter and mirror

for the condensate.

Figure 4.8: Population oscillation of the condensate. Oscillations in the population
of diffracted order of the condensate in the |4ℏk⟩ momentum state as a function of the
phase shift ϕ of the last Bragg pulse. The interferogram time between the centers of
successive Bragg pulses is ∆T = 300µs.

We generate a Bose-Einstein condensate (BEC) of rubidium atoms, typically around

150 nK, utilizing a hybrid optical dipole trap setup. Approximately every 16 minutes,

we produce a BEC comprising roughly 105 atoms predominantly in the 5S1/2 F =

1, mF = −1 state. Following the condensate’s creation, we release it by abruptly

switching off the trap mechanism, allowing for a 2 ms delay to mitigate the mean-field-

driven explosive expansion. Subsequently, we implement a Bragg interferometer pulse

sequence. After a 10 ms period of free evolution to enable adequate spatial separation
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between the |g⟩ and |e⟩ components, we capture an absorption image of the resulting

condensate. This imaging process yields highly precise and clear signals, as the inter-

ferometer’s operation is reflected in the probability distribution of observing atoms in

two distinct spatial regions. Figures 4.7 and 4.8 depict the Mach-Zehnder interferome-

ter and the population oscillation resulting from the first-order Bragg diffraction of the

condensate, respectively. The population oscillation can be fitted by 2.53 i.e.

Pe(t) = sin2

[
Ωeff · τ

2

]
=

1

2
[1− cos(Ωeff · τ)]. (4.44)

4.5 Summary
This chapter provides a detailed explanation of Bragg diffraction and Bragg spectroscopy

in Bose-Einstein Condensates (BEC). It explores how BECs interact with standing light

waves, leading to Bragg diffraction, which is crucial for understanding atomic momen-

tum transfer and manipulating BECs in experimental setups. The chapter also delves

into Bragg spectroscopy, a technique used to probe the excitation spectrum of BECs

and extract key information about their properties. Additionally, it introduces an atom

interferometer designed for BECs, focusing on the measurement of time-of-flight for a

10 ms duration, which is essential for precision measurements in quantum experiments.
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This chapter has been reported in :

Comparative Analysis of Phase Noise for Different Configurations of Bragg Lattice

for an Atomic Gravimeter with Bose-Einstein Condensate; Pranab Dutta, S. Sagar

Maurya, Korak Biswas, Kushal Patel, Umakant D. Rapol, AIP Advances, 14, 015352

(2024) [105]

We perform a comparative study of the phase noise induced in the lasers used for

Bragg diffraction in a Bose-Einstein condensate based quantum gravimeter where the

Bragg beams are generated using two different configurations. In one of the configu-

rations, the Bragg beams that form the moving optical lattice are generated using two

different acousto-optic modulators. In the second configuration, the Bragg beams are

generated using a single acousto-optic modulator carrying two phase locked frequen-

cies. The second configuration shows a suppression of phase noise by a factor of 4.7

times in the frequency band upto 10 kHz, the primary source of noise, which is the back-

ground acoustic noise picked up by optical components and the optical table. We report

a short-term sensitivity of 1360 µGal/
√
Hz (1Gal = 10−2m/s)and upon integration

over 200 seconds, achieve a resolution of 99.7 µGal for an interferometric duration of

10 ms [105].
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5.1 Introduction

Atom Interferometers (AI) have shown to be a promising tool in precision measure-

ment over an Optical Interferometer(OI). Theoretically, the atom interferometer’s sen-

sitivity is about ten orders of magnitude larger than the optical interferometer [106]

due to the rest-mass of the interfering atoms compared to photons. In the last three

decades, the source of atoms for an AI moved on from a beam of hot atoms to a cloud

of cold atoms [107–109]for increased sensitivity. At present, AI using cold atoms has

been successfully demonstrated for utilization in gravimetry [110–112], magnetome-

try [113,114], rotation sensing [18,115], inertial navigation [116,117], measurement of

fundamental constants [118,119] and tests of general relativity [120,121]. Over the last

two decades, significant advancements have been made in the practical application of

these AI based quantum sensors [7, 122, 123]

AI, based on cold atoms is limited by the coherence length of atoms leading to

degradation of fringe contrast in the interference signal [124] which finally decreases

the sensitivity of the system. AI based on Bose-Einstien Condensate (BEC) have been

shown to lead to higher contrast owing to the larger brightness and coherence length

of BECs. The BEC’s high number density is a concern for precision measurement

as it introduces interaction-induced dephasing due to mean-field energy [125]. This

can be avoided by providing sufficient time of flight before the interferometric pulse

sequence is initiated, whereby the mean field interaction becomes negligible [126]. For

the measurement of absolute gravity, BEC based atom interferometers have been shown

to be as accurate as conventional cold atom based interferometers. Atom chip based

BEC AI even can potentially reduce the electronic and optical complexity [19] and

have shown accuracies below sub−µGal (1Gal = 10−2m/s2) [19]. There have been

continuous efforts worldwide to reduce its size, weight and power for transportability

on ground as well as for deployment in space.

The majority of AI systems based on Bose-Einstein condensates (BECs) necessitate

intricate optical configurations for system realization. These configurations introduce

phase noise, which can be mitigated through the implementation of passive and active

isolation systems [19], or via the utilization of optical phase-locking loop techniques
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(OPLL) [127]. Here, we report the implementation of two configurations for generating

Bragg beams on a BEC based AI to measure the gravity using 87Rb [19, 128, 129] and

made a comparative analysis of the phase noise reduction. Conventionally two sepa-

rate AOMs are used to realize the Bragg beams required for AI [127]. In this work we

achieved a significant reduction of phase noise using a single AOM [49] which reduces

the optical complexity in comparison to the conventional method. By utilizing this ap-

proach, the Bragg beams and its associated pulses, carrying both frequencies, shared

the same optical path, including mirrors, and optics. As a result, it mitigated the phase

noise by significantly reducing the common mode. This reduction in common-mode

phase noise proved to be highly effective, enabling us to extend the interferometric time

to more than 10 ms, a task that was challenging with the two distinct AOM configura-

tions in our setup. Furthermore, we characterized this reduction of noise by carrying

out detailed study of the phase noise in both the configurations [127].

5.2 Quantum Gravimeter

5.2.1 Measurement Principle

The operation of an atom interferometer relies on spatial manipulation of the atomic

wavepacket to achieve the interferometric fringe signal. This manipulation is usu-

ally achieved using laser light arranged in different configurations. Some of the com-

monly used techniques are Bragg diffraction, Bloch oscillations and Raman diffrac-

tion [130, 131]. In an atom interferometer the atomic wavepacket is to be split and

recombined using optical ’beam splitters’ and ’optical mirrors’ that change the momen-

tum of the atomic wavepacket. In our gravimeter, we utilize the technique of Bragg

diffraction, which is extensively described in references [21, 132]. This technique in-

volves coupling two momentum states, namely p0 and p0 + 2nℏk (where p0 is the initial

momentum of BEC, k is the wave number of light and n is the order of Bragg transition)

through a two-photon stimulated process [133]. We perform the AI in Mach-Zehnder

(π/2− π − π/2) configuration [21] where π/2 pulse acts as beam splitter and π pulse

is used as mirrors [48]. A brief experimental procedure is shown in Figure 5.1 based

on references [128, 129, 134]. In order to enable atomic gravimetry, one can introduce
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Figure 5.1: Schematic diagram of BEC based atom interferometer for gravimetry and
its space time trajectories.The diagram represent the formation of BEC at the center
of the magneto-optical trap which is realized in a hybrid trap using a dipole trap and
the magnetic field. The BEC is allowed to free fall in the absence of the trap potential
and allowed to evolve under the interferometric pulses. The green dashed lines repre-
sent the three consecutive interferometric pulses for the realization of Mach-Zehnder
interferometer with BEC. Figure adapted from our previous work [7]. Reproduced with

permission from J Indian Inst Sci 103, 609–632 (2023), Springer Nature.
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two counter-propagating or co-propagating beams that create a moving optical lattice

i.e. Bragg beams which can be realised with beams of variable frequency components f

and f + δf. In the absence of any external force on atoms, the relative acceleration be-

tween the moving optical lattice and atoms remains uniform, the paths followed by the

atoms during the interferometer will be identical, resulting in a zero phase contribution.

Consequently, in the presence gravitational force on atoms, the overall phase shift will

be proportional to the uniform acceleration generated by the interaction between light

and atoms, as described in reference as [129]:

Φ = n(ϕ1 − 2ϕ2 + ϕ3) = 2nk · gT2 (5.1)

Here, the optical phases ϕ1, ϕ2 and ϕ3 represents the interactions of atoms with Bragg

pulses, n corresponds to the Bragg order, and T signifies the interferometric time of the

atom interferometer (AI). Scanning the phase of final π/2 pulse , we observe oscillation

in the population of both momentum order, and the resulting signal exhibits to:

P = N(1 + Ccos(Φ))/2 (5.2)

where N is the population of atoms and C is the contrast of signal. The fundamental

concept of measuring gravity is to balance the phase difference imparted to the atoms

by gravitational acceleration and the Bragg AI pulses. As freely falling atoms expe-

rience a time-dependent Doppler shift with respect to the Bragg transition, the optical

lattice is accelerated by adjusting the frequency difference in the lattice beam. The

overall phase shift can be obtained by scanning the lattice acceleration around the local

gravity which becomes as Φ = n(2k · gT2 − 2παT2) where α is the sweep rate (also

considered as frequency chirp) of lattice. To determine the value of g, the value of α

(say, α0) will balance the gravity and overall phase shift Φ will be zero, thus providing

α0 =
1
π
(k · g). To determine the value of α0, one has to observe the interferometric sig-

nal for at least three different interferogram time(T), and all those interferometric signal

have a common minima at α0.
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5.2.2 Noise Model of an Interferometer due to its optical path

A typical or conventional atom interferometer using Bragg-based principles is con-

structed with a heterodyne optical setup [135]. This configuration involves splitting

a single beam into two separate paths and directing them through two acousto-optic

modulators (AOMs) with frequencies f1 and f2 respectively. The resulting heterodyne

interferometric signal is detected and can be described by the equation:

S(t) = A [1 + C cos(2πfct + ϕn(t) + ϕ0)] (5.3)

where A represents the amplitude of the DC component, C is the visibility or con-

trast, fc = f1 − f2 denotes the heterodyne frequency, and ϕ0 represents the average phase.

The term ϕn(t) represents the phase noise induced by acoustic, optical, and electronic

components. To extract the phase noise, one utilizes the orthogonal demodulation tech-

nique. This technique involves mixing S(t) with a low-noise reference frequency using a

lock-in amplifier. The lock-in amplifier mixes S(t) with sin(2πfct) and cos(2πfct), fol-

lowed by a low-pass filter to eliminate undesirable higher frequencies. Consequently,

Equation 5.3 can be modified as proposed in [136] to include the respective noise model:

S(t) = A[1 + nm(t)][1 + C cos(2πfct + np(t) + ϕ0)] + na(t) (5.4)

where ϕn(t) is now represented as np(t) to account for phase noise originating from

the laser source, AOM driver, and seismic vibrations. Additionally, na(t) accounts for

additive noise, including amplified spontaneous emission noise, quantization noise, and

circuit noise. Finally, nm(t) represents multiplicative noise, which includes the ampli-

tude noise of the optical pulse caused by the AOM driver and the relative intensity noise

(RIN) of the laser. Our particular focus was on the noise induced by the AOM and

optical elements resulting from acoustic vibrations.

5.2.3 Sensitivity Function

The sensitivity function gives the information regarding the atom interferometer phase

shift Φ due to infinitesimal laser phase shift δϕ in the Bragg pulses and thus the popu-

lation measured at the interferometric outputs. The sensitivity function gϕ(t) is defined
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as [137]:

gϕ(t) = lim
δϕ→0

δΦ(δϕ, t)

δϕ
=

2

sinΦ
lim
δϕ→0

δP(Φ, δϕ, t)

δϕ
(5.5)

The above relation can be replicated for an interferometer both for beam splitters

and mirrors as follows:

gϕ(t) = sin

(∫ t

t0

ΩR(t
′)dt′

)
(5.6)

where ΩR(t) is the Rabi frequency during the light-atom interaction in the interferomet-

1

T + 2 R

2

(2
f/

R ) 2

Frequency (Hz)

|H
2
f
|2

Figure 5.2: Transfer function |H(2πf)|2 for a Mach-Zehnder sequence π/2− π − π/2
with a Rabi frequency of 2π×5 kHz for an interferometeric time of 10 ms. n

T+2τR
represents the frequencies where the sensitivity diminishes, where n is an integer and√

3ΩR

6π
corresponds to the cutoff frequency for a finite duartion of Bragg pulses.

ric sequence. The complete value of gϕ(t) depends on the scheme one uses to perform

the interferometer. For a Mach-Zehnder interferometer with three consecutive pulses of

π/2 and π, we consider the time origin at the middle of the second Bragg pulse. Thus

the sensitivity function can thus be read as for one half of the sequence where τR is the
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duration of the bragg pulse seperated by interferometeric time T:

gϕ(t) =


sin(ΩRt), 0 < t < τR

1, τR < t < T + τR

− sin (ΩR(T− t)), T + τR < t < T + 2τR

(5.7)

Thus, the sensitivity function is used to determine the interferometric phase shift Φ

for an arbitrary Bragg phase noise ϕ(t) as:

Φ =

∫ +∞

−∞
gϕ(t)dϕ(t) =

∫ +∞

−∞
gϕ(t)

dϕ(t)

dt
dt (5.8)

We establish the interferometer’s transfer function in the Fourier domain H(ω) = H(2πf) = ωG(ω)

where G(ω) =
∫ +∞
−∞ e−iωtgΦ(t)dt is the fourier transform of the sensitivity function de-

fined as:

G(ω)=
4iΩR

ω2 − Ω2
R

sin

{
w(T + 2τR)

2

}
×
[
cos

{
w(T + 2τR)

2

}
+

ΩR

ω
sin

(
ωT

2

)] (5.9)

To assess how the laser phase noise affects the interferometer sensitivity, we thus

defined the rms standard deviation of the phase noise in the interferometer as:

(σΦ)
2 =

∫ +∞

0

|H(ω)|2SΦ(ω)dω (5.10)

where, Sϕ(ω) represents the power spectral density of phase of the Bragg phase.

Hence, the transfer function was plotted in Figure 5.2 to analyze its behavior in

relation to frequency. The transfer function exhibits oscillatory patterns, providing in-

sights into the diminishing amplitude of repetitive regions at frequencies given by f =

n/(T+2τR), where n is an integer. This behavior indicates that the interferometer func-

tions acts as a low-pass filter, with a cutoff frequency defined as f =
√
3ΩR/6π. As the

frequency increases, the transfer function exhibits a trend proportional to 2/(2πf/ΩR)
2,

leading to a decrease in interferometric sensitivity.
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5.3 Experimental Details

We create a BEC of 87Rb consisting of 5 × 104 atoms every 15 seconds in a dipole

trap. The temperature of the residual thermal component of the BEC is measured

to be less than 200 nK. The experimental setup is almost the same as in this refer-

ence [138]. After turning off the dipole trap, we provide 2 ms time of flight to reduce

BEC’s mean-field effect on AI. The laser used for realizing the optical lattice is locked

to the 52S1/2,F = 2 −→ 52P3/2,F
′ = 2, D2 transition at 780 nm. Since the BEC is

prepared in the 52S1/2,F = 1,mF = −1 state, the laser is 6.8 GHz red-detuned from

the atoms’ accessible transition to suppress spontaneous emission. Now, for operation

as a gravimeter, we have introduced two different methods where a vertical, linearly

polarized light beam travelling through two differnt Acousto-Optic Modulator (AOM)

(ATM-801A2) or a single Acousto-Optic Modulator (AOM), which is driven by Arbi-

trary Function Generators (AFG) (AFG3032C) phase-locked by Rubidium frequency

standard (FS725) as shown in the Figure 5.3 (a) and 5.3 (b). By employing the AFG

to drive the AOM, we gain precise control over various parameters such as frequency,

sweep rate in frequency, and the phase of the lattice beam. To drive the Bragg transition

in 87Rb, the frequency difference in lattice beam should be δf = 4nωR, where n is the

order of Bragg transition and ωR is recoil frequency, and frequency difference is about

15 kHz in our experimental setup for first-order Bragg transition. But when the atoms

are freely falling under gravity, the Bragg transition condition gets modified because

atoms feel a time-dependent Doppler shift δd(t) = 2πα0t, where α0 = ( 1
π
)(k · g) is a

frequency chirp. The resonance condition for the Bragg transition is then transformed

in laboratory frame as δf = 4nωR + 2(k · g)t [129]. To compensate for this Doppler

shift, we apply a 25.078 MHz/s sweep rate (determined by the approximate theoretical

value of g in Pune) in one of the lattice beams to keep the atoms on resonance for the

Bragg transition. For generating the AI pulses (π/2− π − π/2) in the Mach-Zehnder

configuration, we have used square pulses with a pulse duration of 50 µs for π/2 pulses

and 100 µs for π pulse to drive the first-order Bragg transition, and a time sequence has

shown in Figure 5.1 with a 1/e2 beam diameter of about 2.5 mm. The typical power

in each beam near the interrogation site is about 1 mW. The effective Rabi frequency
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Figure 5.3: Schematic diagram of
generation of Bragg beams and interferometric signal for two different configurations.
(a) Top figure depicts the block diagram of generation of Bragg pulses using two dif-
ferent AOMs driven by AFGs which are phase locked using Rubidium atomic clock.
The laser is locked to the Rubidium transition line which is not shown in the diagram.
PD: photodiode, SA: spectrum analyser, AFG: arbitary function generator. Bottom fig-
ure shows the population oscillation of first order momentum state versus sweep rate
in terms of acceleration for interferometer time T = 3.4 ms. (b) Top figure depicts
the block diagram of generation of Bragg pulses using single AOM driven by AFG
which are phase locked. Bottom figure which is adapted from our previous work [7]
shows the population oscillation of first order momentum state versus sweep rate in
terms of acceleration for interferometer time T = 10 ms for single AOM configura-
tion. Reproduced with permission from J Indian Inst Sci 103, 609–632 (2023), Springer
Nature. Inset: Precise scanning of sweep rate along with the interferometric signal.
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corresponding to this beam intensity is calculated as Ωeff = Ω1Ω2

2∆
≃ 2π×5 kHz where

Ω1 and Ω2 represent the resonant Rabi frequencies of two Bragg beams,and ∆ denotes

the detuning of the beams from the optical transition.

Figure 5.3 represents the interference fringes obtained from two different configura-

tions. Figure 5.3 (a) interference signal is the first configuration involved the utilization

of two co-propagating laser beams diffracted by AOMs operating at 80 MHz and 80.015

MHz to generate an optical lattice as illustrated in reference [127] without any active

feedback locking technique. The interference pattern exhibited an interferometric os-

cillation with low contrast, resulting in a transfer efficiency of approximately ∼ 25%

for an interferometric time of T = 3.4 ms. This reduction in contrast or visibility was

attributed to phase noise induced by acoustic and sub-acoustic vibrations coupled to the

atomic system.

In the second configuration, a single AOM was employed, and dual frequencies of

80 MHz and 80.015 MHz were introduced from two phase-locked AFGs, as illustrated

in Figure 5.3 (b). Notably, this configuration demonstrated an improvement in contrast

or visibility compared to the previous method. Thus the graph depicts the population

oscillation of p = 2ℏk as a function of sweep rate in terms of acceleration, exhibiting a

transfer efficiency of approximately ∼ 50% for an interferometric time of T = 10 ms.

The inset figure provides a detailed scan in relation to the sweep rate.

5.4 Results and discussion

5.4.1 Phase Noise for different configuration

With a interferogram time of approximately 2T = 20 ms our interferometer is sensitive to

fast noise contribution Φnoise down to 50 Hz. It is important to note that due to geometric

limitations in our system, we were unable to extend the interferometric experiments

beyond a 40 ms time of flight. The principal source of noise in the measurement is

the phase noise of the laser which interacts with the atoms. This laser phase originates

from laser source and from the vibrations that shift the phase fronts of the two co-

propogating laser beams. Since in our case we use Bragg beams which is originated

from a single laser source due to which the contribution due to it is less compared to
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acoustic vibrations.
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Figure 5.4: The power spectrum of the Bragg beams is examined for various configu-
rations. In this analysis, the dashed red line represents the configuration involving two
co-propagating laser beams diffracted from separate AOMs as shown in Figure 5.3 (a),
the dot-dashed green line represents the configuration of Bragg beams diffracted from
seperate AOMs and coupled into a single fiber to reduce the differential phase noise and
the solid blue line corresponds to the configuration utilizing a single AOM as shown in

the Figure 5.3(b), with a frequency resolution of 500 Hz.

To evaluate the contribution of different configuration we set the frequency differ-

ence between the lattice beam at 15 kHz, the first order Bragg resonance for 87Rb. The

beat signal is logged at a sampling rate of 2.5 Giga samples per second for 2 ms with a

record length of 5 million points. A fourier transform of the logged data is coverted into

the power spectrum shown in Figure 5.4. The dashed red line shows the power spectrum

of configuration, as depicted in Figure 5.3 (a), which exhibits power above -80 dBm for

frequencies below 10 kHz well above the single AOM configuration as shown in Figure

5.3 (b) which is depicted in solid blue line. The power spectrum analysis was conducted

with a frequency resolution of 500 Hz. We also compared the beat signal generated by

two AOMs and coupled to a single fiber to reduce the differential phase noise which is

represented as the dot-dashed green line.

Thus, the initial experimental setup, depicted in Figure 5.3 (a), resulted in lower
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interferometric signal due to the presence of phase noise induced by vibrations, which

resulted in a constraint on the interferometric time due to loss of contrast. And, re-

markably, Figure 5.3 (b) demonstrates a notable enhancement in both contrast and in-

terferometric signal when we transitioned to the configuration utilizing a single AOM.
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Figure 5.5: Phase Noise spectrum of te Bragg beams for single AOM configuration and
dual AOM configuration coupled to a single fiber with 25 Hz resolution bandwidth.

We had also presented the phase noise spectrum for single AOM configuration and

double AOM output coupled to a single fiber with a resolution bandwidth of 25 Hz. No-

tably, the single AOM configuration, represented by the blue line in Figure 5.5, achieves

a significant suppression of residual phase noise by two orders of magnitude around 800

Hz. The calculated integrated phase noise in the Bragg pulse within the frequency range

upto 10 kHz from Equation 5.10 for single AOM configuration, measures 10 mrad/shot,

while for the dual AOM configuration coupled to a single fiber amounts to 47 mrad/shot.

5.4.2 Stability of the gravity measurement

To justify the resolution of the determined gravity value we performed the integration

of the stability of the experiment. The AI interferometer is operated for about 2 hours

with a pulse seperation time of T = 10 ms for cycle time of Tcycle = 17.98 s. Figure 5.6
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Figure 5.6: Allan deviation of the gravity measurements for interferometric time
T = 10 ms. The dashed line corresponds to a short-term sensitivity of 1360 µGal/

√
Hz

for 1 second.

depicts the time series data in the form of Allan deviation of the population of atom in

first order. The phase noise for the atomic interferometer with the better configuration

is calculated using an Allan deviation. This which is derived as the square root of the

Allan variance,

σ2
y(τ) =

1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)2 (5.11)

for a collections of M mean data points yi, acquired at average interval τ . For this

anlaysis, the data points corresponds to the measured acceleration due to gravity and

the averaging time is expressed in units of runs that corresponds to the 17.9 s duty cycle

of the experiment. Thus Allan deviation is a standard tool for assessing the temporal

characteristics of noise in precision measurements. Hence, the Allan deviation serves as

a common tool for evaluating the temporal properties of noise in precise measurements.

The measured short-term sensitivity of ultracold atom interferometer is estimated

to be 1360 µGal/
√
Hz which is extrapolated to 1 second according to the white noise

behaviour as it scales as τ−1/2 where τ is the average time of operation. Thus we report



5.5. Conclusion 97

a resolution of 99.7 µGal for an integration time of 200 seconds.

For the given interferometric time of T=10 ms, we have estimated the intrinsic sen-

sitivity limit of the interferometer as [139]:

(∆g/g)limit = σqpn.σg =
1

C
√
NgkeffT2

(5.12)

where (∆g/g)limit is the sensitivity of the system, σqpn is the quantum projection

noise, σg is the scaling factor of the interferometer to changes in g and keff = 2k. The

calculated intrinsic sensitivity limit for T = 10 ms is obtained to be around 56.7× 10−8

for 50% contrast with 5× 104 atoms.

5.5 Conclusion
In this study, we conducted a comparative analysis of two different techniques em-

ployed in atom interferometry (AI) for measuring local gravitational acceleration. Our

approach involved utilizing a Mach-Zehnder matter wave interferometer, where Bragg

diffraction of 87Rb atoms in the Bose-Einstein condensate (BEC) state was employed.

By implementing the one AOM configuration instead of the conventional method, we

successfully reduced the phase noise in our system. As a result, we were able to extract

the fringe visibility or contrast for the atom interferometer. The sensitivity of our system

was determined to be 99.7 µGal, at an integration time of 200 seconds interval , with

an interferometric time of 10 ms. Furthermore, we demonstrated that the conventional

method, which involves splitting the beam and passing it through two AOMs coupled

into a single fiber for noise cancellation, exhibited higher integrated phase noise com-

pared to the single AOM configuration. In summary, our findings highlight the efficacy

of employing a one AOM configuration to reduce phase noise, improve fringe visibility,

and enhance the overall performance of the atom interferometer system for measuring

local gravitational acceleration.
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Chapter 6
Atom based rotation sensor

Some of the results of this chapter has been published in:

A Decade of Advancement of Quantum Sensing and Metrology in India Using Cold

Atoms and Ions. J Indian Inst Sci; Pranab Dutta, S. Sagar Maurya, Kushal Patel, Korak

Biswas, Umakant D. Rapol, et al. J Indian Inst Sci, 103, 609–632 (2023) [56]

6.1 Sagnac Theory

In 1913, Georges Sagnac conducted an experimental demonstration illustrating that

when light originating from a coherent source underwent division and recombination

within a defined spatial enclosure, the resulting interference pattern experienced a phase

alteration upon rotation of the entire apparatus [140]. This observed phase variation

was directly related to the angular velocity, represented as Ω⃗, giving rise to what is

now widely recognized as the Sagnac effect. Within a Mach-Zehnder interferometer

(MZI), such phase modulation accumulates along the two distinct interferometric paths.

Furthermore, for an MZI encompassing a non-zero spatial area represented by A⃗, the

discrepancy in phase is likewise contingent upon this enclosed region. Consequently,

the larger the spatial expanse of the interferometer, the greater the sensitivity of the

phase to rotational motion. This discrepancy in phase between the two paths is termed

the Sagnac phase shift, its magnitude dictated by the rate of rotation according to the

99
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ensuing expression:

∆ΦΩ =
1

ℏc2

∮
Γ0

(Ω⃗× r⃗) · E⃗ dr =
2E

ℏc2
A⃗ · Ω⃗ (6.1)

The symbol E⃗ denotes the rest mass energy of the particles utilized in interferometry,

while A⃗ represents the physical area encompassed by the interferometer. Primarily,

the device sensitive to this phase discrepancy functions as a gyroscope. This charac-

terization of the Sagnac phase shift has been established in the context of matter-wave

experiments, such as electron interferometry, as referenced in [141] and [142]. Simi-

larly, the relationship between the Sagnac phase and the variables A⃗ and Ω⃗ holds true

for optical interferometers, as noted in [143].

6.1.1 Employing a path integral approach to solve the Sagnac in-

terferometer configuration

Utilizing the Feynman path integral method proves valuable in calculating the phase

alteration during the propagation of atoms within the interferometer. Storey and Cohen-

Tannoudji [144] conducted a thorough examination of interferometer setups, including

ours, employing a path integral analysis. They also provide guidelines for managing in-

teractions with light pulses. In classical mechanics, Hamilton’s principle of least action

dictates that a particle, subjected to an external potential V (r), follows a trajectory for

which the integral

SΓ =

∫ tb

ta

L[r⃗(t), ˙⃗r(t)] dt (6.2)

is stationary,where the Lagrangian is defined as is stationary, where the Lagrangian is

defined as L[r⃗, ˙⃗r] = 1
2
m ˙⃗r

2
− V (r⃗), and SΓ is the action along the path Γ. The phase of

the wavefunction at the final point b then depends on the initial wavefunction at a and

the classical action,as follows:

|Ψ(r⃗b, tb)⟩ ∝ eiSΓ/ℏ|Ψ(r⃗a, ta)⟩ (6.3)

The atom is treated classically with its position and velocity corresponding to the center

of mass and group velocity of a spatially localized quantum mechanical wavepacket.
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Perturbative approach

The alteration in phase resulting from a modification to the Lagrangian, represented by

∆L, can be computed to the initial order by integrating the perturbing potential across

the classical trajectory unaffected by the disturbance, identified as Γ0. The compre-

hensive derivation of this equation is provided in the thesis [145] and [146]. Thus, the

discrepancy in phase between the two arms of the interferometer is expressed as:

∆Φ =
1

ℏ

∮
Γ0

∆Ldt (6.4)

To determine the appropriate perturbation to the Lagrangian for a rotating interferom-

eter, one can consider an inertial coordinate frame and a frame rotating with angular

frequency Ω with a common origin. The Lagrangian in a rotating frame can be defined

as :

L′(r⃗, v) =
1

2
m(v⃗ + Ω⃗× r⃗)2 (6.5)

=
1

2
mv2 +mΩ⃗ · (Ω⃗× v⃗) +O(Ω2) (6.6)

In the rotating frame,Coriolis acceleration adds a perturbation ∆L′ = ∆L = mΩ⃗ ·
(r⃗ × v⃗) to the free particle Lagrangian. Now one can use Equation 6.4 to compute the

phase shift due to this perturbation:

∆ΦΩ =
m

ℏ

∮
Γ0

Ω⃗ · (r⃗ × v⃗) dt =
1

ℏc2

∮
(Ω⃗× r⃗) · E⃗ dr =

2E

ℏc2
A⃗ · Ω⃗ (6.7)

6.2 Rotation sensor using atom interferometry

Within this context, Equation 6.7 underscores the superiority of employing an atom

interferometer compared to a light interferometer. Specifically, when considering an

equal interferometric area, and comparing the total energy of a photon in an optical

interferometer (Ephoton = hν) to the total energy of an atom in an atom interferometer
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(Eatom = mc2), the resultant ratio is as follows:

Eatom

Ephoton
≈ 1011 (6.8)

The equation presented above suggests a substantial enhancement in sensitivity achiev-

able through the utilization of AI. The relationship between the differential phase shift

and inertial and gravitational forces depends on the specific interferometer pulse se-

quence being used. The timing and particular combination of pulses used determine

the atomic trajectories, and also control how the laser phase is sampled by the interfer-

ing paths. We will briefly discuss about the two methods, the three pulse and four pulse

method and their effects on linear accelerations and rotations from the differential phase

shift. Here we work with the Bragg transition of atoms.

6.2.1 Three pulse (MZI) rotation sensor :

While the full path integral provides a way of calculating the exact phase shift for the

atomic wavefunction, it is often convenient and more intuitive to break up the total

phase contribution into several different components. In particular, treating the discrete

atom-laser interactions independently from the free propagation of the atom simplifies

the calculation. Also, phase shifts due to spatial offsets in the initial/final positions of

the interfering paths can be treated independently, so that:

∆Φtotal = ∆Φprop +∆Φsep +∆Φlaser (6.9)

The propagation phase ∆Φprop represents the phase shift picked up by the atom due to

its free propagation between the pulses. Fig.6.1 a)shows the MZI where the phase shift

caused by the rotation due to doopler shift is

Φlaser = ϕ1 − 2ϕ2 + ϕ3 (6.10)

where ϕi is the phase experienced by atoms during ith pulse. Thus ϕi = ϕ0
i + k⃗eff ·

x⃗i, where ϕ0
i is the arbitrary laser phase and keff is the wave vector. Considering the

rotation Ω which induces a slight deflection θ due to which the Doppler shift it induces
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Figure 6.1: Schematic pulse diagram of BEC based Atom Interferometer and its space
time trajectories. a)Three Pulse Scheme b) Four Pulse Scheme

and modifies the Equation 6.10 into

Φrot = −2keff · (Ω× v0)T 2 (6.11)

Here, interferometric area A = (ℏkeff )/m · v0T 2 which is similar to the Sagnac Phase

effect in light. The generalised equation dealing with the principle of rotation involves

ΦTotal = keff · gT 2 − 2keff · (Ω× v0)T 2 − 2keff · (Ω× g)T 3 + ϕ0
i (6.12)

where keff ·gT 2 is induced due to gravity,−2keff ·(Ω×v0)T 2−2keff · is induced due to

the rotation in any axis and−2keff · (Ω× g)T 3 arises only if the gravity g is not parallel

to the rotation axis.

Now moving to a three pulse method(MZI) to find the phase shift due to Rotation,

usually dual interferometric loops are formed in two opposite directions. Thus one

can simultaneously separate the acceleration and Rotation phase shift by having the

common and differential modes. Thus the phase shift for rotation is ΦTotal = Φrot =

−4keff · (Ω× v0)T 2 in differential mode.
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Figure 6.2: Schematic pulse diagram of simultaneous BEC-based Atom Interferometer
and its space-time trajectories for Four Pulse Scheme. The orange and grey color arrows
indicate the Bragg pulses for splitting, redirecting, and merging. The orange beam is
coupled with two different frequencies of ω1 and ω2 whereas the grey beam consists of
one frequency ω0. The atoms start from a position (a) where a π/2 pulse is applied. The
atoms split into two momentum states simultaneously and symmetrically with a recoil
momentum of ±2ℏk. Subsequently, we apply π − π − π/2 pulses with a time interval
of T − 2T − T after the first π pulse. The red arrow and circles denote the trajectories
of the negative momentum interferometer, whereas the blue arrows and circles denote
the trajectories of the positive momentum interferometer. Since the interferometer time
is less enough than after the last π/2 pulse, the zeroth momentum state is not separated
enough, so we see them overlapping with each other. Here g is the direction of gravity.
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6.2.2 Four Pulse Ramsey-Bordé Atom Interferometry rotation sen-

sor

Fig.6.1 b) shows the Ramsey-Bordé Atom Interferometry (RBI) where the phase shift

caused by the rotation due to doopler shift is

Φrot = ϕ1 − 2ϕ2 + 2ϕ3 − ϕ4 (6.13)

Here we apply four pulse π
2
− π − π − π

2
interferometer sequence where time between

first,second,third and fourth is separated as T-2T-T. The differential phase shift in RBI

is :

Φtotal = 4(k × g) · ΩT 3 + ϕ0
i (6.14)

In case of four pulse interferometry the constant acceleration term cancels out since

keff ·(Ω×v0) reverses sign. In the Eq. 6.14, rotation term is related to acceleration due to

gravity rather than the initial velocity of atoms. Also, the above four pulse configuration

is insensitive to any dc acceleration along the direction of Bragg pulses.

6.3 Differential atom interferometer
As mentioned in the article about multidimensional atom optics and interferometry

[147] where they discussed the measurement of three components of acceleration and

Rotation simultaneously. Here we implemented simultaneous diffraction of atoms in

two momentum states along one axis using double Bragg diffraction (DBD). Fig. 6.2

shows the four pulse method interferometer with Bose-Einstein condensate.

Experimental method

The experimental schematic for the dual atom interferometer is described in Fig.6.2.

The initial experimental setup is explained in Section 4.2.2. Here, three counter-propagating

laser beams constitute the optical lattice, and these beams are obtained from the first-

order diffraction of two separate Acousto-Optic Modulators (AOM), which are driven

by phase-locked AFGs. This is implemented by passing one laser beam in an AOM

fed with two frequencies produced by two different AFGs and the other beam through

another AOM fed with a single frequency. The peak intensity of each beam is about
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Figure 6.3: a)BEC after π pulse, b)BEC after π/2 pulse, c)Rabi oscillation for two
different momentum states

Figure 6.4: Normalised population oscillation of ±2ℏk for four pulse method.
a)T=450µs, b)T=1 ms
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0.3 W/cm2 with a gaussian shape, 1/e2 radius of 700µm. For generating the AI pulses

(π − π/2 − π/2 − π), we have used square pulses with an on-time of 50 µs for π/2

pulses and 100 µs for π pulse to drive the first-order Bragg transition. Fig.6.3 shows the

momentum states after π, π/2 pulses and their corresponding Rabi oscillations.

Results

To realize the RBI, we apply four pulses of (π−π/2−π/2−π) to the BEC as discussed

in Fig.6.2. We consider the case where we scan the relative phase of the last π/2 Bragg

pulses from 0 to π. Fig.6.4 shows the population oscillation of the p = ±2ℏk as a func-

tion of phase when the interferogram time (T) is equal to 450 µs and 1 ms respectively.

A clear interferometric oscillation can be seen in Fig.6.4 with a contrast of 10%.
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Chapter 7
Conclusion and Outlook

7.1 Summary
The primary objective of this thesis was to establish an experimental platform for con-

ducting precision measurements on ultracold rubidium atoms. The thesis is structured

into four main parts. The initial phase focused on developing Bragg diffraction of atoms.

In this stage, we successfully achieved Bragg diffraction by creating a moving optical

lattice with two frequencies separated by 15 kHz. Subsequently, we demonstrated a

Mach-Zehnder interferometer using the Bragg beams within the same context.

In the second stage, we demonstrated a quantum gravimeter using the existing setup.

We encountered phase noise issues that limited the interferometer’s performance over

extended interferogram times. To address this, we conducted a comparative analysis of

two techniques in atom interferometry (AI) for measuring local gravitational accelera-

tion. By implementing a single AOM configuration instead of the conventional method,

we successfully reduced phase noise in our system. This improvement led to better

fringe visibility and contrast in the atom interferometer. Our system’s sensitivity was

measured at 99.7µGal with an integration time of 200 seconds and an interferometric

time of 10 ms. Overall, our results demonstrate the effectiveness of using a single AOM

configuration to reduce phase noise, enhance fringe visibility, and improve the perfor-

mance of the atom interferometer for local gravitational acceleration measurements.

Next, we implemented double Bragg diffraction in the Bose-Einstein Condensate

(BEC) to develop a rotation sensor based on an atomic Sagnac interferometer. While we

109
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successfully demonstrated a dual interferometer, we were unable to fully characterize

the system as a rotation sensor. Challenges included intensity stabilization, phase noise,

interferogram time, and detuning of the Bragg beams.

Figure 7.1: Compact setup of a Rubidium MOT.

7.2 Future outlook
The above study establishes a foundation for developing quantum sensors based on atom

interferometry. Here are several key points where this approach can be implemented to

advance quantum sensor technology.

• The development of the quantum gravimeter was conducted in a lab-based setup,

which limited the free fall time of the atoms. The glass cell used in our experi-

ments allowed only a 60 ms time of flight before the atoms struck the bottom of

the cell. To enhance the sensitivity of the gravimeter, a new experimental setup

is required. Figure 7.1 illustrates such a compact setup, mounted on a 3 × 2 feet

optical table, which is also easily transportable. The next generation of atomic

gravimeters will be developed using this setup.

• In our implementation, we used a TTL pulse, specifically a square pulse, for the
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Figure 7.2: Laser system for compact quantum gravimeter using telecom laser.

splitting, reflecting, and merging processes. To enhance the sensitivity of the

sensor, one could develop an interferometer utilizing a Gaussian pulse or an op-

timized pulse. This approach would allow for the use of higher diffracted orders

instead of just the first order, thereby improving the sensor’s sensitivity.

• One can improve the sensitivity by actively and passively isolating the entire setup

from seismic noise through the introduction of an isolation platform.

• Instead of using a 780 nm laser, one can integrate a fiber telecom laser at 1560

nm, which can be frequency doubled to generate the MOT and conduct further

experiments in the setup. This approach reduces the complexity of optics and

incorporates fiber optics into the system. Figure 7.2 presents the block diagram

detailing the components of the laser system.
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[6] S. KUMAR, Towards Distributed Quantum Information Processing Using Cou-

pling Of Neutral Atoms to Plasmonic Nanostructures. PhD thesis, Dept. of

Physics, 2017.

[7] P. Dutta, S. S. Maurya, K. Patel, K. Biswas, J. Mangaonkar, S. Sarkar, and

U. D. Rapol, “A decade of advancement of quantum sensing and metrology

in india using cold atoms and ions,” Journal of the Indian Institute of Science,

vol. 103, no. 2, pp. 609–632, 2023.

113



114 BIBLIOGRAPHY

[8] K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert,

W. P. Schleich, and A. Roura, “Taking atom interferometric quantum sensors

from the laboratory to real-world applications,” Nature Reviews Physics, vol. 1,

no. 12, pp. 731–739, 2019.

[9] N. Aslam, H. Zhou, E. K. Urbach, M. J. Turner, R. L. Walsworth, M. D. Lukin,

and H. Park, “Quantum sensors for biomedical applications,” Nature Reviews

Physics, vol. 5, no. 3, pp. 157–169, 2023.

[10] C. Janvier, V. Ménoret, B. Desruelle, S. Merlet, A. Landragin, and F. Pereira dos

Santos, “Compact differential gravimeter at the quantum projection-noise limit,”

Phys. Rev. A, vol. 105, p. 022801, Feb 2022.

[11] B. Stray, A. Lamb, A. Kaushik, J. Vovrosh, A. Rodgers, J. Winch, F. Hayati,

D. Boddice, A. Stabrawa, A. Niggebaum, et al., “Quantum sensing for gravity

cartography,” Nature, vol. 602, no. 7898, pp. 590–594, 2022.

[12] W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev.

Mod. Phys., vol. 70, pp. 721–741, Jul 1998.

[13] M. Kasevich and S. Chu, “Atomic interferometry using stimulated raman transi-

tions,” Phys. Rev. Lett., vol. 67, pp. 181–184, Jul 1991.

[14] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.

Kurn, and W. Ketterle, “Bose-einstein condensation in a gas of sodium atoms,”

Phys. Rev. Lett., vol. 75, pp. 3969–3973, Nov 1995.

[15] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Col-

lective excitations of a bose-einstein condensate in a dilute gas,” Phys. Rev. Lett.,

vol. 77, pp. 420–423, Jul 1996.

[16] V. Ménoret, P. Vermeulen, N. Le Moigne, S. Bonvalot, P. Bouyer, A. Landra-

gin, and B. Desruelle, “Gravity measurements below 10−9 g with a transportable

absolute quantum gravimeter,” Scientific Reports, vol. 8, p. 12300, Aug 2018.



BIBLIOGRAPHY 115

[17] T. Bothwell, C. J. Kennedy, A. Aeppli, D. Kedar, J. M. Robinson, E. Oelker,

A. Staron, and J. Ye, “Resolving the gravitational redshift across a millimetre-

scale atomic sample,” Nature, vol. 602, pp. 420–424, Feb 2022.

[18] I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and

A. Landragin, “Continuous cold-atom inertial sensor with 1 nrad/sec rotation

stability,” Phys. Rev. Lett., vol. 116, p. 183003, May 2016.

[19] K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A.

Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simul-

taneous precision gravimetry and magnetic gradiometry with a bose-einstein con-

densate: A high precision, quantum sensor,” Phys. Rev. Lett., vol. 117, p. 138501,

Sep 2016.

[20] S. H. You, M. H. Cai, S. S. Zhang, Z. S. Xu, and H. P. Liu, “Microwave-field

sensing via electromagnetically induced absorption of rb irradiated by three-color

infrared lasers,” Opt. Express, vol. 30, pp. 16619–16629, May 2022.

[21] Y. Torii, Y. Suzuki, M. Kozuma, T. Sugiura, T. Kuga, L. Deng, and E. W. Hagley,

“Mach-zehnder bragg interferometer for a bose-einstein condensate,” Phys. Rev.

A, vol. 61, p. 041602, Feb 2000.

[22] J. Wang, “Precision measurement with atom interferometry,” Chinese Physics B,

vol. 24, no. 5, p. 053702, 2015.

[23] S. Yanagimachi, K. Mizobuchi, and A. Morinaga, “Ramsey-bordé atom interfer-
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