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Abstract

Building fast and accurate ways to model the distribution of neutral hydrogen during the
Epoch of Reionisation (EoR) is essential for interpreting upcoming 21 cm observations. A
key component of semi-numerical models of reionisation is the collapse fraction field fcoll(x),
which represents the fraction of mass within dark matter haloes at each location. Using
high-dynamic range N-body simulations to obtain this is computationally prohibitive and
semi-analytical approaches, while being fast, end up compromising on accuracy.

In this work, we bridge the gap by developing a machine learning model that can generate
fcoll maps by sampling from the full distribution of fcoll conditioned on the dark matter
density contrast δ. The conditional distribution functions and the input density field to
the model are taken from low-dynamic range N-body simulations that are more efficient to
run. We evaluate the performance of our ML model by comparing its predictions to a high-
dynamic range N-body simulation. Using these fcoll maps, we compute the HI and HII maps
through a semi-numerical code for reionisation. We are able to recover the large-scale HI
density field power spectra (k ≲ 1 hMpc−1) at the ≲ 10% level, while the HII density field is
reproduced with errors well below 10% across all scales. Compared to existing semi-analytical
prescriptions, our approach offers significantly improved accuracy in generating the collapse
fraction field, providing a robust and efficient alternative for modelling reionisation.
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Chapter 1

Introduction

1.1 Epoch of Reionisation and the 21 cm line

The Epoch of Reionisation (EoR) marks an important period in the history of the universe
when the first luminous objects ionised the neutral hydrogen (HI) present in the intergalactic
medium (IGM). The exact timing of this period is unknown, with most likely estimates for
its start being around redshift of 20 – 30 with an end around 6. Studying this era is crucial
for understanding many astrophysical processes, including the emergence of the first stars
and galaxies and the growth of cosmic structure (for recent reviews, see [3, 4]). The obser-
vational signatures of EoR are extremely faint because of the large distances involved and
are buried under much stronger astrophysical foregrounds. Luckily, there are multiple such
observables on which reionisation leaves an imprint. The average flux in the Lyα absorption
spectra from distant quasars can be used to study the end of reionisation. Furthermore,
spatial fluctuations in the average flux can also be used as an indicator of the fluctuations
in the distribution of neutral hydrogen, or HI [5–7]. The temperature of the IGM is also
affected by the photoheating associated with reionisation and can be constrained from the
Lyα absorption spectra [8–10].

Alternatively, one can also study the patchiness of reionisation either using the decrease
in the intensity of Lyα emitters (LAEs) at redshifts around 6 [11], or using the kinetic
Sunyaev-Zeldovich (kSZ ) introduced in the CMB due to its interaction with the free electrons
in ionised regions during the EoR [12, 13]. However, one of the most promising probes of
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Figure 1.1: The Hydrogen Epoch of Reionisation (HERA) array situated at the Meerkat National
Park in South Africa. Image Credits: South African Radio Astronomy Observatory - NRF/SARAO

the EoR is the brightness temperature fluctuations of the 21 cm line produced by neutral
hydrogen [14–16]. The 21 cm signal refers to the transition between the two hyperfine
levels of the hydrogen 1s state arising due to the interaction between the magnetic moments
associated with the spin angular momentum of the electron and proton. Essentially, it is
emitted when the electron and proton transition from a parallel to an anti-parallel spin
state, with a frequency of around 1420 MHz. The brightness temperature Tb of a signal
is defined as the effective temperature of a hypothetical blackbody with the same intensity
at the same frequency as the signal. The sky-averaged brightness temperature excess over
the CMB temperature is known as the ‘global 21 cm signal’ and can be measured using a
single radiometer, which is the goal of experiments such as EDGES [17], SARAS [18, 19],
and LEDA [20], among others. One can also aim to measure the power spectrum of the
21 cm brightness temperature fluctuations using radio interferometric arrays. Assuming an
accurate subtraction of the contamination from astrophysical processes in the foreground,
such a measurement would probe the density distribution of HI during the EoR. Therefore,
given a model of cosmological structure formation describing the clustering of dark matter
(to be traced by the baryonic matter such as HI and Helium) such as ΛCDM, along with
a model describing the relevant astrophysical processes of reionisation, one can use these
observations of the 21 cm signal fluctuations to constrain the Epoch of Reionisation. This
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goal has been pursued by various radio interferometers such as GMRT1, MWA2, PAPER3,
LOFAR4 and will be continued by the upcoming HERA5 Phase-II and SKA6. In a nutshell,
we must be able to make efficient theoretical predictions for the 21 cm power spectrum in
order to perform parameter inference from the upcoming observations and constrain models
of the EoR.

Figure 1.2: Evolution of the fraction of neutral hydrogen during reionisation as predicted by a
cosmological radiative transfer simulation FlexRT [1]. The panels, from left to right, represent 20%,
50% and 80% volume ionised fractions with the white regions denoting ionised hydrogen.

1.2 Challenges in Modelling the EoR

In standard models of the EoR that assume galaxies to be the dominant contributors of
ionising photons, reionisation proceeds via the formation of ‘ionised bubbles’ containing
ionised hydrogen (HII). By modelling the distribution of these ionised bubbles, we can get the
distribution of neutral hydrogen, which in turn provides information regarding fluctuations
in the 21 cm signal. The most accurate way to achieve this is to run radiative transfer (RT)
simulations that take into account the detailed physical interactions between matter and the
photons emitted by the sources [21–30]. This includes various processes such as absorption,
scattering, and photoionisation of the hydrogen atoms due to the high-energy photons. A
set of slices showing the fraction of HI produced using an RT simulation are shown in Figure
1.2. However, these simulations must have a sufficiently large volume to achieve statistical

1https://www.gmrt.ncra.tifr.res.in/
2https://www.mwatelescope.org/
3http://eor.berkeley.edu/
4http://www.lofar.org/
5https://reionization.org/
6https://www.skao.int/en
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convergence on the bubble distribution at large scales [31, 32]. Simultaneously, they need
to resolve the smallest mass haloes capable of forming the first galaxies (typically down to
∼ 108 h−1M⊙) due to their significant contribution to the ionising photon budget. This
‘high-dynamic range’ requirement adds significantly to the already high computational cost
of modelling such a complex physical process, and makes these simulations highly inefficient
in exploring the parameter space of EoR models.

One gets around this problem by resorting to the much faster but approximate semi-
numerical models of reionisation. These aim to predict the ‘ionisation field’ – describing
the fraction of hydrogen ionised at each location – by using the excursion-set approach
[33] and a simple photon counting argument to define the barrier [34], thus bypassing the
complicated radiative transfer physics [35–40]. These semi-numerical methods provide a
reasonable match to RT simulations in terms of various statistics such as the neutral fraction,
bubble size distribution, power spectrum of the ionisation field, and so on [41, 42]. When
used along with semi-numerical galaxy formation codes, the input to these models can be
the stellar mass [43] or the number of ionising photons entering the IGM at each cell [44],
with the outpt being the ionisation fraction in the cell. When used in conjunction with
dark-matter-only simulations, the required input is the ‘collapse fraction field’ denoted by
fcoll(x), which is equal to the fraction of dark matter mass within haloes in the grid cell at x.
This can be computed by first filtering individual haloes using the excursion-set formalism
from a dark matter density field evolved using Lagrangian perturbation theory [35, 45].
Alternatively, it can be prescribed semi-analytically without explicitly identifying sub-grid
haloes from the conditional Press-Schechter (hereafter conditional PS) halo mass function
[33, 46], conditioned on the dark matter density contrast δ(x) for each cell. One can also
use the conditional Sheth-Tormen (hereafter conditional ST) mass function, which is based
on the more general ellipsoidal collapse model [47, 48].

However, these analytical mass functions do not capture the full complexity of halo for-
mation, are not universal and are only an approximate match to N-body simulation results
[49–53]. In particular at the redshifts of our interest, the conditional PS mass function under-
estimates the abundance of high mass haloes (M ≳ 1010 h−1M⊙ at z = 7) and overpredicts
the abundance at low masses (M ≲ 108 h−1M⊙). While the ST mass function provides a
better match, it still overpredicts the number of very massive haloes at high redshifts [49].
These considerations are important in studies of reionisation since correctly predicting the
abundance of haloes is crucial for obtaining accurate ionised regions. Therefore, as the first
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step, one should transition away from the conditional PS and ST mass functions and use
N-body simulations to calculate the conditional mass function empirically. However, these
approaches only assign the mean fcoll conditioned on the density value of each cell ⟨fcoll|δ⟩,
whereas in reality, the fcoll value can stochastically fluctuate across different cells with the
same density value. Ignoring this ‘scatter’ or ‘stochasticity’ in the collapse fraction (which is
primarily due to a dependence of fcoll on environmental variables other than the grid-scale
δ) can lead to inaccurate recovery of the small-scale features in the HI and HII maps, as we
show later in the paper. Hence, as the next step, one should use the conditional cumulative
distribution function of fcoll conditioned on the density contrast, CDF(fcoll|δ) to sample the
fcoll field.

In either case, it is still important for the N-body simulations to have a high-dynamic
range. This makes them computationally very expensive and thus one must explore al-
ternatives to enable fast predictions of collapse fraction and subsequently the HI density
fields. Attempts to resolve this issue have involved running low-resolution, large-volume
simulations and using a high-resolution, small-volume simulation to populate the otherwise
unresolved haloes. This has been implemented in [31, 54], although while not taking into
account the scatter in the halo numbers for a given overdensity. Poisson fluctuations in
the halo number count around the mean value predicted by the analytical conditional mass
functions have been incorporated in certain studies [55–57], but this has the limitation of
only being valid for large enough cell sizes [58, 59]. An alternative approach is to identify
matching cells in the small-volume, high-resolution simulation and use haloes from these
cells to populate the low-resolution box [60]. However, this method requires simultaneous
access to both the large-volume and small-volume simulations during the construction of the
effective high-dynamic-range box.

1.3 Goal and Outline of the Thesis

In this work, we aim to fully incorporate the effects of stochasticity in the collapse frac-
tion values, by directly using the full CDF(fcoll|δ) obtained from an N-body simulation for
sampling the fcoll field. We still use a hybrid scheme of combining information from compu-
tationally inexpensive low-dynamic range boxes to mimic a high-dynamic range one, but do
so using a machine learning algorithm based on Gaussian Process Regression (GPR). For the
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sake of comparison, we define this to be the stochastic case and also define the deterministic
case in which fcoll predictions are made by simply assigning the conditional means ⟨fcoll|δ⟩.
We use the fcoll fields from both the cases as inputs to a semi-numerical code for reionisation
to obtain the HI and HII maps, and compare the results with those obtained from the fcoll

field of a high-dynamic range simulation (ground truth). While we obtain the results for
both the cases, the main focus of the thesis and the machine learning model is the stochastic
case. Therefore, this work aims to establish an ML framework for efficiently modelling fields
relevant to EoR by bypassing the need to run a high dynamic range N-body simulation,
while improving upon the accuracy of semi-analytical prescriptions.

The outline of the thesis is as follows. We start by presenting the details of the method-
ology in chapter 2. We describe the various simulation boxes and their parameters in section
2.1, introduce Gaussian Process Regression and our implementation of it in section 2.2,
the semi-analytical prescriptions of Sheth-Tormen and Press-Schechter for getting the fcoll

fields in section 2.3, and some details regarding excursion set-based semi-numerical models
of reionisation – in particular script – in section 2.4. After this, we present the results
obtained by combining these components for various different cases in chapter 3. We begin
with a fiducial choice of parameters in section 3.1 and compare the fidelity of our GPR em-
ulator in recovering statistics of the fcoll field and subsequently, the neutral hydrogen (HI)
map with results from a high-dynamic range simulation box. In section 3.2, we first com-
pare the performance of our emulator with the semi-analytical methods and later quantify
the robustness of our method against a variation of the involved parameters. We interpret
the results and discuss some interesting features of our machine learning model in light of
small- and large-scale features of the fields in chapter 4. We conclude by summarising the
work and addressing the future directions in chapter 5. Appendix A provides a convergence
check of our results on the number of simulation boxes used to train our model, Appendix
B highlights some more details regarding the optimisation of the binning to construct the
training data, and finally Appendix C discusses the relation between the error in the power
spectrum and in the global mean of mass-weighted fcoll.
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Chapter 2

Methodology

2.1 N-body Simulations

Here, we describe the various N-body simulation boxes that are used for training, sampling,
and benchmarking the ML model. All of these were run using the GADGET-21 code [61],
assuming a flat ΛCDM cosmology with H0 = 67.8 km s−1Mpc−1, Ωm = 0.308, Ωb = 0.04,
σ8 = 0.829, ns = 0.961. On the simulation snapshots at the redshifts of interest, we compute
the dark matter overdensity field δ(x) over a default grid size of ∆x = 0.5 h−1Mpc , using
a cloud-in-cell mass-assignment scheme. We then run the Friends-of-Friends (FoF) [62] halo
finder on these snapshots (excluding the LB box) to get the discrete halo field. The collapse
fraction field fcoll(x) is defined as

fcoll(x) =

∑
hmh(x)

Mtot(x)
, (2.1)

where the summation runs over the mass of all the haloes mh(x) contained in the cell at
x, and Mtot(x) is the total dark matter mass in the same cell. This field is then computed
over the same grid as the density field δ(x). For the default case, we use 10 as the minimum
number of particles for identifying a halo, which corresponds to a minimum halo mass of
4.08×108 h−1M⊙ for both the SB and RB as defined below, since they have the same particle
mass resolution.

1https://wwwmpa.mpa-garching.mpg.de/gadget/
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• Small Boxes (SB): These have a volume of V = (40 h−1Mpc)3 and contain N =

5123 particles. 7 realisations of these are run with different seeds, and for each, the
overdensity and collapse fraction fields are computed. These pairs of (δ, fcoll) found
for each cell are then combined over all cells and over all 7 realisations to get a list of
803 × 7 = 3584000 (δ, fcoll) pairs, from which the training data is constructed (refer to
2.2.1). Each realisation of these simulations took ∼ 210 CPU hours to run, consuming
a maximum RAM of around 20 GB.

• Reference Box (RB): This box has a volume of V = (80 h−1Mpc)3 and number
of particles N = 10243. With both the volume and the number of particles 8 times
greater than the SBs, it has the same particle mass resolution (Mp, min) as them (since
Mp, min ∝ V

N
), and consequently the same minimum halo mass as well. This box is

our ‘ground truth’ – the goal of our emulator will be to recover the statistics of this
high dynamic range box. This simulation took ∼ 2900 CPU hours to run, consuming
a maximum RAM of 160 GB.

• Large Box (LB): This box has a volume of V = (80 h−1Mpc)3 and number of particles
N = 5123. Therefore, it has a coarser particle resolution than the SBs, but the same
volume as the RB. This box is used solely to provide the density values to be input into
the emulator and make the fcoll predictions to be compared with the ground truth RB,
and hence we do not run a halo finder on it. This simulation took ∼ 220 CPU hours
to run, consuming a maximum RAM of around 20 GB. Note that the combination of
SB and LB requires significantly lesser RAM (20 GB) as compared to running the RB
(160 GB).

2.2 Building the GPR Emulator

From the SB simulation boxes outlined in section 2.1, we obtain the (δ, fcoll) pairs for each
cell. We can then bin the δ values from the SBs, and collect the fcoll values falling in each
bin to either (a) compute their conditional mean ⟨fcoll|δ⟩ or (b) construct the conditional
cumulative distribution function CDF(fcoll|δ). Using (a) and (b) to make the fcoll predictions
precisely corresponds to the deterministic and stochastic cases as defined at the end of section
1, respectively. The GPR training as described in the next subsections is required only for
the stochastic case.
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2.2.1 Binning

The goal is to use the emulated CDF to directly sample an fcoll value, if a new δ value is
given as the input. This amounts to the assumption that the spatial distribution of collapse
fractions is primarily dictated by the local overdensity, and the cumulative effect of other
environmental factors is modeled by random sampling from the conditional CDFs.

100 101

1 + δ

101

102

103

104

105

C
ou

nt
s

z = 7

Figure 2.1: A histogram of the overdensity values in the 7 SB boxes combined at a redshift of
7. The logarithmic scale on the y axis indicates the rarity of high and low values. The binning
used for the histogram is the same as the optimised binning used for constructing the training data,
described in subsection 2.2.1.

The binning of the overdensity values is made trickier by their highly skewed distribution
since extremely low and high values are quite rare, as shown in Figure 2.1. If a uniform bin-
ning scheme is adopted, to accurately capture the variation of the conditional CDF between
two intermediate δ values, the bin width must be made sufficiently small. This causes too
few fcoll values to be found in higher δ bins, leading to a very noisy CDF. Thus, to strike
a balance between noise and systematic error, we adopt a variable binning scheme, where
the bin width is set to a reference value at δ = 0, and it increases along either direction.
The bins are defined in log(1 + δ), and usually have a reference value of around 0.03 dex at
δ = 0. The other parameter that we must decide in the training data is the number of bins
in fcoll used to make the CDFs for a fixed δ bin. This, along with the δ bin widths at the two
extremes are optimised for each case that we present separately. The optimal extreme bin
widths are around ∼ 0.05 dex and ∼ 0.2 dex, while the optimal number of fcoll bins is either
500 or 900, depending on the case. We refer the reader to Appendix B for more details on
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the optimisation procedure, where we also study the effect of using a fixed binning scheme
(optimised for the default z = 7 case) directly on the other cases.

2.2.2 Training Using Gaussian Process Regression

We employ the Gaussian Process Regression (GPR) technique to construct our interpolator
function. A collection of random variables {Y (t)} indexed by some label t constitute a Gaus-
sian process if the joint distribution of {Y (t1), Y (t2), . . . , Y (tn)} is a multivariate Gaussian
for any finite subset of t denoted by {t1, t2, . . . , tn}. We shall be using Gaussian processes in
the context of regression, and hence would like to use the notation f for the random variable
and x for the label. GPR is a non-parametric method that approximates the collection of
the target function values f as a Gaussian Process over the inputs x. This is a standard
regression algorithm described in Rasmussen & Williams [2] and has been implemented in
Scikit-Learn2. For the sake of completeness, we briefly outline the basic principles here,
following [2]. A Gaussian process is completely specified by a mean function, µ(x) and a
covariance function, k(x,x′), where

m(x) = E[f(x)] ; (2.2)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] , (2.3)

where E[X] denotes the expectation value of the random variable X. The mean function is
usually taken to be 0 in the prior after appropriate normalisation of the data. The different
choices for the covariance kernel are (using the notation r = |x− x′|) –

• Radial Basis Function (RBF) or Squared Exponential (SE):

k(x,x′) = exp

(
r2

2l2

)
(2.4)

• Rational Quadratic (RQ):

k(x,x′) =

(
1 +

r2

2αl2

)−α

(2.5)

2https://scikit-learn.org/
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• Isotropic Matérn:

kν(x,x
′) =

21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Kν

(√
2νr

ℓ

)
, (2.6)

kν=2.5(x,x
′) =

(
1 +

√
5r

ℓ
+

5r2

3ℓ2

)
exp

(
−
√
5r

ℓ

)
, (2.7)

where Kν is a modified Bessel function, Γ denotes the gamma function, and α, ν, l are all
hyperparameters specifying the various kernels. The anisotropic variant of any of these
kernels can be obtained by scaling the Euclidean distance between x and x′ differently along
each of the three directions, i.e. by setting

r2(x,x′) :=
(x1 − x′

1)
2

a2
+

(x2 − x′
2)

2

b2
+

(x3 − x′
3)

2

c2
, (2.8)

thus introducing three new hyperparameters a, b, and c. xi is the component of x along the
ith Cartesian axis.

Given a choice of the covariance kernel, let us now briefly outline how GPR makes
predictions. Suppose we are given a set of input points xi and the true function values at
these points fi := f(xi), for i = 1, 2, . . . , n. Let the input vector x be D-dimensional. The
goal of regression using Gaussian Processes is to find a good approximation to the function
value f∗j := f(x∗j) at any set of desired test inputs {x∗j | j = 1, 2, . . . ,m}. In order to do this,
one can utilise the fact that the collection {fi, f∗j | ∀ i, j} constitutes an n+m dimensional
multivariate Gaussian. Let us denote the collection of training inputs {xi | i = 1, 2, . . . , n}
as x, and that of the test inputs {x∗j | j = 1, 2, . . . ,m} as x∗. The corresponding set of
training outputs is f and the set of test outputs, which constitutes what we wish to predict,
is f∗. We can now express the joint Gaussian distribution of f and f∗ as(

f

f∗

)
∼ N (0,Σ) (2.9)

=⇒
(

f

f∗

)
∼ N

(
0,

(
k(x,x) k (x,x∗)

k (x∗,x) k (x∗,x∗)

))
, (2.10)

where the covariance matrix Σ has been expanded to show its four sub-matrices which can

11



be defined element-wise as follows

[k(x,x)]ij = k(xi,xj) (2.11)

[k(x,x∗)]ij = k(xi,x∗j) (2.12)

[k(x∗,x)]ij = k(x∗i,xj) (2.13)

[k(x∗,x∗)]ij = k(x∗i,x∗j) , (2.14)

with the right-hand side of all equations coming from the usual covariance function definition
in equation 2.3. If one samples from a multivariate Gaussian with a mean and covariance
given by the RHS of equation 2.10, it is clear that the result is a set of ‘function values’ at
the input points x and x∗. Sampling repeatedly, we get a family of functions. This means
that the specification of the mean and covariance gives us a distribution over functions,
and since in equation 2.10, no information about the actually observed data outputs f has
been incorporated, it can be thought of as a prior distribution over functions. The only
information used so far is that the set of all function values is jointly Gaussian.

In order to get the posterior distribution of the allowed functions, we can use a straight-
forward property of jointly Gaussian random variables. Suppose a and b are two jointly
Gaussian random vectors of lengths na and nb, respectively. The full multivariate Gaussian
distribution can be expressed as(

a

b

)
∼ N

((
µa

µb

)
,

(
A C

CT B

))
, (2.15)

where A and B denote the covariance of the marginal distributions of a and b, while C

denotes the cross terms (analogous to equations 2.11–2.14). The mean vectors for a and b

are denoted by µa and µb, respectively. Then, the conditional distribution of b given a is
also a Gaussian with mean and variance given by

b|a ∼ N (µb + CTA−1(a− µa), B − CTA−1C) . (2.16)

We can directly apply this formula to get the posterior distribution of the function at the
test inputs, f∗ given all the inputs x, x∗ and the training outputs f . Setting µa = µb = 0,
A = k(x,x), B = k(x∗,x∗), C = k(x,x∗), and CT = k(x∗,x), we finally get

f∗|x∗,x,f ∼ N (k(x∗,x)[k(x,x)]
−1f , k(x∗,x∗)− k(x∗,x)[k(x,x)]

−1k(x,x∗)) . (2.17)
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One can now generate functions from this posterior Gaussian to get the prediction of the
GPR at the test inputs x∗. These predictions are bound to be consistent with the already
specified training data points. An example of three such functions randomly drawn from
both the prior and the posterior distributions is shown in Figure 2.2. As can be observed,
the posterior functions all pass through the data points denoted by ‘+’ and can be rather
unconstrained in regions with a lack of data points.

Figure 2.2: Three functions drawn from (a) the GPR prior (equation 2.10) and (b) posterior
(equation 2.17) distributions. In (a) the blue dots denote the function prediction at discrete test
inputs, which has been connected by a continuous curve in the other cases. In both the panels,
the grey shaded region represents the 2σ (∼ 95%) confidence intervals. ‘+’ is used to denote the
training data points in (b). As we can see, the GPR prediction is quite well-constrained near x = 0,
where there is a relatively high density of data points. Image credits: [2]

We only use the posterior mean value at each test input, which is also the maximum
a posteriori (MAP) estimate, as the prediction of the GPR rather than drawing from the
full Gaussian. For our specific case, we use the anisotropic Matérn kernel with ν = 2.5 as
the covariance function. Training the GPR model then entails learning the values of the
hyperparameters associated with the Matérn kernel given in equation 2.7. While a simpler
linear interpolation scheme can also provide similar results for the current work, we opt for
GPR as our interpolation method due to its relatively better ability to generalise to the
case of a greater number of conditioning variables beyond the dark matter density contrast
δ alone. This constitutes future work and is addressed in chapter 5.

The hyperparameter optimisation is carried out using an anisotropic simulated annealing
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(ASA) procedure, following [63]. As demonstrated in previous studies of reionisation [64, 65],
this method works well for GPR hyperparameter training while preventing issues faced by
some other Scikit-Learn methods of getting stuck at a local minimum of the cost function
where the corresponding GPR is suboptimal in performance. We briefly outline the details
of the algorithm for completeness. First, the data is divided into two parts – one for training
and another for validation. Once the training data is specified, the ASA procedure involves
evaluating the log marginal likelihood using algorithm 2.1 of [2] over a region with sparsely
distributed values in hyperparameter space, which is then iteratively refined to zoom-in on
the region of hyper-likelihood maximum (or equivalently, the cost function minimum).

The hyperparameter vector h that minimises the cost function is then used to make
predictions on the validation data, again following algorithm 2.1 of [2] as implemented in
Scikit-Learn. A convergence criterion is defined by requiring the magnitude of the 1st and
99th percentiles of α̂−α to be less than a threshold set by the user, called cv_thresh (here
α̂ is the predicted value of the function and α is the true value at the same input). If the
convergence criterion is not satisfied, the entire process repeats with a training data larger
in size by 10%, and this cycle continues until the maximum number of iterations or ≥ 80%
of the full data is used for training. cv_thresh is usually taken to be around 0.015 in our
case.

Once the training is complete, we have a properly trained interpolator function at our
disposal, that can be used to sample the values of the function α̂ at any desired input. We
use the GPR training to emulate the CDF(fcoll|δ) as obtained in the previous subsection,
viewed as a function of fcoll and δ, thereby setting α = the CDF value. For most cases, the
training ends within ∼ 10 minutes on 4 CPU cores and uses around 10-15% of the full data
for training.

2.2.3 Sampling

Our idea is to be able to recover the fcoll field of RB by a combination of information from
SB and LB. We have used SB for obtaining the conditional means and the conditional CDFs
to train the GPR, and we now use the δ values from the LB as the corresponding input to
make the fcoll predictions.

For a given input δ0 from the LB, we return (a) the conditional mean ⟨fcoll|δm⟩ for the
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deterministic case, where δm is the middle value of the bin that contains δ0 and (b) an
fcoll value randomly drawn from the emulated ĈDF(fcoll|δ0) for the stochastic case. We use
inverse transform sampling for this case where we draw a random number between 0 and
1 and return the smallest fcoll at which ĈDF(fcoll|δ0) equals the random number. We can
see that the latter method naturally accounts for scatter in the fcoll predictions for a fixed
δ while the former does not. This sampling is done on a cell-by-cell basis, to produce a
prediction of fcoll for each cell based on its δ value in LB.

2.3 Semi-Analytic Predictions for Collapse Fraction

An important problem in cosmology is to predict the abundance and spatial distribution
of gravitationally bound dark matter haloes using the statistics of the initial dark matter
density field. This is particularly important in the context of studying reionisation, since the
sources of ionising photons sit within dark matter haloes and therefore the abundance and
distribution of these objects as a function of their mass must be known. A widely used frame-
work for this is the excursion set approach applied to the Press-Schechter (PS) formalism
[33, 46]. This approach considers the dark matter overdensity field δR(x), smoothed on some
scale R, and compares it with a collapse threshold δc motivated by the spherical collapse
model to determine which regions will form haloes. This is done for successively smaller
smoothing scales R and results in a random walk of δR, and the probability of crossing the
constant barrier δc at some radius R can then be computed for a region with a prescribed
overdensity δ0 at a scale R0. In this way, one can express the conditional collapse fraction
of a region parametrised by an overdensity δ0 and a radius R0 as

fcoll(> Mmin) = erfc

(
δc − δ0√

2(σ2(Mmin)− σ2(M0))

)
, (2.18)

where Mmin is the minimum halo mass considered for computing the collapse fraction,
and σ2(M) or σ2(R) denotes the variance in the overdensity field when smoothed over a scale
enclosing mass M . For a spherical top-hat filter in real space, the relation between M and

the smoothing scale R is simply M =
4

3
πR3ρ̄, where ρ̄ is the mean density of the universe.

This quantity can be related to the linear matter power spectrum Plin(k) and the Fourier
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transform of the smoothing kernel W (k;R) as [66]

σ2(R) =

∫
k3

2π2
Plin(k)|W (k;R)|2 d ln k . (2.19)

While the Press-Schechter formalism provided a decent match to N-body simulations
initially, as their resolution improved, it was found that it underestimates the abundance of
high-mass halos (M ≳ 1010 h−1M⊙ at z = 7) and overpredicts the abundance at low masses
(M ≲ 108 h−1M⊙). Therefore, an improved model was suggested by Sheth and Tormen
[47, 48] based on the physics of ellipsoidal collapse, which led to a moving barrier for the
excursion sets unlike the fixed δc of Press-Schechter theory. This moving barrier represents
a function of the variance sM := σ2(M) which is given at a redshift z by

B(s, z) =
√
aδc(z)

(
1 +

β

(aν)α

)
, (2.20)

where δc(z) =
1.686
D(z)

is the critical overdensity at z, ν := δ2c (z)
s

, and a, α, β are parameters
whose best-fit values are found by matching with N-body simulations. Given this, the
conditional Sheth-Tormen (ST) collapse fraction can be computed as

fcoll(> Mmin) =

∫ smin

scell

f(s | scell, δL,0) ds , (2.21)

where f(s | scell, δL,0) =
1√
2π

|T (s | scell )|
(s− scell )

3/2
exp

[
− [B(s)− δL,0]

2

2 (s− scell )

]
(2.22)

and T (s | scell ) =
5∑

n=0

(scell − s)n

n!

∂n [B(s)− δL,0]

∂sn
. (2.23)

Here δL,0 is the initial overdensity linearly extrapolated to the present day (z = 0). The
values of the parameters appearing in equation 2.20 that provide the best fit to the global
halo mass function obtained from an N-body simulation at high redshifts ranging between
6–15 (relevant to reionisation) are a = 0.67, α = 0.7, β = 0.4.

We use script’s implementation based on equations 2.21–2.23 to obtain the conditional
ST collapse fraction given the density field from the LB as an input (for more details on
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script, refer to the next section). The code requires a smoothing scale (∆x) to be provided,
based on which it calculates the fcoll values for a set of non-linear overdensity values δNL.
This involves using the spherical collapse approximation to compute the linear overdensities
δL from the δNL values [67], since it is required by equations 2.21–2.23. In the next step,
these (δNL, fcoll) pairs are used to set up a spline interpolation, which shall then be used to
compute the conditional ST fcoll for each of the δNL values in the cells of LB. We used a
similar implementation for obtaining the conditional PS fcoll as well, based on equation 2.18.

It turns out that for sufficiently low δNL and ∆x, a region ends up having its mass
M0 < Mmin which implies σ2(Mmin) < σ2(M0), leading to a negative value inside the square
root in the erfc function in equation 2.18. This breaks the spline interpolation and causes it
to return only nan fcoll for all δNL. But physically, regions with M0 < Mmin should have an
fcoll = 0. If this condition is enforced, the interpolation works but still suffers from numerical
errors which cause some fcoll values to become negative (with a very small magnitude) instead
of 0. One can manually set these fcoll values to 0 in order to compare the performance of
conditional PS at such fine resolutions. Similarly, one must properly account for such cases
in the conditional ST code as well, where numerical errors during interpolation cause small
negative fcoll values to appear, and the interpolation breaks if one does not set these to 0
at the appropriate place. For the set of δNL values chosen for making the interpolator, this
issue arises at resolutions finer than or equal to ∆x = 0.5 h−1Mpc .

Apart from the issue of numerical errors due to interpolation, the non-linear to linear
density mapping as predicted by the spherical collapse model becomes increasingly inac-
curate as one goes to finer resolutions. In this regime, tidal effects play a significant role
in influencing the collapse in high-density environments and spherical symmetry cannot be
assumed. This is a limitation of the semi-analytical prescriptions which our GPR model is
not subject to, and can thus provide a more accurate way of predicting the fcoll distribution
and the subsequent HI maps.

2.4 Semi-Numerical Code for Reionisation: script

Solving the radiative transfer equations for each cell in a simulation while simultaneously
taking into account the coupling between different cells becomes computationally quite ex-
pensive, making full RT simulations a rather ineffective way to forward model observables
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related to the EoR. Therefore, semi-numerical models of reionisation have become a popular
alternative and offer a much faster and resource-efficient way of generating the distribution
of ionised bubbles. Widely employed among these models is the excursion-set approach for
identifying ionised bubbles around collapsed dark matter haloes, similar to the one used by
Bond et al. for formulating the halo mass function [33].

The simple physical argument at the core of all of these excursion-set based models of
reionisation involves declaring a region as ionised if the number of ionising photons in it
exceeds the number of atomic hydrogen. We define the reionisation efficiency parameter
ζ(M) as the number of ionising photons available per hydrogen in a dark matter halo of
mass M . Therefore, a halo of mass M produces Np(M) many ionising photons given by

Np(M) = ζ(M) · (number of hydrogen atoms in halo) (2.24)

= ζ(M) · (mass of hydrogen in halo)
mp

(2.25)

= ζ(M) · (total mass in halo)
mp

· Ωb

Ωm

(1− Y ) (2.26)

= ζ(M)
M

mp

Ωb

Ωm

(1− Y ) . (2.27)

where Ωb and Ωm are the density parameters for baryons and all matter, respectively, mp is
the mass of the proton, and Y is the mass fraction of Helium. Now, consider an arbitrary
region containing dark matter haloes of masses M1,M2, . . . ,Mn. The total number of ionising
photons produced in this region can be obtained by summing over equation 2.27 for all the
haloes,

∑
i∈haloes

Np(Mi) =
∑

i∈haloes

ζ(M)
M

mp

Ωb

Ωm

(1− Y ) (2.28)

=
Ωb

Ωm

(1− Y )

mp

∑
i∈haloes

Mζ(M) (2.29)

=
Ωb

Ωm

(1− Y )

mp

ζ ΣiMi, (2.30)

where we have assumed mass-independence of the parameter ζ for simplicity. ΣiMi denotes
the mass contained in all the haloes of the region. Now let us write an expression for the
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number of hydrogen NH in the region. If the mass of hydrogen in the region is MH ,

NH =
MH

mp

(2.31)

=
Mtot

mp

Ωb

Ωm

(1− Y ) , (2.32)

where Mtot is the total mass contained in the region. Imposing the condition for the region
being ionised and substituting the relevant expressions from 2.30 and 2.32,∑

i∈haloes

Np(Mi) ≥ NH (2.33)

Ωb

Ωm

(1− Y )

mp

ζ ΣiMi ≥
Mtot

mp

Ωb

Ωm

(1− Y ) (2.34)

ζ
ΣiMi

Mtot
≥ 1 . (2.35)

Defining the collapse fraction fcoll for a region as the ratio of its mass in haloes to its total
mass, fcoll =

ΣiMi

Mtot
, we arrive at the condition for flagging a region as ionised,

ζfcoll ≥ 1 (2.36)

In practice, one computes the fcoll values not for arbitrary regions of space, but as a
field over a grid with a specified resolution (∆x) over which the non-linear dark-matter
density contrast field δ(x) is also defined. Therefore, in standard excursion set-based (ES)
semi-numerical models, the above condition takes the following form

ζfcoll(x, R) ≥ 1 , (2.37)

where fcoll(x, R) refers to the fcoll field averaged over a spherical region of radius R, fcoll(x, R) =

⟨fcoll(x)(1+ δNL(x)⟩R. This spherical region could be defined as a sphere of radius R in posi-
tion space (known as a spherical top-hat filter) or in momentum space (known as a sharp-k
filter). If the above condition is satisfied for any value of R centered around x, the grid cell
at that location is considered ionised with an ionisation fraction xHII(x) = 1 assigned to that
cell. Alternatively, some implementations flag the entire region of radius R as ionised if the
condition is satisfied [35]. In case the condition is not satisfied, the partially ionised cell is
assigned an xHII(x) = ζfcoll(x), where the fcoll value used is the one evaluated at that cell
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only (without any averaging with others).

One would expect that in the absence of recombinations, the number of ionising pho-
tons and the number of ionised hydrogen match. This can be quantified by comparing the
mass-averaged global ionised fraction QM

HII = ⟨xHII(x)(1 + δ(x))⟩ with the global average
⟨ζfcoll(x)(1+ δ(x))⟩. It turns out that the prescriptions of assigning ionised fractions to cells
as discussed above end up violating this condition of photon number conservation [68]. This
leads to a more drastic problem of the large-scale power spectrum of the HI density field
becoming dependent on the resolution of the grid ∆x used to generate the fcoll and density
fields. This in turn poses an issue for accurately modelling the 21 cm power spectrum at the
level of precision expected from upcoming observational projects such as the SKA [40].

The Semi-numerical Code for ReIonisation with PhoTon-conservation (script)3 [40]
offers a solution to this problem by evaluating the distribution of ionised regions through
an explicitly photon-conserving algorithm in two rounds. Firstly, the number of ionising
photons generated by sources within a cell at x is computed as

Nγ(x) = ζfcoll(x)[1 + δ(x)]n̄H , (2.38)

where n̄H is the mean hydrogen number density. If ζfcoll(x) is greater than 1, then there is
an excess of ionising photons in this region which gets isotropically distributed to the nearest
cells, with the cell at x′ consuming [1 + δ(x′)]n̄H of these photons. If Nγ(x) is sufficient to
ionise all of these cells, they are given an ionised fraction of 1 and the process repeats until
there are insufficient photons to fully ionise a set of nearest cells. In this case, the photons
are equally distributed among all such cells and they acquire an ionised fraction less than 1
at the end of the first round. This process is done independently centered on all cells, and
may lead to overionised cells with xHII > 1.

In the second round, these overionised cells are treated as secondary sources and their
excess photons given by N

(2)
γ (x) = [xHII(x) − 1][1 + δ(x)]n̄H are distributed to the nearest

underionised cells with ζfcoll(x) < 1 in a similar isotropic manner as described before. The
nearest overionised cells from the first round are left unchanged. This process is similarly
repeated for all overionised cells until none remain. This algorithm is manifestly photon
conserving since it always uses all the photons produced by all the sources to ionise the
hydrogen. A small difference between other ES-based models and script is that a partially

3https://bitbucket.org/rctirthankar/script
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ionised cell at x in the former will always have a value of ionisation fraction equal to ζfcoll(x),
whereas in the latter it can be exceeded due to extra contribution from secondary ionising
sources (the overionised cells).

As a result, script can be used to produce HI maps during reionisation that have a large-
scale power spectrum that is properly converged with respect to the grid resolution of the fcoll

and density fields [40]. In this work, we will use script as our model of reionisation to obtain
the HI and HII maps from the fcoll field supplied using various methods (semi-analytical or
simulation-based). We assume a constant ζ value throughout, which corresponds to an
ionising emissivity for dark matter haloes that is proportional to their mass.

21



22



Chapter 3

Results

In this chapter, we benchmark the various fcoll predictions against the ground truth taken
from the RB. Our primary interest lies in modelling the neutral hydrogen density field
during the Epoch of Reionisation (EoR), and we obtain this from the collapse fraction field
by using Semi-numerical Code for ReIonisation with PhoTon-conservation (script)1 [40].
The section is divided into two parts - Fiducial, where we discuss the fcoll and script

results corresponding to the fiducial choice of parameters and Variation, where we compare
the script results for the semi-analytical methods and extend them to variations in the
parameters.

3.1 Fiducial

3.1.1 Collapse Fraction

We consider our fiducial case to have redshift z = 7, grid size ∆x = 0.5 h−1Mpc , and
minimum halo mass Mh,min = 4.08× 108 h−1M⊙ (corresponding to 10 particles per halo for
the SB and RB). Henceforth, we shall use the notation ∆ ≡ 1 + δ. We first look at the
results of GPR training, by comparing the emulated and training CDFs as a function of fcoll

conditioned on 10 different ∆ values, as shown in Figure 3.1a. It can be seen that both the

1https://bitbucket.org/rctirthankar/script
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Figure 3.1: (a) Comparison between the true CDF from the training data and the interpolator’s
prediction, shown at 10 different ∆ values. The relative error occasionally blows up due to the small
values of the CDFs, (b) Comparison of the joint distribution of fcoll and ∆. The 10, 40, 70 and 95
percentile contours are shown and the blue region demarcates the fcoll less than the first bin edge
defined during the fcoll binning. The conditional means calculated in the deterministic case for each
delta bin are also shown using black horizontal lines. This shows that over most of the fcoll and ∆
range, our interpolator recovers the true distribution to a high accuracy.

training and prediction CDF become noisy at very high ∆, due to a smaller number of fcoll

values.

The recovery of the joint distribution of non-zero fcoll values and their corresponding
∆ is shown in Figure 3.1b. While the contours are very similar between truth and prediction
at intermediate to high fcoll and ∆, the very low fcoll values are not recovered as well. We
understand this to be a limitation of the way we set up the training data for the GPR, where
the smallest value of the training CDF that is fed into the GPR is CDF(fcoll = 0.002). The
region below fcoll = 0.002 is shaded in blue. The interpolator ends up overestimating the
CDF at fcoll below this threshold and that leads to an oversampling of fcoll = 0 values, and
consequently an undersampling of very low fcoll ≲ 10−3. Attempting to fix this problem by
incorporating CDF(fcoll = 0) during the training does not provide any significant improve-
ment over our current choice for the joint distribution or the rest of our results. In Figure
3.1b, we have also shown the ⟨fcoll|δ⟩ values for various δ bins using short horizontal black
lines. The variable length of the horizontal line reflects the variable bin widths in δ. We
distinguish between the collapse fraction fcoll computed from equation 2.1 (constrained to
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be between 0 and 1) and the mass-averaged collapse fraction fM
coll(x) ≡ fcoll(x)(1 + δ(x)),

where as usual, for the predicted (true) fM
coll the δ is taken to be from the LB (RB). We use

the following expressions to compute the auto power spectrum of a field g(x), denoted by
Pg(k), and its cross power spectrum with another field h(x), denoted by Pgh(k):

⟨g(k)g∗(k′)⟩
ḡ2

= (2π)3Pg(k)δD(k− k′) , (3.1)

⟨g(k)h∗(k′)⟩
ḡh̄

= (2π)3Pgh(k)δD(k− k′) , (3.2)

where g(k) and ḡ are, respectively, the Fourier conjugate and mean of g(x), δD denotes
the Dirac delta function, an asterisk denotes complex conjugation and the angular brackets
represent an average over Fourier space such that |k| = k.

We compute the auto and cross power spectra by setting g = fM
coll and h = ∆ respectively

in the above, for both the deterministic and stochastic cases, and compare them with the
truth in Figure 3.2. The agreement between the auto power spectra is within 5% for k ≲ 2

hMpc−1, and at the smallest scales stays within 10% for the stochastic case whereas for
the deterministic case it worsens to slightly below −10%. This implies that there is some
extra small-scale power in the stochastic fcoll field, and this difference will become more stark
once we go to the HI density field in 3.1.2. The cross-power spectrum is recovered better
as expected, with sub-2% errors for most of the k range and only becoming ∼ 5% at the
smallest scales. We can see that the level of agreement is very similar between the stochastic
and deterministic cases.

If we take a closer look at Figure 3.2a, the error in the large-scale power is mostly constant
for k ≤ 0.7 hMpc−1. Moreover, this error arises predominantly due to the error in the mean
of fM

coll between the truth and predictions. This implies a good agreement (< 1%) at large-
scales between the un-normalised power spectra, computed by dropping the ḡ2 in the auto
power as defined in equation 3.1. We address this issue in Appendix C.

3.1.2 Hydrogen Density Fields

As mentioned earlier, we use script to model the HI and HII fields relevant to EoR. script

constructs ionised bubbles around sources by allowing regions to receive photons from mul-
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Figure 3.2: Comparison of (a) fM
coll-f

M
coll auto and (b) fM

coll-∆ cross power spectra, between truth
and predictions using the deterministic and stochastic cases. The two cases behave similarly for
most of the k range, with the stochastic case having slightly more power at the smallest scales, and
this effect gets amplified in the corresponding HI maps (see Figure 3.4).

tiple sources and possibly get ‘overionised’ with an ionisation fraction greater than 1. These
excess photons are then distributed in the nearby cells causing them to become ionised,
until the ionisation levels of all overionised cells have been properly adjusted. In this man-
ner, script incorporates photon conservation explicitly and hence achieves a large-scale
HI power spectrum that is converged with respect to the spatial resolution of the fcoll and
density fields.

The code requires fcoll(x) at the desired redshift, along with the reionisation efficiency
parameter ζ as the primary inputs. ζ gives the number of ionising photons in the inter-
galactic medium per hydrogen in dark matter haloes. The output is an ionisation (HII)
fraction field xHII(x), which can then be used to get an HI fraction field, xHI(x) = 1−xHII(x).
Upon mass-averaging these, we get the HII and HI density fields upto normalisation:

xM
HI(x) = xHI(x)(1 + δ(x)) ∝ ρHI(x) ; (3.3)

xM
HII(x) = xHII(x)(1 + δ(x)) ∝ ρHII(x) . (3.4)

We use the stochastic, deterministic and true collapse fraction fields as the input to
script and generate the HI and HII maps. We assume a constant ionising efficiency ζ
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and calibrate it for all the three cases separately such that the global ionisation fraction,
QM

HII ≡ ⟨xM
HII(x)⟩ is 0.5 (this is our fiducial setting). A comparison of the HI density field

xM
HI(x), at a slice through z = 50 h−1Mpc is then shown in Figure 3.3. We also compute

statistics such as the auto and cross (with ∆) power spectra of the HII and HI density fields,
computed as given in equation 3.1. The comparison between the deterministic, stochastic
and true cases for the fiducial QM

HII = 0.5 can be seen in Figure 3.4.

For the HI auto power spectrum, it is clear that the error in the recovery of large-scale
power (k ≲ 1 hMpc−1) is similar between the deterministic and stochastic cases, with both
being around 10% in magnitude. Interestingly, at the smallest scales, the deterministic case
underestimates the power with a large error of around 35 − 40% whereas the stochastic
case has a better agreement of around 20 − 25%. For the HII auto power, the recovery is
more consistent between the two cases, being well within 10% for the entire k range. This
highlights the crucial role played by stochasticity in correctly predicting specifically the HI
map during reionisation, and we discuss this further in section 4.
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Figure 3.3: The neutral HI density field at QM
HII = 0.5 in the ground truth (top panel), as recovered

by our ML interpolator (stochastic, middle panel), and as recovered using the conditional means
(deterministic, bottom panel) at a slice through z = 50 h−1Mpc . The black regions are the
ionised bubbles. The deterministic case washes out small-scale HI fluctuations to a large extent.
The stochastic case recovers them better, but with some inaccuracy in the small-scale HI density
correlations (refer to chapter 4 for a detailed discussion).
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Figure 3.4: (a) HI-HI, (b) HII-HII power spectra for truth and predictions using the stochastic and
deterministic cases (QM

HII = 0.5). In (a), while the large-scale power is recovered similarly across
both cases, the stochastic case has a better accuracy at small scales. This highlights the importance
of scatter in fcoll around the mean in contributing to the HI density fluctuations at small scales.

3.2 Variation

3.2.1 Semi-Analytical Methods

The extended Press-Schechter formalism [33, 46] calculates the conditional mass function
of dark matter haloes by using an excursion set approach for identifying gravitationally
collapsed regions, with a constant barrier given by the threshold linear density for spherical
collapse δc. A better match to N-body simulations is provided by the conditional mass
function calculated by Sheth & Tormen [47, 48] by accounting for ellipsoidal collapse. This
leads to a barrier definition that depends on the variance of the smoothed density field at
the scale under consideration. Both of these semi-analytical methods have been commonly
used in semi-numerical models of reionisation [35, 38, 69] to prescribe the fcoll(x) field, given
the underlying density field. It is also important to note that the resultant fcoll(x|R, δ0) is
obtained using a deterministic formula in the smoothing scale R and the overdensity of the
region δ0. This leads to an fcoll field prediction analogous to our deterministic case where the
scatter around the fcoll values due to varying environmental features beyond δ is neglected.
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We aim to use the density field of the LB as an input to obtain the conditional PS and ST
collapse fraction fields and compare the results with our stochastic and deterministic cases. It
turns out that when the conditional ST and PS fcoll fields are evaluated at ∆x = 0.5 h−1Mpc,
some fcoll values that should be 0 instead take on small negative values due to numerical
errors in the interpolation between the input δ and the semi-analytical fcoll. This problem
does not arise in the ∆x = 1 h−1Mpc case, and hence we use that as our primary comparison
between the semi-analytical, stochastic and deterministic cases.

Therefore, keeping all the other parameters (QM
HII, z, Mh,min) fixed at the fiducial, we

vary ∆x to 1 h−1Mpc and rerun all the cases. To get the conditional PS and ST results, we
use the density field from the LB as the input. The resulting fM

coll power spectra comparison
is shown in Figure 3.5.
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Figure 3.5: Comparison of (a) fM
coll-f

M
coll auto and (b) fM

coll-∆ cross power spectra, between truth,
stochastic, deterministic and the semi-analytical predictions. The semi-analytical cases show a
greater error in the large-scale fM

coll power as well as in the global fM
coll mean (see Appendix C).

We can clearly observe that both the methods that use the simulations to generate fcoll

values (stochastic and deterministic) perform better in recovering the power than the semi-
analytical prescriptions, except at very small scales. Proceeding to the HI and HII density
fields and computing their power spectra, we compare the results in Figure 3.6. At least
for the HI density field, the power at the largest and the smallest scales has a significantly
greater error as compared to the stochastic case. Even upon making these comparisons
for the ∆x = 0.5 h−1Mpc case by setting the small negative fcoll values to 0, we find a
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similar improvement in accuracy over the semi-analytical methods. This demonstrates the
effectiveness of our method at such small scales where tidal effects become important, and
the spherical collapse model used by the semi-analytical prescriptions to get the mapping
between non-linear and linear density fields is inaccurate.
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Figure 3.6: Comparison of HI-HI (left), HII-HII (right) power spectra between truth, stochastic,
deterministic and the semi-analytical predictions at QM

HII = 0.5. The stochastic and deterministic
methods present a huge improvement over the semi-analytical cases in recovering the large-scale
HI power, adding to their pre-existing advantage of being more viable at scales finer than ∆x =
1 h−1Mpc.

We now settle on the stochastic case and investigate the robustness of the method, in
particular the script results, against a variation of the involved parameters. Hereafter, the
‘Predicted’ label on the plots refers to the stochastic case. We perform convergence tests
with respect to simulation box parameters such as grid size on the one hand, and physical
parameters such as ionised fraction, redshift and minimum halo mass on the other.

3.2.2 Ionisation Fraction

The fraction of ionised hydrogen QM
HII in the whole box is controlled by the ionising efficiency

ζ. This is a crucial quantity that directly controls the size of the ionised bubbles and, hence,
the evolution of the IGM during reionisation. It is commonly treated as a free parameter in
studies of reionisation, and therefore, it is important for our method to work well for a range
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of ζ values. So far, we have used a ζ for the stochastic case which gives QM
HII = 0.5, and this

value comes out to be ∼ 10.8. We now change QM
HII to 0.25 and 0.75, keeping everything

else the same (Mh, min = 4.08× 108 h−1M⊙,∆x = 0.5 h−1Mpc, z = 7). Figure 3.7 shows the
results for the auto and cross power spectra of the HI and HII density fields.

As seen before, the large-scale HI auto power is recovered at the ∼ 10% level for the
QM

HII = 0.5 case, down to k ∼ 1.5 hMpc−1. The QM
HII = 0.75 case is even better, with a

5% error over a similar k range. The HI cross power is also similar, with sub-5% errors
initially that increase to around 10% by k ∼ 1.5 hMpc−1. The ionisation field auto and
cross are recovered much better, with at least a fidelity of ∼ 5% down to k ∼ 2 hMpc−1,
regardless of the QM

HII value. We see relatively larger errors in the QM
HII = 0.25 case and at

small scales (k ≳ 2 hMpc−1) even for other ionised fractions, at least in the HI results. The
relatively greater disagreement for QM

HII = 0.25 at large-scales is related to the behaviour of
the large-scale HI bias (defined below) in the truth at ionisation fractions close to 0.25, and
is described in chapter 4.

We then proceed to calculate the HI (HII) bias denoted by bHI (bHII) and given by the
expressions

b2HI(k) =
PHI(k)

Pm(k)
; b2HII(k) =

PHII(k)

Pm(k)
, (3.5)

where PHI(k) (PHII(k)) is the HI (HII) auto power spectrum and Pm(k) is the matter power
spectrum, both computed using equation 3.1. We compute the HI and HII bias only at
three different low k values, and study their variation as a function of the global ionised
fraction QM

HII in Figure 3.8. In the HII bias plot, we have also plotted the fcoll bias (which is
independent of QM

HII by construction). One can observe the HII bias to be clearly approaching
the fcoll bias, at sufficiently low QM

HII [40]. We can also see that for higher k, the deviation
from the fcoll bias happens for a lower value of QM

HII.

3.2.3 Redshift

The redshift z directly affects structure formation, with an increasing number of collapsed
haloes forming at lower redshifts. This changes the distribution and abundance of the sources
of ionising photons, leading to different ionised bubble topologies for a given QM

HII. Therefore,
if we wish to use our emulator for studying the redshift evolution of the HI density field,
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we must ensure that it is accurate for multiple redshifts. We vary the redshift to two other
values z = 5 and z = 9, while keeping a fixed QM

HII = 0.5 and ∆x = 0.5h−1Mpc. The effects
on the HI and HII power spectra are captured in Figure 3.9. For the HI field, the agreement
remains within around 10%, at least upto k ∼ 1 hMpc−1. The overall trend is similar across
redshifts, with small scales around k ∼ 3 hMpc−1 showing a significant dip in the power.
The HII results are a lot better with the errors not exceeding 5% for almost the entire k

range.

3.2.4 Minimum Halo Mass

The calculation of fcoll at each cell assumes a halo mass cutoff Mh, min, and this corresponds to
the lowest mass haloes that are capable of producing ionising photons through the formation
of luminous objects such as stars or galaxies. For haloes where cooling of the infalling
baryonic matter is governed by radiation through atomic transition lines, Mh, min is around
108 h−1M⊙ [4]. Changing Mh, min can significantly alter the ionising photon budget and
hence the distribution of ionised bubbles, since the low-mass haloes are more abundant than
very high-mass ones.

Since different reionisation models may assume different values of Mh, min, we now vary it
by varying the minimum number of particles used by the FoF group finder for identifying a
halo from the default 10 to 40 and 80, while fixing z = 7, QM

HII = 0.5 and ∆x = 0.5h−1Mpc.
This changes Mh,min from 4.08×108 h−1M⊙ to 1.63×109 h−1M⊙ and 3.26×109 h−1M⊙ re-
spectively, and the corresponding results are shown in Figure 3.10. We see ∼ 12% error at
the largest scales in the HI results, that falls and stays within 10% till k ∼ 1 hMpc−1, and
the HII power spectra remain within 7-8% for almost the entire k range.

3.2.5 Grid Resolution

The grid size used for CIC-smoothing the density and fcoll fields, ∆x, determines the res-
olution at which the sources are identified and impacts the distribution of ionised regions.
Rather than a physically interpretable parameter, this is a choice that one must make in order
to construct the density field from the simulation box and make fcoll predictions. Therefore,
we check our model’s sensitivity to it by varying it from the fiducial value of ∆x = 0.5
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h−1Mpc to two other values, ∆x = 0.25 h−1Mpc and ∆x = 1 h−1Mpc while keeping a fixed
z = 7 and QM

HII = 0.5, with the results shown in Figure 3.11.

The ∆x = 0.25 case suffers larger errors for the HI power spectra, but the other two cases
have similar ≲ 10% agreements at large scales below k = 1 hMpc−1. However, achieving
results corresponding to ∆x = 0.25 h−1Mpc is simply not possible using the conditional PS
and ST prescriptions without resorting to ad hoc assumptions, such as setting negative fcoll

values to zero. Our interpolator enables this and represents a significant improvement over
the current state of the art. The HII results are again a lot more robust, always performing
better than 10% across all k.
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Figure 3.7: HI-HI (top left), HII-HII (top right), HI-(1 + δ) (bottom left), HII-(1 + δ) (bottom
right) power spectra for truth and prediction (always stochastic hereafter), for different values of
the global ionisation fraction QM

HII = 0.25, 0.5, 0.75. This demonstrates the validity of our method
across different ionised fractions. The relatively large errors in the case of QM

HII = 0.25 are discussed
in chapter 4.
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Figure 3.8: Comparison between truth and prediction of (a) HI bias, (b) HII bias evaluated for
three different low k values as a function of the ionised fraction. In the right panel, the three sets of
grey horizontal lines represent the fcoll bias for each of the three k values. The HII bias approaches
the fcoll bias at large scales during sufficiently early stages of reionisation, and this can be used to
study the large-scale HI bias error at QM

HII = 0.25 (see chapter 4).
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Figure 3.9: HI-HI (left panel), HII-HII (right panel) power spectra for truth and prediction, for
three different values of redshift at fixed ionisation fraction QM

HII = 0.5. This shows the robustness
of our method for variations in redshift, which can be important in using it to study the redshift
evolution of reionisation.
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Figure 3.10: HI-HI (left panel) and HII-HII (right panel) power spectra for truth and prediction,
for three different values of minimum halo mass Mh,min at fixed ionisation fraction QM

HII = 0.5 and
grid size ∆x = 0.5 h−1Mpc . This shows that our method works with a similar fidelity for a range
of Mh,min, and hence for different choices of the minimum number of particles used for identifying
the FoF haloes.
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Figure 3.11: HI-HI (left panel) and HII-HII (right panel) power spectra for truth and prediction, for
three different values of grid size ∆x used for getting the density and fcoll fields, at fixed ionisation
fraction QM

HII = 0.5. Each case has been plotted upto its Nyquist frequency. This shows the
robustness of our method against the choice of grid size.
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Chapter 4

Discussion

Our interpolator draws fcoll values for cells taking only their density information into account.
This means that the correlation between sampled fcoll values across different cells is controlled
purely by the correlation between the density values conditioning the CDFs from which these
fcoll values are sampled. We expect other environmental factors to play a role in the true fcoll

correlation as well, but these effects are randomised across all cells by our interpolator via
picking a uniform random number between 0 and 1 for inverse CDF sampling. A comparison
of the recovery of fcoll features by our interpolator at different scales, then, is a way of testing
the sensitivity of halo formation on the cosmological environment at these scales.

As it turns out, conditioning the fcoll CDFs on the density field allows a reasonable recov-
ery of the large-scale structure of the fcoll field and consequently, the HI density map. This
can be confirmed visually from the full maps in the left part of Figure 3.3 and quantitatively
through the power spectra at low k in Figure 3.2 for the fcoll field and Figure 3.4 for the
HI and HII density fields. Moreover, this large-scale recovery is very similar between the
stochastic and deterministic cases, with the latter being marginally better. Therefore, the
stochastic variations in the fcoll field for a fixed matter density δ, which are precisely due to
the effect of other environment variables, do not affect the large-scale distribution of collapse
fractions and hence the ionisation bubbles within our tolerance.

However, the fcoll value in a particular cell is more strongly influenced by the neighboring
density modes than density fluctuations on larger scales (say, over tens of cells). This makes
the small-scale distribution of fcoll values quite sensitive to the immediate environment and
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not just the δ value of their parent cell. Consequently, these environmental factors become
more important in dictating the small-scale power of the HI density fields. If we focus
on the HI density maps in Figure 3.3, the deterministic case completely ignores stochastic
fluctuations in the fcoll field and ends up producing a relatively smooth HI field outside the
ionisation bubbles. When we move to the stochastic case, we transition from this underlying
smooth, mean-only fcoll field to one that has scatter around the mean fcoll incorporated into
it. Apart from the correlations introduced due to the δ values, this scatter is uncorrelated
cell-wise and leads to an effect similar to adding shot noise over the deterministic fcoll and
hence the HI map. This explains the increase in small-scale HI power in the stochastic
prediction above the deterministic case (k ≳ 2 in Figure 3.4a). This can also be seen,
although to a lesser extent, in the fM

coll auto power spectra at the highest k in Figure 3.2a.

The true case accounts for the effect of stochasticity in the correct way, increasing fluc-
tuations in the field but doing so in a way consistent with the full information contained in
the environment. One can view the fcoll value at a cell as having been sampled from a Dirac
delta distribution of fcoll conditioned on all the cosmological environment variables that it
depends on in principle, denoted by (δ, α1, α2, . . . ), where δ is the dark matter overdensity
as usual. All of these variables have some particular value at the cell, which dictates the
fcoll value. In our stochastic sampling, we are only bothering about the δ value and then
uniformly sampling from the distribution conditioned only on δ. This essentially amounts to
assigning a ‘wrong’ fcoll that is actually associated with the variables (δ, α′

1, α
′
2, . . . ), which

are found in some other cell. In this sense, our sampling redistributes the fcoll values from
their true spatial distribution, and does so in a randomised manner, washing over structure
and its correct spatial correlations at small-scales. The misplaced fcoll values sampled this
way that are high enough to cross the excursion-set barrier cause the corresponding cells to
get flagged as ionised. This leads to the same effect in the HI density field (see the rela-
tively more scattered and uncorrelated tiny bubbles in the middle panel of Figure 3.3) and
thus decreases the small-scale power in the stochastic prediction as compared to the truth
(Figure 3.4a). On the other hand, ignoring stochasticity turns out to be detrimental to the
small-scale HI power of the deterministic case, leading to large errors. While our middle
ground is far from the truth, it is still better at recovering the small-scale HI power than the
deterministic case.

It is then also interesting to note the behaviour of the ionised field. Not only do the
stochastic and deterministic cases recover the HII power spectra almost equally well (right
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panel of Figure 3.4), the errors are significantly lesser as compared to the HI power spectra
(compare left and right panels of Figure 3.7). This can be understood if we look at the HII
density map in Figure 4.1. The spurious tiny ionised bubbles are present here as well, but
the difference is that the dominant contribution to power at all scales comes from the much
stronger density field fluctuations present inside the ionised regions (note that these regions
trace the density field since the ionised fraction xHII(x) there is identically 1). In the case
of the HI density field, these regions were masked out and the power spectrum contained
complementary information regarding the distribution of less prominent ionised bubbles.
These tiny, spurious ionised bubbles are random fluctuations that contribute in tandem
to decreasing the power at small scales, but average out when large scales are considered,
thereby not contributing much to the large-scale power.
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Figure 4.1: The ionised HII density field at QM
HII = 0.5 in the ground truth (left), as recovered by

the stochastic (middle) and deterministic (right) case at a slice through z = 50 h−1Mpc . The black
regions contain neutral hydrogen. The low density regions are masked out and their contribution
to the power spectra is subdued by the ionised bubbles that trace the high-density regions of dark
matter.

This is apparent from Figure 3.2a, where the large-scale power of the fM
coll field has

a constant offset at around 5%. If we plot the un-normalised predicted fM
coll auto power

spectrum (that is, without dividing by ḡ2 in equation 3.1) then it matches the truth to
within 1%. Therefore, the observed ∼ 5% at large scales is mostly due to the error in the
global fM

coll mean (squared) made by the interpolator. Since we do not accurately take into
account the effect of the environment, the sampled fcoll values in nearby cells are incorrectly
correlated with each other. This ‘mistake’ in the fcoll sampling, combined with the minor
errors in the CDF emulation, implies that the global mass-averaged means of fcoll are not
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constrained to match between truth and prediction, which subsequently leads to the large-
scale offset in the properly normalised fM

coll auto power. The effects of an incorrect global
fM

coll mean are discussed further in Appendix C.

The relatively large deviation arising in the HI power at the large scales in Figure 3.7
can be understood in the following manner. For the HI (HII) field, we are actually plotting
the power spectrum of ∆HI(x) (∆HII(x)) given by

∆HI(x) =
xM

HI(x)

1−QM
HII

; ∆HII(x) =
xM

HII(x)

QM
HII

, (4.1)

and these can be related in the following manner:

∆HI(x) =
xM

HI(x)

1−QM
HII

(4.2)

=
xHI(x)(1 + δ(x))

1−QM
HII

(4.3)

=
1 + δ(x)− xM

HII(x)

1−QM
HII

(4.4)

=
1 + δ(x)−QM

HII∆HII(x)

1−QM
HII

. (4.5)

Following the discussion in Appendix B of [40], if we assume the bias to be scale-free at large
scales during the early stages of reionisation, we can relate the HI and HII bias as

bHI =
1−QM

HIIbHII

1−QM
HII

. (4.6)

Recall that the square of the bias is simply the power spectrum of the relevant field normalised
by the matter power spectrum (equation 3.5), and since the matter power spectrum at large
scales is identical between LB and RB, the power spectra error is directly proportional to
the bias error. We can write this at fixed QM

HII as

(bHI)predicted

(bHI)true
=

1−QM
HII(bHII)predicted

1−QM
HII(bHII)true

. (4.7)

From Figure 3.8b, we can read off the value of (b2HII)true for the smallest k to be around 13.5.
This implies (bHII)true ≈ 3.7 and so the denominator in the relative error expression above
will blow up around QM

HII ≈ 1/3.7 ≈ 0.27. Thus, the value of QM
HII = 0.25 for which we plot
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the power spectra in Figure 3.7 is also expected to show a large error. The same calculation
is confirmed from Figure 3.8a as well, where both the true and predicted HI biases become
numerically very small, causing the errors to blow up.
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Chapter 5

Conclusion

The advent of more advanced radio interferometer experiments such as the SKA will provide
more precise bounds on the 21 cm power spectra, and hence the HI density distribution
from the Epoch of Reionisation (EoR). This makes the forward modelling of HI maps during
EoR crucial for testing our understanding of the epoch. Efficient methods to do this require
the distribution of the fraction of mass in dark matter haloes (collapse fraction field) to be
input into excursion-set based semi-numerical models of reionisation [35–40]. Obtaining the
collapse fraction field using the semi-analytical formalism of the conditional Press-Schechter
[33, 46] and conditional Sheth-Tormen [47, 48] mass functions, while efficient, is an approx-
imation to more accurate results obtained from high-dynamic range N-body simulations
[49–53]. The latter are extremely inefficient for parameter estimation due to their high
computational cost.

While there have been attempts to make the prediction of the collapse fraction field more
efficient by using hybrid approaches that combine information from low-dynamic range boxes
[31, 54–57], they have not taken into account the full stochasticity in fcoll for a fixed dark
matter density contrast δ, as predicted by N-body simulations. In this work, we build a
machine learning model to accurately predict fcoll(x) using a hybrid approach while taking
into account the full stochasticity. We use the conditional cumulative distribution functions
CDF(fcoll|δ) obtained from a set of 7 small-volume, high-resolution simulations (SB) to train
the ML model using a methodology based on Gaussian Process Regression (GPR). The
density input from a large-volume, low-resolution simulation (LB) is then used to randomly
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draw samples of fcoll values from the emulated CDFs for each cell. This constitutes our
stochastic case, and we also obtain fcoll(x) corresponding to the deterministic case, which
excludes stochasticity by simply using the conditional means ⟨fcoll|δ⟩ computed from the SB.

Upon comparing the auto power spectra of the mass-averaged fcoll(x) and its cross with
∆ ≡ 1 + δ for our fiducial choice of the parameters z,∆x,Mh,min, we find similar levels of
agreement between the stochastic and deterministic cases (Figure 3.2). We then compute the
HI and HII density fields using the semi-numerical code for reionisation script. While the re-
covery is similar at large scales, the deterministic case performs much worse at smaller scales
for the HI density field (Figure 3.4). We then increase the grid size to ∆x = 1 h−1Mpc to en-
able a more complete comparison between the simulation-based deterministic and stochastic
methods and the semi-analytical conditional mass functions. For the mass-weighted fcoll, HI
and HII power spectra, the simulation-based methods work better and the stochastic case
is the best at recovering the small-scale HI power (Figures 3.5 and 3.6). We further test the
flexibility of the stochastic case against variations in all the involved parameters, including
global ionised fraction, redshift, grid size and minimum halo mass. For almost all the cases,
we are able to recover the HI large-scale power (k ≲ 1 hMpc−1) at the ≲ 10% level, whereas
for the HII density field the errors are well within 10% for the entire range of k values. The
accuracy, combined with its significantly lesser RAM requirements of ∼ 20 GB for running
the SB and LB as compared to ∼ 160 GB for running the RB, makes our method a powerful
tool for RAM-limited users conducting studies of reionization parameter space exploration
who wish to run a single cosmological high-dynamic range simulation.

Using only the dark matter density contrast to condition the distribution of fcoll, we are
able to recover large-scale structures well in the fcoll field and the subsequent HI maps. We
demonstrate how stochasticity in the fcoll predictions can play a critical role in recovering the
small-scale structure of the HI maps. However, our specific implementation of stochasticity
does not take into account the full information contained in the cosmological environment,
and this leads to some spurious small-scale structures in the HI maps. Therefore, further
improvements to the ML framework can include finding a set of variables, that can better
reflect the environment than δ alone, to condition the distribution of fcoll. As suggested by
[60], the three eigenvalues of the tidal tensor evaluated at each location {λ1(x), λ2(x), λ3(x)}
could be used for such a purpose, and this shall be explored in future work. The GPR
machinery set up in this work will become more beneficial in this regard than a simple linear
interpolation scheme, due to the high dynamic range of the 3 eigenvalues.
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Another possible direction for the future entails increasing the dynamic range gap between
SB/LB and RB. Currently, we are using SB simulations that are 8 times smaller in volume
than the target RB. We can test the accuracy of the framework for a simulation that is
64 times smaller. One can also explore using our ML model to build a redshift evolution
of reionisation by sampling fcoll(x) at appropriately spaced redshifts. In conclusion, the
method presented in this work can prove to be an efficient yet accurate way to study models
of reionisation and also help constrain parameters from upcoming observations.
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Appendix A

Convergence of Results

We chose to combine 7 different realisations of SB boxes to get the (δ, fcoll) pairs, from which
the training CDFs were constructed. Now, we vary this number to 1, 3, 5 and 10 and observe
the effect on the results. The training converges successfully to cv_thresh = 0.015 for each
of these variations and the predicted fM

coll auto and cross power spectra are shown in Figure
A.1. In the lower panels, we show the error between the power spectra of each case with
the truth obtained from RB, but the true power spectra itself is not shown in the upper
panels. These results have been obtained for the fiducial z = 7 setting. While the variation
is not much at large scales, one can clearly notice a trend at the smallest scales, with the
error curves of 7 and 10 realisations combined being almost identical. However, the script

results are quite robust to these differences, and are similarly presented in Figure A.2.

This validates our choice of using 7 realisations to make the training, since any further
increase in the number of realisations does not improve the results while any decrease causes
the results to change, albeit only for the fcoll power.
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Figure A.1: Comparison of (a) fM
coll-f

M
coll auto and (b) fM

coll-∆ cross power spectra (upper panels)
for different numbers of SB boxes combined for training, and the relative error of each with the
true power spectra (lower panel). The default case that we work with is 7, shown in black. The
differences between the errors are very small and mostly visible at small scales. By number of boxes
equal to 7, a clear trend of convergence emerges.
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Figure A.2: HI-HI (left panel) and HII-HII (right panel) power spectra for different numbers of
SB boxes combined for training, and the relative error of each with the true power spectra (lower
panel), at fixed ionisation fraction QM

HII = 0.5. The default case that we work with is 7, shown in
black.
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Appendix B

Optimisation of Binning

As described in 2.2.1, we adopt a variable binning scheme to construct the training data,
defined over log(1+δ). For the fiducial case, the bin widths for the first and last bins are 0.06
and 0.2 dex, respectively and a turning point occurs at δ = 0, where it is the minimum at 0.03
dex. We first optimise the bin widths for the z = 9 case, where in order to find the last bin
width (high-density end), we start with a very small value which we apply to uniformly bin
the whole log(1+δ) range. We then train the GPR on the empirical CDFs constructed using
such a binning. Then, we split the last bin into 3 equal sub-bins and evaluate the empirical
CDFs for each sub-bin. These 3 CDFs are then compared with the 3 GPR-predicted CDFs at
the central δ of these sub-bins. This procedure is repeated for successively larger parent bin
widths. The idea is that at very small bin widths, GPR training at the last bin would suffer
from noise and at very large bin widths the training CDFs would systematically deviate from
the true underlying CDFs. In either case, the true empirical CDF at the 3 sub-bin centres
would substantially differ from the GPR predictions. The parent bin-width that achieves
visually the closest match is chosen as the optimal one, and it turns out to be around 0.12
dex for z = 9. It must be noted that this was not a very strict choice, and slight deviations
from this value do not appreciably change the results. The same procedure was carried out
to find the optimal width of the first bin (low-density end) as 0.06 dex and the reference
value of 0.03 dex at δ = 0. Given a δ binning, we find that 500 bins in fcoll for making the
training CDFs are usually enough to achieve accurate results for the joint distribution of δ
and GPR predicted fcoll. Still, we try another case with 900 bins just for comparison and
choose the one with the better accuracy in recovering the HI power spectra, which for the
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z = 9 case is the 900 bins case. Going beyond 900 does not improve the results.

Thus, once the z = 9 binning is decided, we use it as a guideline to find the optimal bin-
widths of the other cases. For z = 7, we linearly scale the last bin width with log(1 + δmax),
where δmax is the highest density found in the SB at that redshift. This gives us a starting
guess which we vary a few times along either direction. While δmax changes substantially
across redshifts, the minimum density values δmin are very close to each other and hence
we just try out a few variations along either direction of the z = 9 first bin width (0.06
dex). These combinations are tested for both 500 and 900 bins in fcoll for making the CDFs,
and the case that gives the least error in the HI and HII power spectra is considered as the
optimal choice.

If we just apply the binning scheme of our fiducial case on all the variations, the results
worsen primarily for the redshift and the grid size variations. These are shown in Figures
B.1 and B.2. Evidently, in Figure B.1, the z = 5 case worsens significantly when compared
to its best interpolator, shown in Figure 3.9. The z = 9 case in HI and the HII results shows
a less significant degradation. For the gridsize variations, the ∆x = 1 h−1Mpc case shows
some noticeable degradation, which is less prominent for all other cases. In general, we see
that most of the results are not extremely sensitive to the binning scheme. The minimum
halo mass variation cases have identical δ values as the fiducial case, and so applying the
fiducial binning scheme over them does not result in any significant degradation, and are
thus not shown here.
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Figure B.1: HI-HI (left panel), HII-HII (right panel) power spectra for truth and prediction using
the interpolator made from the fiducial binning scheme. Three different values of redshift are shown
at fixed ionisation fraction QM

HII = 0.5. The z = 5 case shows a significant deviation from the case
when its binning is separately optimised (compare with Figure 3.9), highlighting the importance of
our optimisation procedure.
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Figure B.2: HI-HI (left panel) and HII-HII (right panel) power spectra for truth and prediction
using the interpolator made from the fiducial binning scheme. Three different values of grid size
∆x are shown at fixed ionisation fraction QM

HII = 0.5. Each case has been plotted upto its Nyquist
frequency. The ∆x = 0.25 h−1Mpc case shows the most noticeable worsening of accuracy when
compared with its optimal binning scheme (Figure 3.11).
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Appendix C

Normalisation Error in fcoll

In section 3.1, we saw that the large-scale power of the normalised fM
coll field had a constant

offset at around 5% (Figure 3.2), and mentioned that this can be traced back to the error in
the global mean of fM

coll . Instead of using equation 3.1, we can define an unnormalised auto
power spectrum (denoted by P̃g(k)) for a field g(x) as

⟨g(k)g∗(k′)⟩ = (2π)3P̃g(k)δD(k− k′) , (C.1)

where the usual notations from equation 3.1 apply. The difference is that we are no longer
normalizing g by its mean in position space while computing the Fourier conjugates. Com-
paring this P̃ (k) for the stochastic and deterministic fM

coll in Figure C.1, we see that both
the predictions now show a very small error in the large-scale power. This shows that the
5% offset at low k in Figure 3.2, at least for the stochastic case, is predominantly due to the
error in recovering the global mean of fM

coll .

In our sampling procedure, we are only accounting for the effect of dark matter density on
the fcoll values, and the effect of other cosmological environmental variables is randomised.
This leads to nearby fcoll values being incorrectly correlated with each other. This ‘mistake’
in the fcoll sampling, combined with the minor errors in the CDF emulation, implies that
the global mass-averaged means of fcoll are not constrained to match between truth and
prediction.

These uncorrelated fcoll values show up in small-scale patches of the fcoll field, such as
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the slices compared in Figure C.2. Although it is more apparent in the HI maps, even here
one can notice similar features of incoherently high fcoll fluctuations in the stochastic case
and the lack thereof in the deterministic one, both reflecting the inaccuracy in modelling
the small-scale environment. These inaccuracies in the fcoll topology are a feature of small
scales, and we have checked that if we smooth out to larger scales the topology is more or less
well-recovered, but the overall mean and thus normalisation is affected due to the small-scale
errors.
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Figure C.1: Comparison of fM
coll unnormalised auto power spectra (defined as per equation C.1),

between truth and predictions using the deterministic and stochastic cases. The large-scale power
matches quite well, implying that the error in Figure 3.2 at large scales is mostly due to error in
the mean.

We can also observe the effect of normalisation on the power spectra of the conditional
ST and PS predictions (Figure 3.5), by plotting their unnormalised P̃ (k) in Figure C.3.
As can be noted from the values mentioned in the plot, the conditional ST (conditional PS)
overestimates (underestimates) the global fM

coll mean, with the difference being much greater
than the stochastic and deterministic cases. Given the relation between the relative error in
the normalised (P ) and unnormalised (P̃ ) power spectra,

P̃sampled

P̃truth
=

Psampled

Ptruth

⟨fM
coll, sampled⟩2
⟨fM

coll, true⟩2
, (C.2)

the unnormalised large-scale power has a larger error in the case of conditional ST as com-
pared to PS. When we move to the HI density field calculation, the ζ value required in order
to achieve a global ionised fraction of QM

HII = 0.5 is then substantially different for the con-
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Figure C.2: Slices of the fcoll field for the truth, stochastic and deterministic cases for the same
zoomed-in region as shown for the HI map in Figure 3.3. The error in small-scale fcoll correlations
due to not accounting for the full cosmological environment information can be seen in the middle
and right panels.

ditional PS and ST cases, which then ends up making a large error in their ionised bubble
topology even at large-scales, hence causing the large ∼ 25% error in large-scale power (left
panel of Figure 3.6).
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Figure C.3: Comparison of fM
coll unnormalised auto power spectra (defined as per equation C.1),

between truth, stochastic, deterministic and the semi-analytical predictions. Compared with the
normalised case (Figure 3.5), the errors of conditional PS and ST are now very different due their
substantially different means.
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