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Abstract 

 

A perceived lack of control—the belief that one’s actions don’t determine 

outcomes—is closely related to uncontrollable stress and helplessness, which may 

contribute to increased vulnerability to depression. This project examines how 

perceived uncontrollability influences reward learning and decision-making under 

uncertainty. Such learning is known to be impaired in stress-related disorders. We 

manipulated controllability in an fMRI study where 55 participants played a 

multidimensional probabilistic three-armed bandit task with a hidden target reversal, 

while simultaneously playing to obtain monetary bonuses or avoid electric shocks. 

These goal outcomes were determined by performance in controllable games but 

were unrelated to their actions in uncontrollable games. 

We found that a lack of control impaired learning after the hidden target reversal had 

occurred, but only when participants were playing to gain extra money. We also 

found that people’s subjective belief in the controllability manipulation mediated the 

extent of their impairment after the reversal in uncontrollable games but not in 

controllable games. Participants who perceived higher uncontrollability performed 

worse after reversal when experiencing uncontrollable conditions, and this was 

independent of goal outcome valence. Next, we used a hidden Markov model to best 

capture participants’ trial-by-trial choices, then used its estimates to examine the 

neural correlates of expected value. Activity associated with stimulus onset and the 

model-derived expected value of the chosen option was observed in the orbitofrontal 

cortex and striatum, but mean activation and voxel patterns did not differ by 

controllability or goal outcome valence. Although neural results are negative, our 

behavioural findings may further our understanding of mechanisms contributing to 

learning deficits in stress disorders.  
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Chapter 1 Introduction 

 
Learning from complex and ever-changing environments requires an adaptive 

reward learning system that continuously integrates feedback to optimize decisions. 

Stress disrupts reward learning, but it is not yet fully understood how the perceived 

uncontrollability of stress contributes to this learning. When stress is seen as 

uncontrollable, it not only hampers learning but also fosters a sense of helplessness, 

a precursor to depression. In this context, elucidating how uncontrollability impacts 

reward learning is essential for understanding the neurocognitive underpinnings of 

stress-related disorders. In the sections below, each concept is explored in depth 

from the perspective of uncontrollability.  

 

Reward Learning 

Every day, we make decisions such as choosing what to eat, how much effort to put 

into work, and whether to persist in a difficult task. One of the main factors guiding 

these decisions is reward learning, a fundamental aspect of both human and animal 

behaviour. It is the mechanism through which organisms adapt their actions based 

on previous experiences. In essence, reward learning involves associating certain 

behaviours with outcomes, thereby changing the likelihood of that behaviour being 

repeated in future. By reinforcing actions that lead to rewards and discouraging 

those that do not, reward learning enables individuals to navigate uncertain 

environments, optimise decisions, and sustain motivation toward goal-directed 

behaviour.  

 

Broadly, there are two major types of learning, the first of which is classical 

conditioning (Pavlov, 1927). Classical conditioning is the learning of an association 

between a stimulus that is neutral (conditioned) and a stimulus that is innately salient 

(unconditioned) by being exposed to repetitions of the two being paired together. 

The neutral stimulus alone can then elicit a behavioural response triggered by the 

unconditioned stimulus. Rescorla and Wagner developed a famous theoretical model 

of classical conditioning (Rescorla and Wagner, 1972), introducing concepts such as 

scalar associative strengths and prediction error, which are foundational concepts 

used in reinforcement learning models to this day. The second type is instrumental 

learning, first explored by researchers such as Thorndike and Skinner (Thorndike, 

1898; Ferster and Skinner, 1957). Unlike Pavlovian learning, where associations 

form between stimulus and outcomes independent of behaviour, instrumental 

learning involves a direct action-outcome contingency. This means that an 

individual’s choices influence rewards or punishments, which in turn affect future 

behaviour.  
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Within instrumental learning, another distinction between different kinds of learning is 

model-based versus model-free learning. Model-based learning involves the usage 

of an explicit internal model of the environment (cognitive map) and learning causal 

action-outcome contingencies. The choices made are deliberative and goal-directed, 

optimally performed by thinking ahead and prospectively simulating the results of 

possible actions. This learning is computationally intensive but offers flexibility in 

decision-making because one can update their mental map to adapt to changes in 

the environment. On the other hand, model-free learning does not construct an 

internal model of the world. The value of an action is learned instead through trial 

and error by observing the reward associated with it. This type of behaviour is more 

habitual, relying on cached values of simple stimulus-response associations. It is 

less computationally intensive and thus is relevant in situations where one does not 

have sufficient resources such as energy and time. Both decision-making systems 

are thought to co-exist, and which type is used more depends on the context and 

constraints such as the amount of uncertainty in the environment (Daw et al., 2005; 

Drummond and Niv, 2020).  

 

Learning and decision-making are often examined through the lens of reinforcement 

learning (Sutton and Barto, 1998). The class of algorithms, originally from artificial 

intelligence research, describe how a human, non-human animal, or agent learns to 

maximise reward over time via a reward signal. The reason why RL models have 

found so much success in psychology and neuroscience is because of the seminal 

findings of Schultz and colleagues (Schultz et al., 1993; Schultz, 1998). They found 

that the phasic activity of midbrain dopaminergic neurons in monkeys matched the 

reward prediction error in a temporal difference RL algorithm. This suggested that 

these neurons ‘encode’ a TD error signal, and that midbrain dopamine neurons and 

associated circuits may implement an RL-like algorithm in the brain (Schultz et al., 

1997). It is important to note that these algorithms are model-free RL. Recently, 

there has been some criticism against this standard model that dopamine encodes 

reward prediction errors (Wang et al., 2018), but the framework is still widely used in 

literature regardless.  

 

The major target of these midbrain dopamine neurons is the striatum, which has 

been studied as a candidate region for learning even before the role of dopamine in 

the reward prediction error was discussed. The numerous spines of striatal neurons 

also receive glutamatergic input from the cortex. Wickens et al. showed that these 

cortico-striatal synapses are modulated by dopamine input from the midbrain 

(Wickens et al., 1996). These synapses are strengthened when their activation 

coincides with increased dopamine but get depressed when their activation is not 

associated with dopamine release. Dopamine signal thus mediates the potentiation 

or depression of the same cortico-striatal synapses (Reynolds and Wickens, 2002).  
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The striatum has been shown to be involved in habit formation (Yin and Knowlton, 

2006). Yin et al. showed that lesions in the dorsolateral but not the dorsomedial 

striatum impaired the ability of rats to form habits from feedback interval schedules 

(Yin et al., 2004). The striatum is associated with reward-orienting behaviour as well 

(Hikosaka et al., 2006). Activity in the ventral striatum is correlated with the value of 

rewards (Knutson et al., 2001). The ventral striatum, and in particular the nucleus 

accumbens, are associated with the value of states, whereas the dorsal striatum is 

involved more in the value of actions. Moreover, the dorsal medial parts of the 

striatum are associated with value encoding and goal-directed actions, while the 

dorsolateral striatum encodes more associative, habitual and associative aspects of 

action (Burton et al., 2015). Samejima et al. showed that the activity of neurons in 

the striatum is correlated with the probability of selecting an action based on the 

expected reward (Samejima et al., 2005). In human fMRI studies the activity in the 

striatum is correlated with reward magnitude (McClure et al., 2004), as well as 

prediction errors (O’Doherty et al., 2003).  

 

Neural activity predicting reward has also been observed in the cortex, especially in 

regions such as the prefrontal cortex (Matsumoto et al., 2003; Roesch and Olson, 

2004). The ventromedial prefrontal cortex (vmPFC) has been implicated in the 

representation of the subjective value of choices and outcomes (Chib et al., 2009). A 

positive correlation between the BOLD signal and the value of chosen options 

suggests its role in decision-making (Boorman et al., 2009; Amarante and Laubach, 

2014; Chung et al., 2020). It is also shown that vmPFC encodes the value of items 

even when the person is not involved in making any choice (Lebreton et al., 2009), 

or when observing someone else make a decision (Cooper et al., 2010). Levy et al. 

showed that these value representations are similar across reward types, suggesting 

that the vmPFC tracks value in a domain-general manner, a common currency value 

representation (Levy and Glimcher, 2011; McNamee et al., 2013). 

 

The orbitofrontal cortex (OFC) is another region that has been implicated in reward 

learning (Tremblay and Schultz, 2000; Noonan et al., 2012). The OFC is thought to 

represent the value of states and outcomes and to update these values based on 

feedback (Padoa-Schioppa and Assad, 2006; Hare et al., 2008). In a study by 

O'Doherty et al., participants were asked to choose between two stimuli that were 

associated with different reward probabilities. The BOLD signal in the OFC was 

correlated with the expected value of the rewards and punishments (O’Doherty et al., 

2001). Plassman et al, showed that medial OFC activity is associated with the value 

of rewarding objects (Plassmann et al., 2007). The OFC is also thought to be 

involved in representing a cognitive map of hidden states in a task environment. 

Schuck et al. showed that unobservable task states could be decoded from activity in 

the OFC using pattern-classification techniques (Schuck et al., 2016). In sum, brain 

regions like the striatum and cortex form a highly interconnected network that is 

involved in reward learning and decision-making (Neubert et al., 2015; Tanaka et al., 

2015). 
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Much of this knowledge arises from standard principles of measuring cognition and 

the brain. Reward learning is examined using a variety of tasks like probabilistic 

learning tasks, reversal learning tasks, effort-based tasks, etc. More recently, 

computational models have been used on behavioural data obtained from these 

tasks. Popular models like RL have parameters like learning rate and reward 

sensitivity that are thought to represent underlying cognitive variables. Reward 

sensitivity represents the subjective extent to which rewards are valued and how 

random the decisions are, whereas learning rate is a parameter that represents the 

magnitude of learning from rewards.  

 

Various neural indices of learning have also been used to measure reward learning. 

A popular technique is functional magnetic resonance imaging (fMRI), which 

measures the blood oxygen level-dependent (BOLD) activity as a proxy for neural 

activity. By regressing model-derived variables like prediction errors and expected 

value against fMRI activity, researchers pinpoint where in the brain these 

computations are likely to occur. Another popular technique is electroencephalogram 

(EEG), which has greater temporal resolution than fMRI. Event-related potential 

(ERP) signals after observing reward outcomes have been found to be related to 

prediction errors. For example, positive signals associated with positive prediction 

errors, better-than-expected outcomes, are termed as feedback-related positivity. 

Together, these neurocognitive measures help clarify the behavioural and neural 

mechanisms of reward processing and learning in normal conditions—an 

understanding that becomes important when examining how disruptions in learning 

occur due to things like stress.  

 

Stress 

Stress can be defined as a natural response to challenging conditions, causing both 

psychological and physiological changes. However, a lot of negative situations can 

only be mildly challenging and do not qualify as stressors. Some stress researchers 

recommend that the term ‘stress’ should be used only when aversive environmental 

stimuli impose demands on an organism that exceed its natural regulatory capacity. 

This is especially relevant in situations that can be characterized as unpredictable or 

uncontrollable. This is because, from a physiological perspective, stress is 

characterized by a lack of sufficient and appropriate neuroendocrine responses to 

deal with such extreme conditions (Koolhaas et al., 2011). Stress involves a complex 

interplay between the brain and body, activating the hypothalamic-pituitary-adrenal 

axis and the sympathetic-adrenal medullary system. This response results in the 

secretion of cortisol and adrenaline, hormones commonly released in stressful 

situations. These hormones, along with other physiological changes, prepare the 

biological system to function and respond appropriately by changing things such as 

increased pumping of blood, mobilizing of energy stores, increased breathing, etc.  
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Stress is a pervasive factor that can influence significant cognitive and behavioural 

changes. The most well-known effect is that acute stress induces a shift away from 

goal-directed, flexible, model-based behaviour towards habitual, inflexible, 

experience-dependent, model-free behaviour (Hartogsveld et al., 2020). Otto et al. 

showed that acute stress reduces the amount of model-based contribution to 

behaviour and that this effect is mediated by working memory capacity (Otto et al., 

2013). Stress has also been shown to impair learning and decision-making in other 

ways. Petzold et al. showed that although psychosocial stress did not affect overall 

performance in a probabilistic selection task, it did impair the ability to learn from 

negative feedback compared to controls (Petzold et al., 2010). A study by de Berker 

et al. showed that stress induced by a standard socially evaluated cold pressor test 

impaired learning to produce an act, due to Pavlovian associations between 

punishment and passivity (de Berker et al., 2016). Acute stress has also been shown 

to reduce cognitive flexibility, an effect that is correlated both with total cortisol 

increase (Goldfarb et al., 2017) and the time course of hypothalamic-pituitary-

adrenal axis activation (Plessow et al., 2011). 

 

Oftentimes, individuals encounter stressful situations that lie beyond their control, 

where no immediate action can alter the circumstances causing distress. 

Uncontrollable stress refers to situations where individuals face stressors that they 

cannot influence or manage. Acute, uncontrollable stress in the form of threat-of-

shock paradigms results in poorer outcomes on probabilistic learning tasks by 

reducing reward responsiveness (Bogdan and Pizzagalli, 2006), smaller feedback-

related positivity (Bogdan et al., 2011), and impaired reversal learning (Paret and 

Bublatzky, 2020). A meta-analysis by Dickerson and Kemeny concluded that 

uncontrollability in tasks elicited greater cortisol and adrenocorticotrophic hormone 

responses and took longer to recover, supporting the behavioural deficits with 

physiological changes (Dickerson and Kemeny, 2004). 

 

Many animal studies have established that acute but mild stressors reliably activate 

mesocortical dopamine neurons, which project to the prefrontal cortex (PFC) and 

thus substantially increase dopamine in the medial prefrontal cortex (mPFC) 

(Abercrombie et al., 1989).If rodents are subjected to larger and more chronic 

stressors, the mesolimbic dopamine system, in particular the nucleus accumbens 

(NAc), is also activated, though to a much lesser extent than the mesocortical 

dopamine system (Chrapusta et al., 1997). This enhanced mesolimbic dopamine is 

also associated with increased coping and behavioural activation behaviourally 

(Cabib et al., 2002). Interestingly, the mesolimbic and mesocortical systems react in 

opposite ways when stress is uncontrollable. When animals face sustained 

inescapable stressors, behaviourally, they show reduced coping, and neurally, they 

show reduced dopamine in the nucleus accumbens. However, administration of 

imipramine, a tricyclic antidepressant, just before the uncontrollable stressor, 

prevents this dopamine depletion (Rossetti et al., 1993). 

 

Inescapable stressors result in higher medial prefrontal cortex dopamine than when 

exposed to a similar stressor which is escapable (Cuadra et al., 1999). However, 
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there is also evidence that this is not as straightforward . Giorgi et al. suggest that 

dopamine in the mPFC is not a function of stress, but rather the coping strategy in 

reaction to the stress. Rat lines that show proactive coping behaviours did have 

increased dopamine in the mPFC in response to stress induced by tail pinch, but this 

increase was not observed in another rat line that shows reactive coping (Giorgi et 

al., 2003). Also, artificially increasing dopamine in the mPFC also increased active 

coping in mice (Wilke et al., 2022).  

 

Dopamine released in the mPFC inhibits its function, which includes regulation of the 

hypothalamic-pituitary-adrenal axis, involved in stress response (Maier et al., 2006). 

Moreover, prefrontal cortex dopamine release also inhibits the release of dopamine 

in the nucleus accumbens. This is thought to be a mechanism by which the brain can 

regulate the balance between the mesocortical and mesolimbic dopamine systems 

(Del Arco and Mora, 2008). Thus, stress-induced mesocortical dopamine activity 

suppresses mesolimbic dopamine activity, which in turn leads to reduced coping and 

passive, helpless behaviour. This is supported by Cabib et al, who showed that 

exposure to stress to an inbred susceptible strain of mice led to despair-like 

behaviour. This behaviour was also associated simultaneously with increased 

mesocortical dopamine system activity and decreased mesolimbic dopamine system 

activity (Cabib et al., 2002). Ventura et al. showed that in the same susceptible 

strain, this despair-like behaviour was reversed by both activating the mesocortical 

dopamine system as well as administering an antidepressant clomipramine (Ventura 

et al., 2002).  

 

Stress, and in particular uncontrollable stress, has been studied in the development 

of helplessness and subsequent stress-related disorders such as depression and 

anxiety. In fact, many pre-clinical models of depression and anxiety involve exposing 

animals to uncontrollable stressors. For example, the learned helplessness model of 

depression shows that when animals face inescapable stressors, it generalizes to 

other situations (Overmier and Seligman, 1967). Similarly, the chronic mild stress 

model of depression involves exposing animals to a series of mild, unpredictable 

stressors, which leads to anhedonia and other depressive-like symptoms (Katz et al., 

1981; Katz, 1982; Willner et al., 1992).  

 

The relation between stress and depression is also supported by clinical studies. For 

example, individuals with a history of childhood trauma or chronic stress are at 

increased risk of developing depression later in life. Moreover, stress is a common 

trigger for depressive episodes, and individuals with depression often report high 

levels of stress (Hammen, 2005, 2015). Stress has been linked with the 

development, severity, and relapse of major depression (Pizzagalli, 2014). In 

addition to severe stressors, chronic stressors, as well as events characterized by a 

perceived lack of control, inescapability, and humiliation, are linked to the risk of 

depression (Kendler et al., 2003). Early life stress is also a risk factor for depression 

and is associated with deficits in reward learning (Min et al., 2024) and usage of 

value information in decision-making (Smith and Pollak, 2022). 
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Overall, evidence points to ways in which uncontrollable stress impairs learning, as 

well as increases the likelihood of helplessness and depression. However, it is 

unknown to what extent the perceived uncontrollability of this stress contributes to 

the impairment of reward learning.  

 

Helplessness and Depression 

Helplessness is a state of passivity and resignation that arises when individuals 

perceive that they have no control over their environment. It is marked by feelings of 

powerlessness, hopelessness, and a lack of motivation to act. Helplessness can be 

learned by exposure to uncontrollable stressors. Learned helplessness is a 

psychological phenomenon in which individuals learn to be passive and helpless in 

the face of adversity, even when opportunities for escape or change are present. It 

occurs when an individual repeatedly faces uncontrollable and adverse situations, 

eventually leading them to believe that their actions have no impact on outcomes. 

This belief in lack of control makes them less likely to try to change their situation, 

even in a new and controllable environment. This state of helplessness can have 

profound effects on mental health and well-being, leading to symptoms of 

depression, anxiety, and other stress-related disorders. 

 

Learned helplessness was first described by Seligman and Maier in 1967 who 

observed that dogs exposed to inescapable electric shocks later failed to escape 

from shocks that they could have avoided (Seligman and Maier, 1967). This 

phenomenon was later found to exist in humans too, who exhibited similar patterns 

of passivity and resignation when faced with uncontrollable stressors (Hiroto and 

Seligman, 1975). The learned helplessness model of depression posits that 

exposure to uncontrollable stressors can lead to a state of helplessness and 

anhedonia, which are core symptoms of depression. For example, a study in 

genetically prone rats found that helplessness reduced preference for sucrose, 

demonstrating a classic diminished hedonic response (Sanchis-Segura et al., 2005). 

This model has been widely used in preclinical research to study the neurobiological 

mechanisms underlying depression because of its high face and predictive validity, 

as well as decent construct validity. The model has big translational value and has 

helped with the development of treatments such as new antidepressants (Vollmayr 

and Gass, 2013).  

 

Given that helplessness is learned, and that intentional mental content is important in 

mood disorders like depression and anxiety, there has been a lot of interest in 

cognitive processes that are disturbed in these disorders. Using signal detection 

analyses, Joormann and Gotlib found negative cognitive biases in individuals with 

depression, who required a greater intensity of emotional expressions in morphed 

faces to detect happiness relative to controls (Joormann and Gotlib, 2006). Going 

beyond just perceptual deficits, another study found impaired working memory in 

depressed individuals when estimating the probability of fractal stimuli (Rupprechter 

et al., 2018). This is consistent with another finding that working memory capacity is 

reduced in individuals with depression (Snyder, 2013). Anhedonia, a cardinal 
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symptom of depression, is characterized by reduced motivation and willingness to 

work for rewards. In their now widely used EEfRT task, Treadway and colleagues 

found that MDD patients were willing to put in less effort to obtain rewards compared 

to healthy controls (Treadway et al., 2012a). In another study using the same task, 

they found that dopamine levels in healthy people in the striatum and ventromedial 

prefrontal cortex correlated with effort expenditure, particularly in low reward trials 

(Treadway et al., 2012b). Using an apple-gathering task and individually calibrated 

effort levels, a recent study has also found that both current and remitted depressed 

patients were willing to expend less effort for rewards compared to healthy controls 

with and without a family history of depression (Valton et al., 2024). 

  

Reward learning deficits have been widely observed in depression. For example, a 

meta-analysis by Huys and colleagues using a computational model-based approach 

found that depressed individuals showed reduced reward sensitivity when 

performing probabilistic reward learning tasks (Huys et al., 2013). This is consistent 

with the finding that striatal activity in response to reward is reduced in depression 

(Steele et al., 2007). Reduced prediction error signals were also observed in the 

striatum and midbrain, with the signals in the caudate and nucleus accumbens 

correlating with depression severity (Gradin et al., 2011). However, this seems to be 

restricted to prediction error signals in learning, as reward prediction error signals in 

a probabilistic task that did not have a learning component showed no reduction in 

depressed patients (Rutledge et al., 2017). Furthermore, both unmedicated and 

medicated MDD patients also had blunted temporal difference error signals in the 

ventral striatum (Kumar et al., 2008). Another meta-analysis found small to medium 

reward processing deficits in depression compared to healthy controls across forty-

eight studies (Halahakoon et al., 2020). Reduced reward learning has also been 

found to predict treatment outcomes eight weeks later in MDD patients, even after 

controlling for initial depression levels (Vrieze et al., 2013). Since depression is 

heterogeneous, it is important to consider the relation of learning with individual 

symptoms. Along that route, Brown et al. found that anhedonia (as measured from 

the MASQ subscale) was associated with reduced learning rates and that it 

mediated the relationship between striatum expected value and prediction error 

signals (Brown et al., 2021). Moreover, symptom improvement after twelve weeks of 

cognitive behavioural therapy treatment correlated with learning rate improvement as 

well. 

 

As described, depression is linked to a variety of cognitive and behavioural deficits, 

which could arise from various neurocomputational mechanisms. In fact, researchers 

have talked about general deficits in overall executive function (Bredemeier et al., 

2016) as well as cognitive control (Grahek et al., 2018). A possible mechanism to 

explain some of the impairments is reduced cognitive and behavioural flexibility, an 

inability to appropriately adapt behaviour when shifts in environmental reward 

structures give rise to higher-level uncertainty. In a study by Murphy et al., 

depressed individuals showed reduced cognitive flexibility in a dynamic go/no-go 

task, especially when the stimuli were emotionally arousing (Murphy et al., 2012). 

MDD patients showed reduced shifting to maximise rewards in various versions of 



19 
 

the Iowa Gambling Task (Must et al., 2013). Cognitive flexibility was also found to be 

inversely correlated with emotional regulation in depression (Gao et al., 2025).  

 

Adapting to changing reward contingencies and learning under uncertainty are some 

key aspects of flexibility. Probabilistic reversal learning tasks are often used to study 

these aspects, as they require participants to learn under second-order uncertainty. 

Robinson and colleagues showed that unmedicated MDD patients displayed 

impaired accuracy after unexpected rewards on reversal trials, which correlated with 

activity in the striatum (Robinson et al., 2012). Another recent study found that 

depressed individuals showed reduced learning rates, were slower to adjust to 

reversals, and also displayed lower sensitivity to both rewards and punishments 

(Mukherjee et al., 2020). Depression and anxiety are often comorbid and also 

showed similar deficits in adjusting to volatility regardless of outcome valence 

(Gagne et al., 2020). 

 

Thus, learned helplessness and depression are closely related, with both conditions 

characterized by cognitive and behavioural deficits in reward learning and decision-

making. One of these deficits common in depression and anxiety is reduced flexibility 

in adjusting to changing reward structures. However, the extent of these deficits in 

helplessness is unknown. 

 

Controllability 

Controllability, or perceived control, refers to an individual's subjective belief in their 

ability to influence events, actions, or outcomes in their environment. The concept 

has been studied in psychological literature for a long time, with different theories 

and conceptualizations. For example, Rotter's locus of control theory posits that 

individuals can be classified as having either an internal or external locus of control, 

depending on whether they believe that outcomes are determined by their own 

actions or external forces (Rotter, 1966). Similarly, Bandura's self-efficacy theory 

suggests that individuals with high self-efficacy are more likely to believe that they 

can control their environment and achieve their goals (Bandura, 1977). Intuitively, 

these theories more or less refer to the same underlying concept of perceived 

control. 

 

Controllability is an important factor in one's everyday life, influencing motivation, 

well-being, and mental health. The perception of control has been linked to various 

positive outcomes, such as increased self-esteem, reduced stress, and better mental 

health (Skinner, 1996). The reasons for this are threefold. Firstly, controllability in 

itself is rewarding. This reflects White's theory of effectance motivation, which states 

that individuals have a fundamental psychological need to influence their 

environment through their actions (White, 1959). This is supported by behavioural 

studies that show both animals and humans prefer choice over no-choice, even if it 

requires more effort and does not lead to better outcomes (Leotti et al., 2010). This 

preference for choice was associated with increased BOLD response in the ventral 

striatum, in both positive and negative outcomes (Leotti and Delgado, 2014). 
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Secondly, controllability dampens the negative effect of stressors, generalizable 

across different contexts. Animal studies show that the ability to exert control over a 

negative event in the environment not only blunts the impact of that event but also 

has longer-lasting effects, which blunt the negative impact of aversive events 

experienced later on. Maier suggests that a circuit from the ventromedial prefrontal 

cortex to the dorsomedial striatum is involved in detecting the controllability of the 

environment (Maier, 2015). This circuit then suppresses the activity of the amygdala 

and dorsal raphe nucleus, which are usually involved in stress response. Lastly, the 

ability to exert control positively affects subsequent decision-making and learning. 

Karsh and Eitam showed that participants with higher judgements of self-agency in a 

task increased both the speed and frequency of actions being performed (Karsh and 

Eitam, 2015). Animals also show proactive behaviour such as increased social 

exploration, decreased freezing, and improved learning upon experiencing 

controllable shocks (Moscarello and Hartley, 2017). 

 

On the flip side, uncontrollability, or the perception of lack of control, can have 

detrimental effects on both affect and learning. For example, inescapable stressors 

impair fear extinction learning after fear conditioning in humans and also show 

increased fear expression afterwards (Hartley et al., 2014). As described before, 

uncontrollable stressors are a major factor in the development of learned 

helplessness, which itself is a model of depression. A study showed that in 

conditions with low controllability, people shift from instrumental learning to 

Pavlovian, consistent with the idea that situations with low control gain no benefit 

from the flexibility that instrumental learning offers (Dorfman and Gershman, 2019). 

This is similar to what is observed in animals, who shift from proactive to reactive 

behaviour when exposed to uncontrollable stressors (Moscarello and Hartley, 2017). 

Parallelly, it is observed that in depression, there is a shift from goal-directed to 

habitual behaviour, which is consistent with the idea that depression is a state of 

learned helplessness. Perceived control is not linked to just depression, though. 

Perceived control is present across anxiety disorders (Gallagher et al., 2014a). 

Moreover, anxiety patients demonstrated improvements in perceived control after 

cognitive behavioural therapy (Gallagher et al., 2014b). A study in our lab 

demonstrated that perceived uncontrollable stress during the COVID-19 pandemic 

predicted deficits in reversal learning in the form of greater probabilistic errors after 

negative feedback, an effect mediated by state anxiety (Guitart-Masip et al., 2023). 

Lack of control then seems to be linked to depression as well as anxiety.  

 

To summarize, a lack of controllability is known to have negative effects on affect 

and some forms of learning. Stress, and in particular uncontrollable stress, causes 

impairments in learning and decision-making, and also leads to helplessness and 

subsequent stress disorders like depression and anxiety. One of the ways in which 

learning is impaired in these disorders is behavioural flexibility, the ability to adapt to 

changing reward contingencies. We do not know whether perceived uncontrollability, 

an upstream factor in stress disorders, also impairs flexibility in the same way. In the 

present study, we have aimed to answer precisely this question: what is the impact 

of perceived lack of control of reward learning? To this end, 55 healthy participants 
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played a multidimensional probabilistic reversal learning task in an MRI scanner, 

where they had to learn to choose the correct stimulus based on reward feedback. 

We manipulated task controllability in the form of controllable and uncontrollable 

games to see how it affected reward learning. We formulated the following 

hypotheses on how controllability and outcome valence affect reward learning: 

• Lack of control impairs learning after reversal 

• Threat of shock impairs learning after reversal 

• Threat of shock exacerbates the effect of uncontrollability on learning 

• Mean BOLD activity associated with stimulus presentation in the orbitofrontal 

cortex (OFC) and/or striatum differs by controllability and/or goal outcome 

valence 

• Mean BOLD activity associated with the expected value of choice at the time 

of stimulus presentation and reward feedback in the OFC and/or striatum is 

reduced in uncontrollable games relative to controllable ones 

• The degree of attenuation of the expected value signal is greater in shock 

games relative to bonus games 

• No differences in the mean BOLD activity associated with reward outcome at 

the time of reward feedback in the OFC and/or striatum by controllability 

• Differences in voxel patterns in the OFC and/or striatum, quantified by voxels 

able to predict better than chance the condition by training support vector 

machines on neural voxel patterns.  
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Chapter 2 Methods  

 
Fifty-five healthy participants took part in the study, during which they completed a 

series of reward learning tasks inside an MRI scanner. In this task, we manipulated 

two key factors: controllability (whether participants’ actions directly influenced goal 

progress) and outcome valence (playing for a monetary bonus versus avoiding an 

electric shock). This design allowed us to probe how perceived control and 

motivational context affect reward-based learning under conditions of uncertainty, 

including periods of unexpected target reversals. The following sections detail the 

task design, data collection, and analysis pipelines used to disentangle the 

behavioural, computational, and neural mechanisms underlying these effects. 

 

Task Design 

Adapted from Niv and colleagues, participants performed a three-armed bandit task, 

in which they had to choose one of the three composite stimuli on the left, middle, 

and right on a screen (Leong et al., 2017). Each composite stimulus consisted of two 

images, an animal (dog, cat, or rabbit) and a landscape (beach, forest, or mountain). 

This resulted in a total of six images arranged in a grid of two rows and three 

columns. The three columns represented the three options, and each row consisted 

of the same type of image (either animal or landscape). The images in each row 

were shuffled randomly each trial independent of the other row, ensuring the 

composite stimuli were different from trial to trial. For example, in one trial the rabbit 

may be paired with the beach to form a composite stimulus, and in the next trial the 

rabbit may be paired with the mountain (Figure 2). At one time, only one of the six 

images was the rewarding image, and the other five were non-rewarding. The 

participants did not know which of the six images was the rewarding image, and thus 

it was a hidden target. 

 

Participants had to choose one of the three composite stimuli, and if the chosen 

option contained the hidden target, they received a reward in the form a gold star on 

the screen with a probability of 80%. If the chosen option did not contain the hidden 

target, they received no reward in the form of a red cross with a probability of 80%. 

At the beginning of each trial, participants saw a fixation cross for a random amount 

of time (400-700 ms sampled from a uniform distribution). Then, they saw the 

mentioned 2 by 3 grid of images for 2000 ms, during which they had to make a 

choice. After selecting one of the three composite stimuli, only their chosen 

composite stimulus remained on the screen, and they saw the outcome of their 

choice (feedback) for 1000 ms.  
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Figure 1: Three-armed probabilistic reward learning task. After a fixation cross, 3 
composite stimuli were shown consisting of 2 images each. If the chosen composite stimulus 
contained the hidden target, positive feedback (gold star) was provided with an 80% chance. 
If the chosen stimulus did not contain the hidden target, negative feedback (red cross) was 
provided with an 80% chance. After every few trials, the goal progress bar was shown, 
visually presenting the overall progress for that game.  

 

In the middle of each game, the hidden target randomly switched to another image. 

This switch was not announced to the participants, and they had to learn the new 

target by trial and error. This target reversal occurred randomly once per game, 

between trials 13 and 17. The reward feedback introduces a first order of uncertainty 

because of its probabilistic nature. 20% of the time, participants received a reward 

when they chose the non-rewarding option, and 20% of the time they did not receive 

a reward when they chose the rewarding option. The hidden target reversal was 

associated with the second order of uncertainty, which occurred randomly and was 

not signalled to the participants. Thus, along with a multidimensional stimulus space, 

multiple orders of uncertainty in the task made it a complex learning environment.  

For every gold star, participants received one point. Within each game, they were 

playing not only to earn as many points as possible but also to reach a goal of 

twenty-one points. After every few trials, participants' goal progress for that game 

was displayed on screen in the form of a goal progress bar. This horizontal progress 

bar is shown for 1500 ms. The goal progress bar was empty at the start of a game, 

indicating no progress. As the participants earned points, the bar filled up from left to 

right with a yellow colour. When participants reached twenty-one points, the bar 

completely filled with green colour, indicating that they had reached their goal and 

the game ended.  
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Figure 2: Hidden target reversal. In about the middle of each game, the hidden target 
changed randomly without warning. Participants had to flexibly identify the occurrence of this 
reversal and learn the new target. 

 

The goal progress bar was shown at specific intervals throughout the game to 

provide feedback on overall progress of the game. In the initial phase of each game, 

during the first eight trials, the goal progress bar was displayed every 2-3 trials. As 

the game progressed and participants accumulated more points, the intervals 

between progress bar appearances increased slightly. Between trials 9-19, the goal 

progress bar was shown every 3-4 trials. From trial 20 onwards, the goal progress 

bar was displayed every 4-5 trials. These structured appearances of the goal 

progress bar provided periodic but non-continuous feedback, ensuring that 

participants could monitor their progress without the feedback being overly frequent 

or distracting. 

 

A key experimental manipulation in the task was controllability, which determined 

whether participants’ performance directly influenced their game success. In 

controllable games, participants’ reward gains directly contributed to goal progress, 

meaning that their choices had a tangible and predictable impact on whether they 

would reach the goal of 21 points and complete the game successfully. Each time 

they received a reward, the goal progress bar would incrementally fill with 1 point, 

allowing them to actively work toward their goal. 

 

In contrast, in uncontrollable games, participants’ reward performance was not 

directly tied to their goal progress. Instead, the goal progress bar changed in a 

pseudo-randomized manner, independent of their actions. The first two goal 

progress updates in uncontrollable games were always set to zero, to quickly 

establish for participants that their choices were not influencing their goal progress. 

Subsequently, the next four progress updates varied randomly between values of 1-

5, meaning that progress was unpredictable and could even temporarily decrease. 

The next eight progress updates varied between 6-15, introducing larger fluctuations 

in progress. Finally, the last four progress updates varied between 16-20. This 

structure ensured that while participants in uncontrollable games still experienced 

progress toward their goal, they did not have agency over how quickly or effectively 

they progressed, introducing an element of uncontrollability. 
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(a)

 
(b)

 
Figure 3: Controllability manipulation. (a) In controllable games (left), the goal progress 

bar directly reflected the points accumulated till that trial. In uncontrollable games (right), the 

goal progress was independent of the points accumulated. (b) Example trajectories of goal 

progress in controllable and uncontrollable games. The top graph shows the switched 

reward probabilities of the hidden targets before and after reversal. The middle graph (blue) 

presents an example goal progression in controllable games, where obtaining a gold star 

adds 1 point to the goal progress, which incrementally fills up the bar. The bottom graph 

(red) shows an example goal progression in uncontrollable games, where the goal progress 

is pseudorandom and independent of gold stars accrued. Note that the goal progress bar 

was shown to participants every few trials only.  

 

Another crucial experimental manipulation involved the valence of goal outcome 

condition, specifically the presence of a shock in certain games. In shock games, 

participants were playing to avoid receiving an aversive but not painful electrical 

shock at the end of the game. The intensity of this electric shock was individually 

calibrated to be uncomfortable and aversive but not painful. If they successfully 
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reached the goal within a shock game, they avoided the shock entirely. However, if 

they failed to reach the goal, they would receive a sequence of three mild shocks 

during the break between games. In contrast, in bonus games, participants were 

playing to earn an additional monetary reward. If they successfully reached the goal 

in a bonus game, they received an extra payment of 10 SEK (approximately 1 Euro). 

If they failed to reach the goal in a bonus game, they did not receive the additional 

monetary reward, although they still earned a base amount of 0.75 SEK per 

rewarded trial regardless of game type. Participants were told that they would earn 

this base rate for all games regardless of the condition or whether they reached the 

goal in games. Combined with the fact that the probabilistic feedback was also 

consistent across controllability and outcome valence, the low-level reward learning 

and incentive to perform was the same for all conditions because the value and 

information of obtaining were equal. 

 

To investigate the interplay between controllability and goal outcome, the study 

employed a fully crossed 2x2 within-subjects design, with four experimental 

conditions: controllable shock, uncontrollable shock, controllable bonus, and 

uncontrollable bonus. Inside the scanner, each participant played 20 games in total, 

with five games per condition. The 20 games were split across 5 runs in the scanner, 

each run having all 4 conditions in a random order. Participants were not explicitly 

informed before each game whether it was controllable or uncontrollable, requiring 

them to infer the nature of the game based on how their goal progress bar changed 

over time. They were informed before the start of each game whether they were 

playing to win a bonus or avoid an electric shock. The order of the games was 

randomized for each participant, ensuring that the sequence of games did not 

influence the results. The participants played five practice games at the beginning 

before going inside the scanner that incrementally introduced each element of the 

task and allowed them to become familiar with the framework.  

 

The task was presented as a scenario in which participants acted as salespeople 

visiting a different fictional city for each game, where they attempted to sell pets 

(represented by animal images) and holidays (represented by landscape images). 

On every trial, they selected one pet and one holiday to sell, with each city favouring 

a particular pet or holiday (i.e., the target image) that would result in a more 

successful sale. A yellow star signified a successful sale while a red cross denoted 

an unsuccessful one. Participants earned a fixed rate of 0.75 SEK per sale, 

regardless of whether the game was a shock or bonus game, or whether it was 

controllable or uncontrollable. Controllable games were framed as cities in which the 

environment was well-organized and predictable, so their sales were reflected in 

their progress towards the goal. Uncontrollable games were framed as cities which 

were corrupt, so that even if they successfully made sales, goal progress was erratic 

and random. They were also informed that the city's preferred item would change 

unexpectedly at some point during each game. After each game, participants 

received feedback detailing the target items, their total sales, and whether they had 

met the criteria to win the bonus or avoid the shock.  
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The number of trials in each game varied naturally, depending on when the target 

reversal occurred (randomly between trial 13 to 17), ensuring that pre- and post-

reversal phases were balanced. Additionally, the length of some games was 

modified to ensure an equal number of successful and unsuccessful games per 

condition. In addition to a fixed base rate of 0.75 SEK per correct sale, a second 

design strategy was employed to ensure motivation remained consistent across 

conditions: a balanced win/loss schedule that ensured each condition contained 

three successful games and two unsuccessful games. In order to ensure this equal 

number of successes, the number of trials in a game was either increased or 

decreased. If a game was needed be unsuccessful to equal the success rate, it was 

cut short just before the participant would have reached the goal. Conversely, to 

ensure success in games that were needed to be successful, the number of trials 

was extended beyond the natural stopping point, and reward probabilities were 

adjusted such that the probability of receiving a reward for choosing the target 

stimulus increased from 80% to 90%, while the probability for non-target stimuli 

decreased from 20% to 10%. Piloting indicated that participants did not notice these 

manipulations. 

 

Uncontrollable games were yoked to a previous controllable game in the same goal 

condition (shock or bonus) to match them in length and success as closely as 

possible. The first uncontrollable game was yoked to the controllable practice game, 

and from then on, each uncontrollable game was yoked to the previous controllable 

game within the same condition from the previous run. If the yoked controllable 

game contained an increased reward probability, the uncontrollable game also had 

its probability increased at the same trial point. 

 

After completing the main experimental phase, participants played two additional 

shock games outside the scanner—one controllable and one uncontrollable. These 

additional games were cut short before reaching the goal of 21 points. Following 

each game, participants rated on a 4-point scale how controllable, frustrating, and 

motivating they found the game, as well as how unpleasant they found the shock. 

These post-task ratings provided further insights into the subjective experience of 

control and its emotional consequences. The task was administered and behavioural 

data was collected using PsychoPy2 (Peirce et al., 2019). 

 

Collected Data 

At the end of the session, participants also completed questionnaires assessing their 

anxiety and depression. To assess state and trait anxiety, participants completed the 

State-Trait Anxiety Inventory (STAI). The STAI consists of two 20-item scales, one 

measuring state anxiety (how anxious participants feel at the moment) and the other 

measuring trait anxiety (how anxious participants generally feel). The fourty items 

rated on a 4-point Likert scale, ranging from "not at all" to "very much so". To assess 

depression, participants completed the Patient Health Questionnaire-9 (PHQ-9). The 

PHQ-9 is a 9-item scale that assesses the severity of depressive symptoms over the 
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past two weeks. These items were also on a 4-point Likert scale rom "never" to 

"almost every day". 

 

Other than MRI, the recorded variables included behavioural data, eye-tracking data, 

and physiological data. Behavioural data consisted of accuracy, coded as 1 for 

correct choices and 0 for incorrect choices, with non-responses excluded from 

analyses. Response times were recorded in milliseconds, along with the chosen 

composite stimulus for computational models. Eye-tracking data was collected using 

a vpixx dataPixx (VPixx Technologies, Canada) eye-tracker at a sampling rate of 

2000 Hz, including pupil diameter (measured in pixels) and x and y gaze coordinates 

(also in pixels). Lastly, physiological data encompassed respiration, which was 

measured using a belt around the waist, and heart rate, which was monitored using 

a pulse oximeter attached to the index finger. These measures were obtained using 

Biopac hardware, and AcqKnowledge software (Biopac Systems Inc., USA).  

 

MRI data were acquired using a Siemens Prisma 3T scanner outfitted with a head-

neck 20-channel coil. Structural imaging was performed using a T1-weighted Turbo 

Flash sequence. The protocol employed a repetition time (TR) of 2.3 seconds and an 

echo time (TE) of 2.98 milliseconds, with an inversion time set at 0.9 seconds. A flip 

angle of 9° was used to optimize the signal, and images were acquired with a slice 

thickness of 1 mm. The image voxels were isotropic, with a resolution of 1 mm3. The 

dimensions were 256 voxels along the j and k axes, and 208 voxels along the i axis. 

This resulted in a field of view of 256 x 208 x 256 mm3. 

 

Functional imaging, designed to capture blood-oxygen-level-dependent (BOLD) 

contrasts, was conducted with a repetition time of 1.86 seconds and an echo time of 

30 milliseconds. A flip angle of 70° was chosen for the BOLD sequence. 62 slices 

were obtained within a volume, for which a slice thickness of 2.2 mm was 

maintained. The order of slice acquisition was a simultaneous multi-slice interleaved 

sequence, in which it used a multiband approach to acquire a pair of slices 

simultaneously while the slices within each of the two bands are acquired in an 

interleaved (odd-even) order. The phase encoding direction was set to j–. The image 

voxels were anisotropic, with a resolution of 2.234 x 2.234 x 2.2 mm3. The image 

was 94 voxels along the i and j axes, and 62 voxels along the k axis. This resulted in 

a field of view of 210 x 210 x 136.4 mm3. 

 

Behavioural Data Analyses 

Behavioural data were analysed using a general linear mixed-effects model using R 

(R Core Team, 2024) in RStudio (Posit team, 2024) with the lme4 package (Bates et 

al., 2015). The model included fixed effects for trial number, controllability, goal 

outcome valence, reversal, and all possible interactions. Subject was included as a 

random effect with different intercepts and slopes for trial number to account for 

individual differences in learning. The dependent variable was accuracy, coded as 0 

for incorrect responses and 1 for correct ones. Controllable games were coded as 

0.5, while uncontrollable games were coded as -0.5. Bonus games were coded as 
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0.5, while shock games were coded as -0.5. Similarly, trials before target reversal 

were coded as 0.5, while those after reversal were coded as -0.5. Trial number was 

scaled to be centred around 0 with a variance of 1.  

 

The model was fit using maximum likelihood estimation, and the significance of fixed 

effects was assessed using Bayesian Information Criteria. Post-hoc comparisons 

were conducted using the emmeans package (Lenth, 2024) with Tukey adjustments 

for multiple comparisons. To explore interactions, post-hoc linear mixed models on 

subsets of data were also conducted. Data preprocessing and cleaning was 

conducted using the tidyverse package (Wickham et al., 2019), and visualizations 

were created using ggplot2 (Wickham, 2011).  

 

Subjective rating of controllability, obtained after playing the extra games at the end 

outside the scanner, was also included as a regressor in some models to explore its 

effect on behaviour. The controllability rating for the uncontrollable game was 

subtracted from the rating of the controllable game to create a difference score. This 

difference score was then scaled to have a mean of 0 and a variance of 1, which 

was then included as a regressor in the model. State anxiety, trait anxiety, and 

depression scores also included as regressors in some models to explore their 

mediation on accuracy. Positively worded items were first reverse coded, so that 

higher scores represented negative affect. These scores were then scaled to have a 

mean of 0 and a variance of 1. The sum for each scale was then included as 

regressors in the model. 

 

Computational Models 

We fitted a series of computational models from two main families to the observed 

choices in the behavioural data: reinforcement learning models and hidden Markov 

models. The best fitting model was used to derive expected values for the chosen 

option on each trial. These expected value estimates were then used as regressors 

in some parts of the fMRI analysis.  

 

Reinforcement learning models were used to capture the learning process in the 

task. These models update the expected value of an option based on the prediction 

error, or the difference between the received outcome and the expected outcome. In 

these models, individuals learn to assign each of the six images with a value, which 

is updated each trial based on the reward feedback. For each composite stimulus, 

the values of both images are linearly added to determine the value of an option at 

each trial. This process is known as feature learning. The basic reinforcement 

learning model includes a learning rate parameter α, which determines the extent to 

which the expected value was updated on each trial based on prediction errors. The 

support for this parameter is from 0 to 1. an α of 0 indicates no learning, meaning 

that there is no updating of feature value based on feedback and prediction error. On 

the other hand, an α of 1 means that the model is overly reliant on rewards, and the 

model wipes out previous value estimates and replaces them with just the current 

reward outcome. The second parameter is the reward sensitivity parameter β, which 
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determines the extent to which the model is sensitive to reward feedback and the 

randomness of choice. The support for this parameter is from 0 to infinity. A β of 0 

makes the model not take into account values and makes the choices fully random, 

while a β approaching infinity indicates that the model is fully deterministic in 

choices. The observation part of the model includes a simple softmax function, which 

converts the expected values into choice probabilities. The 𝛽 is commonly an inverse 

temperature parameter of the softmax function, but parameterizing it as reward 

sensitivity outside the softmax in the learning model is equivalent.  

 

Suppose on trial t a subject is presented with 3 options. Each option j (with j = 1, 2, 

3) is composed of 2 stimuli. Let the indices of the stimuli for option j be given by s1j 

and s2j. The value of option j is computed as the average of the value of the 2 stimuli: 

𝑞𝑗(𝑡)  =  
1

2
[𝑄𝑠1𝑗

(𝑡) + 𝑄𝑠2𝑗
(𝑡)] 

The Q-value is updated each trial. For each stimulus i that is part of the chosen 

option j*, the update rule is: 

Qi(t + 1) = Qi(t) +
1

2
αδ(t)  ∀ i ∈ {𝑠1𝑗∗, 𝑠2𝑗∗}   

Where α is the learning rate, a free parameter. δ(𝑡) is the reward prediction error for 

trial t. It is computed as: 

δ(𝑡) = 𝑟𝑒𝑓𝑓(𝑡) − 𝑞𝑗∗(𝑡) 

Where 𝑞𝑗∗(𝑡) is the value of the chosen option. 𝑟𝑒𝑓𝑓(𝑡) is the effective reward 

obtained at trial t. It is calculated as: 

𝑟𝑒𝑓𝑓(𝑡) = β × 𝑟(𝑡) 

Where β is the reward sensitivity parameter, a free parameter. It is equivalent to the 

inverse temperature parameter used in RL models. 𝑟(𝑡) is the reward obtained on 

trial t.  

Finally, the decision rule uses a softmax function to convert option values 𝑞𝑗(𝑡) to 

choice probabilities. The probability of choosing option j is: 

𝑃(𝑗 | 𝑡) =
𝑒𝑥𝑝(𝑞𝑗(𝑡))

∑ 𝑒𝑥𝑝(𝑞𝑘(𝑡))
3
𝑘=1

 

The first augmentation to this model is adding a second reward sensitivity parameter. 

This second beta comes into effect only on trials where goal progress bar is shown. 

If the progress has increased since the previous time it was shown, the second beta 

increases the value of the effective reward.  This, in turn, updates the value of the 

chosen stimuli. The second augmentation to the simple model is adding a forget 

parameter. This parameter determines the rate at which the value of unchosen 

images decay back to 0.5. This parameter is important because it allows the model 

to forget about the value of unchosen images that are not relevant to the current 
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choice. Using all combinations of these 2 augmentations, we fit the resultant 4 

reinforcement learning models to choice data.  

 

The second class of models that we used are hidden Markov models. The model 

does not learn the value of each image like the reinforcement learning model. 

Instead, it estimates the probability of the hidden target being behind each image. 

Since the target is a hidden state which need to be inferred through reward 

feedback, hidden Markov models are suitable for this kind of estimation. The basic 

hidden Markov model works by updating the probability estimate α𝑡(𝑓𝑖) of each 

image 𝑓𝑖 being the target on observing the feedback. At each trial t, the model 

maintains this belief state vector αt ∈ ℝ6 (0 ≤ α𝑡 ≤ 1 ∀𝑡) over all 6 images. The initial 

belief state for all images is uniform: 

α0(𝑓𝑖) =
1

6
 ∀𝑖 ∈ {1, 2, 3, 4, 5, 6} 

On each trial, the probability of each α(𝑓𝑖) is updated using a Bayesian update rule 

as follows: 

α𝑡
′ (𝑓𝑖) = α𝑡(fi) ⋅ 𝐿𝑖 

Where 𝐿𝑖 is the likelihood that image 𝑓𝑖 is the hidden target. For the 2 images in the 

chosen option, 𝐿𝑖 is computed as: 

𝐿𝑖 = 𝑞⋅𝑟𝑡 + (1 − 𝑞)⋅(1 − 𝑟𝑡) 

Where 𝑞 is a free parameter. It represents the probability of receiving a reward when 

a chosen option includes the hidden target.  

For the remaining 4 images that are not chosen, the likelihood is computed as: 

𝐿𝑖 = (1 − 𝑝) ⋅ 𝑟𝑡 + 𝑝 ⋅ (1 − 𝑟𝑡) 

Where 𝑝 is also a free parameter. It represents the probability of receiving no reward 

when the chosen option does not include the hidden target.  

Both 𝑝 and 𝑞 represent probabilities, and thus have support between 0 and 1. 𝑟𝑡 is 1 

if a reward is received on trial 𝑡, and 0 otherwise.  

After updating with the likelihood, the vector of hidden states is normalized: 

𝛼𝑡
′′(𝑓𝑖) =

𝛼𝑡
′(𝑓𝑖)

∑ 𝛼𝑡
′(𝑓𝑘)

6
𝑘=1

 ∀𝑖 ∈ {1, 2, 3, 4, 5, 6} 

The normalized vector is then multiplied by a transition matrix 𝑇 that maps the 

probability of the hidden target changing from one image to another. As with any 

hidden Markov model, the transition matrix dictates the state evolution: 
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𝑇 =

[
 
 
 
 
 
1 − 5𝜏/6 𝜏/6 𝜏/6 𝜏/6 𝜏/6 𝜏/6

𝜏/6 1 − 5𝜏/6 𝜏/6 𝜏/6 𝜏/6 𝜏/6
𝜏/6 𝜏/6 1 − 5𝜏/6 𝜏/6 𝜏/6 𝜏/6
𝜏/6 𝜏/6 𝜏/6 1 − 5𝜏/6 𝜏/6 𝜏/6
𝜏/6 𝜏/6 𝜏/6 𝜏/6 1 − 5𝜏/6 𝜏/6
𝜏/6 𝜏/6 𝜏/6 𝜏/6 𝜏/6 1 − 5𝜏/6]

 
 
 
 
 

 

Where 𝜏 is a free parameter. 

The probability then is finally calculated as follows: 

𝛼𝑡+1 = 𝛼𝑡
′′ ⋅ 𝑇 

Then, the probability of a choice is made from these hidden states: 

𝑃(𝑐) =
∑ 𝛼𝑡(𝑓𝑐)𝑐

∑ 𝛼𝑡(𝑓𝑖)
6
𝑖=1

 

Where 𝑐 is the composite stimulus consisting of 2 images.  

Two additional parameters can be added to this basic model. These are 𝑝′ and 𝑞′. 

These are analogous to 𝑝 and 𝑞, but only come into effect on trials where the goal 

progress bar is shown. 𝑞′ represents the probability of goal progress increment since 

previous update if chosen option includes hidden target, whereas 𝑝′ represents the 

probability of not observing any goal progress increment since previous update if 

chosen option does not include the hidden target. Thus, adding these parameters 

gives us a total of 2 hidden Markov models.  

 

These models were fit using the HBI toolbox (Piray et al., 2019) in MATLAB (2022b). 

The toolbox uses hierarchical Bayesian inference, which estimates model 

parameters for the entire group along with individual parameter estimates for each 

subject. These estimates are used to create better priors and then estimated 

iteratively. The best model is selected by estimating the best-fitting model for each 

subject and then counting the most frequent model among subjects, giving each 

model’s posterior exceedance probability. 

 

The best-fitting computational model was then used to generate the expected value 

for the chosen option for each trial. This was used as a regressor in fMRI analysis in 

some generalized linear models. Note that population averages of each parameter 

were used to generate the regressor instead of using individual estimates, as this 

has been suggested to be more robust for fMRI analyses (Daw, 2011). This is 

because individual estimates can be noisy, and difference in parameters can result 

in large scaling differences in the beta estimates of individuals, making it difficult to 

draw group level conclusions.  

 

Neuroimaging Analyses 

MRI data were pre-processed using fMRIPrep (v24.0.0) using the following 

command:  
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fmriprep ~/test_bids ~fmriprep_output2 participant --nprocs 24 --omp-nthreads 

24 --mem-mb 150000 --level full --output-spaces MNI152NLin2009cAsym:res-2 --

return-all-components --verbose --resource-monitor  --write-graph --notrack 

 
 

fMRIPrep produces an automated pipeline based on the data, using the most 

advanced tools and methodologies for each step in the preprocessing. The 

anatomical T1-weighted image was first corrected for intensity non-uniformity, and 

then was skull-stripped. Brain tissue segmentation of cerebrospinal fluid, white 

matter, and grey matter were performed on this T1w image, after which brain 

surfaces were reconstructed using FreeSurfer. The estimated brain mask was then 

refined with cortex grey matter segmentations from the surface reconstruction. The 

T1w image was then normalized using nonlinear registration to the 

MNI152NLin2009cAsym space with a resolution of 2 mm3.  

 

The five functional BOLD files per subject were processed as well. Six head motion 

parameters were first estimated, consisting of three translational and three rotational 

parameter estimates for each volume. Then, slice-timing correction was performed 

on the volume, with the middle slice as reference. The reference volume of each 

functional run was co-registered to the T1w reference using boundary-based 

registration, implemented with six degrees of freedom. Various confounding time-

series were calculated in addition to the already estimated head-motion parameters. 

Framewise displacement and global signals within the cerebrospinal fluid, the white 

matter, and the entire brain were some of the important ones used later in analyses. 

Additionally, temporal derivatives and quadratic terms of the head motion 

parameters were also calculated and included as confounds. Finally, all 

transformations were performed in a single interpolation step to minimize 

interpolation error. This step consisted of head motion correction, and co-registration 

to anatomical and standard output space.  

 

Since fMRIPrep does not perform smoothing on the normalized images, the images 

were smoothed outside of fMRIPrep using SPM12 in MATLAB (R2022b) with an 

8mm3 Gaussian kernel. Our data also had small periods of excessive head motion, 

particularly due to the administration of an electric shock. To correct this, we used 

ArtRepair on smoothed images, a toolbox in MATLAB that interpolates frames with 

excessive motion with neighbouring frames, effectively removing the small number of 

“bad” frames while keeping the run usable. These frames were de-weighted by a 

factor of 100 in first-level GLM analyses.  

 

For multivariate analyses an alternative preprocessing pipeline was used because 

the analyses need co-registered but unnormalized images. Since fMRIPrep performs 

all resamplings in a single step, it is not possible to obtain it from fMRIPrep’s 

derivatives. We used SPM12 in MATLAB (R2022b) to perform this preprocessing. 

First, volumes were slice-time corrected, with the 32nd slice being set as the 

reference slice since it is the middle both spatially in a frame and temporally in the 

slice acquisition order. The images were then realigned to the mean and the 
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resliced, producing six realignment parameters consisting of three translational and 

three rotational parameters. Finally, the functional images were co-registered to the 

anatomical T1w image. These unsmoothed images in their native space were then 

fed to first-level generalized linear models (GLMs) for subsequent multivariate 

analyses.  

 

To test the brain representation of controllability and its interaction with outcome 

valence, we performed four first-level GLMs, each testing different aspects of 

controllability. All GLMs were performed using SPM12 in MATLAB (R2022b). 

 

GLM1: This GLM was used to test if a lack of control impacts activation in regions of 

the brain involved in reward processing (striatum) and decision-making (orbitofrontal 

cortex). We also wanted to see if this representation differed by goal outcome. There 

were four regressors of interest at the time of presenting the stimuli. These were 

stimulus onsets in all four types of games: bonus controllable, bonus uncontrollable, 

shock controllable, and shock uncontrollable. Each of the four regressors had a 

parametric modulator that indicated trials with increased reward probability. This 

binary modulator had a value of 1 for trials with increased reward probability, and 0 

for trials before reward probability increased. This was done to account for the 

variance due to reward probability increase at the end of some games, and was not 

of interest for analyses.  

 

There were other regressors for each event in the game, but were not of interest: 

• Reward feedback: presentation of gold star 

• No reward feedback: presentation of red cross 

• No response feedback: presentation of message that says “too slow” 

• Previous goal progress: presentation of the goal progress shown previously 

• Goal updating – controllable games: goal progress bar that increases from 

previous goal incrementally based on performance 

• Goal updating – uncontrollable games: goal progress bar that increases 

pseudorandomly 

• End of game feedback: information such as earnings, success/failure, 

information about the hidden targets for- 

o Bonus games that were failures 

o Bonus games that were successes 

o Shock games that were failures 

o Shock games that were successes 

• Anticipation of outcome: waiting for bonus or shock 

o Waiting for shock on lost shock games 

o Waiting for no shock on won shock games 

o Waiting for no bonus on lost bonus games 

o Waiting for bonus on won bonus games 

• Actual delivery of outcome: bonus on screen or electric shock 

o Shock on lost shock games 

o No shock on won shock games 

o No bonus on lost bonus games 
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o Bonus on won bonus games 

• Game instructions: presentation of an image of a city with a fake name 

• Game instructions specific to bonus games 

• Game instructions specific to shock games 

 

Furthermore, nuisance regressors were also added. To account for head motion and 

other confounds, head motion parameters along with global signals were included. 

Together with the temporal derivatives and quadratic terms, a total of thirty six 

regressors were added. Eighteen physiological regressors derived from respiration 

and pulse data using the PhysIO toolbox (Kasper et al., 2017) were also included.  

In the first level, contrast images for each regressor of interest for each subject was 

created. These contrast images were then used in second level analysis, a 2×2 fully 

crossed within-subjects ANOVA with controllability and outcome valence as the two 

factors. We then looked for significant activations of main effects of controllability and 

valence as well as their interaction on the whole brain. We also performed small 

volume correction for subthreshold activation clusters with the striatum region of 

interest (ROI) and the orbitofrontal cortex (OFC) ROI. The striatum ROI was defined 

by combining the bilateral Caudate and Putamen regions in the Automated 

Anatomical Labelling (AAL) atlas. The OFC ROI included bilateral frontal superior, 

inferior, middle, and medial OFC regions as well as the rectus.  

 

GLM2: The goal of this GLM was to investigate whether the representation of value 

expectation during decision-making is affected by controllability or valence. For 

GLM2 (and GLM3), we used the best-fitting computational model on behavioural 

data to generate regressors for each subject and game. The regressors for GLM2 

are an estimate of the value of the chosen option for each trial. These were used as 

parametric modulators for the same four regressors of interest, except this time we 

did not include trials with increased reward probability in them. Additionally, we also 

removed trials in which participants did not respond from the regressors from interest 

since there was no choice to estimate the value. Each onset of these four regressors 

had a parametric modulator representing the estimated value of the chosen option in 

that trial. For trials with increased reward probability, we created an additional 4 

event regressors. These were not accompanied by any parametric modulator. We 

also added another regressor for trials in which there was no response. Otherwise, 

the remaining event and nuisance regressors were the same as in GLM1. Moreover, 

all five runs were concatenated into one long run for this analysis.  

 

We created first-level contrast images for each subject and condition by weighing a 

condition’s corresponding parametric modulator by 1. These contrast images were 

then fed to a 2×2 within-subjects ANOVA with controllability and valence as the 

factors. The positive effect of all conditions on the contrast estimates was then 

assessed across the whole brain using family-wise error correction. OFC and 

striatum ROI masks were used to get the mean activation across conditions within 

these regions. Binary inclusive masks were created for clusters showing significant 

activation after family-wise error correction. These masks were then used to obtain 

the mean activation in contrast images for each subject and condition. These mean 
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activations were then used in another 2×2 repeated-measures ANOVA to examine 

the significance of the main effects of controllability and valence and their interaction. 

Based on behavioural results we also included their subjective rating of controllability 

in the ANOVA. 

 

GLM3: In GLM3, we checked whether the representation of the value of the chosen 

option at the time of reward feedback differed by controllability or valence. We also 

checked whether the representation of reward at the time of feedback was 

influenced by controllability or valence. GLM3 was specified similarly to GLM2, but 

instead of the four regressors of interest being stimulus presentation onsets, they 

were now reward feedback onset for each condition. The stimulus presentation 

onsets for each condition were collapsed to one regressor. The feedback onset 

regressors had a parametric modulator indicating feedback type (1 for reward, 0 for 

no reward). The regressors also had the same expected value parametric modulator, 

meaning that these regressors were associated with two parametric modulators. 

Since reward reception is known to elicit lots of activity, the modulators were 

orthogonalized so that only the variance unique to the expected value was assigned 

to the second parametric modulator.  

 

Similar to GLM2, first-level contrasts were estimated for each subject and parametric 

modulator. These were then used in two 2×2 ANOVAs, one for reward outcome and 

one for expected value. Significant activations within the striatum and OFC ROIs 

were used to create binary masks. These masks were then used to extract mean 

activation of each subject and condition from contrasts images, to be fed to a 2×2 

ANOVA to investigate the main effects of controllability and valence on expected 

value and reward outcome representations. 

 

GLM4: The first three GLMs performed univariate fMRI analyses, but the last GLM’s 

pipeline incorporated multivariate techniques such as multivariate pattern analysis 

(MVPA) to understand if there was a difference in the voxel patterns by controllability 

or valence. The specification for GLM4 was the same as GLM1, but was performed 

instead on unnormalized and unsmoothed images.  

 

We used The Decoding Toolbox (Hebart et al., 2015) to decode all four conditions 

from voxel patterns. We trained a linear support vector machine on beta maps 

generated from the first-level GLM from four of the five instances of each condition 

and cycled through all for a 5-fold cross validation. We performed searchlight 

analysis across the whole brain with a sphere with a radius of 3 voxels to generate 

brain maps, where the value of each voxel represents accuracy minus chance in the 

model’s ability to accurately classify the condition. This map was then normalized 

and smoothed with an 8mm kernel for group level inferences. A one-sample t-test 

was then done on these normalized to detect voxels that were able to classify better 

than chance significantly across participants. Since participants were explicitly told 

whether they were playing for a bonus or avoid an electric shock, we also did a 

searchlight analysis to classify controllable from uncontrollable games, regardless of 
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outcome valence. Similarly, a one-sample t-test was then performed at the second 

level to see if any voxels were able to classify better than chance.  
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Chapter 3 Results  

 
To understand the effect of controllability on learning, we used a reward learning 

task with a hidden target reversal. As expected, average accuracy dropped after 

reversal, since participants had to identify that a reversal had occurred and re-learn a 

new target. Figure 4 shows the average accuracy across participants for each trial 

number, with a noticeable dip near the middle of the game.  

 

 
Figure 4: Average learning trajectory of the game. Average accuracy for each trial across 
all conditions and participants. Shaded area is the standard error. 

 

A lack of control is associated with helplessness and passive behaviour. Therefore, 

an important part of the task design was to provide correct feedback for each trial 

and match the number of wins across conditions. To ensure that the manipulation 

did not affect their motivation, we tested the difference in ratings of motivation and 

frustration in controllable and uncontrollable games. Paired Wilcoxon signed rank 

tests for both were insignificant (p = 0.232 and p = 1), confirming that any differences 

observed in reward learning were not due to affect or a lack of motivation.  

 

Lack of control impairs learning after reversal, but only in bonus games 

The first question that we asked was whether a perceived lack of control will affect 

reward learning. Learning is most simply quantified as accuracy across trials. To 

answer this question, we ran a generalized logistic mixed model (GLMM) on 

accuracy as the dependent variable with trial number, target reversal, controllability, 

and outcome valence as fixed effects. We also included subject as a random effect, 

allowing for different intercepts for each subject and different slopes for trial to 
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account for individual differences in learning. The results for the model are presented 

in Table 1.  

 

Predictor 
Estima

te 
SE z-value p-value 

Lower 

CI 

Upper 

CI 

(Intercept) 0.204 0.044 4.650 3.32e-06 0.118 0.290 

trial 0.956 0.031 31.068 6.52e-212 0.895 1.016 

reversal 1.938 0.047 41.599 0.00e+00 1.846 2.029 

controllability 0.108 0.046 2.324 0.020115 0.017 0.198 

valence -0.039 0.046 -0.849 0.395682 -0.130 0.051 

trial:reversal -0.169 0.046 -3.644 0.000268 -0.261 -0.078 

trial:controllability -0.050 0.046 -1.079 0.280484 -0.141 0.041 

reversal:controllability -0.146 0.093 -1.576 0.114991 -0.328 0.036 

trial:valence -0.051 0.046 -1.106 0.268754 -0.142 0.040 

reversal:valence -0.048 0.093 -0.520 0.603235 -0.230 0.134 

controllability:valence -0.030 0.093 -0.327 0.74372 -0.212 0.151 

trial:reversal:controllabili

ty 
0.198 0.092 2.142 0.032166 0.017 0.379 

trial:reversal:valence -0.094 0.093 -1.016 0.309695 -0.276 0.088 

trial:controllability:valenc

e 
-0.192 0.093 -2.071 0.038379 -0.373 -0.010 

reversal:controllability:va

lence 
-0.749 0.185 -4.046 5.21e-05 -1.112 -0.386 

trial:reversal:controllabili

ty:valence 
-0.177 0.185 -0.959 0.337449 -0.540 0.185 

Table 1: GLMM results. Table showing all main effects and interactions. The main effect of 

trial and reversal is highly significant. Two-way interaction of trial and reversal, and three-

way interactions of trial × reversal × controllability and reversal × controllability × valence is 

significant.  

 

The main effect of reversal was quite strong, with a large effect size of 1.938 and a 

p-value smaller than machine epsilon. In terms of interactions, we did find a 

significant reversal × trial interaction (estimate = -0.144, p = 2.68 × 10-4). As shown 

in Figure 5, the negative estimate reflected that participants were slower to learn 
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after target reversals. This was expected since participants need to identify the 

occurrence of a reversal and relearn a new target. 

 

 
Figure 5: Learning curves separated by reversal. Participants take some time to find the 
new hidden target, but reach similar levels of accuracy towards the end of each half of the 
game. Shaded areas are standard errors, and the shaded rectangle represents trials with 
smaller sample size due to variable game length. 

 

We predicted that participants’ reward learning would be impaired by a perceived 

lack of control. In the GLMM, this is represented by a negative controllability × 

reversal and a trial × controllability × reversal interaction. The former represents a 

difference in accuracy after reversal in uncontrollable over controllable games, while 

the latter represents uncontrollability affecting learning to a greater degree after 

reversals. The controllability × reversal interaction was not significant (p = 0.115), 

while the controllability × reversal × trial interaction was significant (p = 0.032). 

Follow-up estimated marginal trend contrasts revealed that in uncontrollable games, 

the difference in learning before and after reversal was significant (p = 3.0 × 10-4), 

while in controllable games the difference was not significant (p = 0.704). Post-hoc 

GLMMs on data split by control said the same thing. In uncontrollable games, the 

trial × reversal interaction was significant (estimate = -0.270, p = 4.5 × 10-5), while 

the interaction was not significant in controllable games (p = 0.180). As depicted in 

Figure 6, this indicates that lack of control impaired learning after reversal to a bigger 

extent.  
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Figure 6: Learning difference after reversal by controllability. The learning curves for 
controllable and uncontrollable games are separated before and after reversal. The learning 
curve after reversal in uncontrollable games is lower than in controllable games. The shaded 
areas are standard errors, and the shaded rectangles represent trial numbers for which the 
sample size is smaller due to variable game lengths. 

 

We also found a highly significant controllability x valence x reversal interaction 

(estimate = -0.748, p = 5.21 × 10-5). To investigate this three-way interaction further, 

we computed the estimated marginal means for the model. Pairwise contrasts of all 

possible combinations of conditions were calculated and adjusted for multiple 

comparisons using the Tukey method. All contrasts with differences across reversal 

were highly significant (p < 0.001 for all) due to the strong main effect of reversal. 

However, the contrast of controllability in bonus games after reversal was also 

significant (estimate = -0.353, p = 0.0023). Moreover, the contrast of controllability in 

shock games after reversal was not significant (p = 1.000), as well as the contrast of 

controllability in bonus games before reversal (p = 0.636). Post-hoc GLMMs were 

conducted on data split by outcome valence. In bonus games, the reversal × 

controllability interaction was significant (estimate = -0.515, p = 8.38 × 10-5), while it 

was insignificant (p = 0.085) in shock games. This indicates that there was a 

negative effect of lack of controllability specifically in bonus games after target 

reversal.  

 

To confirm this, we conducted paired t-tests on mean accuracy data. First, we 

calculated the mean difference in mean accuracy before and after reversal in each 

condition for each subject. Then we split the data into controllable and uncontrollable 

games and conducted one-sided paired t-tests comparing the two conditions to see 

its interaction with reversal, quantifying reduction in accuracy after reversal by 

controllability. These tests were done on bonus and shock games separately to 

complete the three-way interaction investigation. In bonus games, the effect of 

controllability on reduction in accuracy after reversal was significant (p = 0.036), a 

lack of control increasing the accuracy drop after reversal. Moreover, this effect was 

not present in shock games (p = 0.162).  As shown in Figure 7, the reduction in 

accuracy after reversal was exacerbated by a lack of control, but only in bonus 
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games and not shock games. Thus, the overall effect of controllability on learning 

after reversal, as seen in Figure 6, seemed to be driven by bonus games only.  

 

 

Figure 7: Mean accuracy per subject for each condition. Blue is for accuracy before 
reversal, while orange is for accuracy after reversal. The left two plots are of bonus games, 
while the right two plots are of shock games. The boxplot represents the median and upper 
and lower quartiles, and the points represent mean accuracy for each subject. The reduction 
in accuracy after reversal increases more in bonus uncontrollable games relative to bonus 
controllable games (p = 0.036). 

 

Our second hypothesis was that a threat of shock would impair learning, quantified 

by a valence × reversal interaction with a negative effect size, indicating worse 

accuracy after a reversal in shock games versus bonus games. This interaction was 

not significant (p = 0.603). We also predicted a positive valence × trial interaction, 

implying worse learning overall due to the threat of shock. This interaction was not 

significant (p = 0.269) too. Finally, we also predicted a three-way valence × trial × 

reversal interaction, indicating that the threat of shock would impair learning more 

after target reversal. This interaction was not significant (p = 0.310).  

 

Our next question was whether the effect of controllability differs when the goal 

outcome is avoidance of an electric shock versus gaining bonus money. We 

predicted that a threat of shock would exacerbate the effect of uncontrollability on 

learning, which would be reflected in a negative controllability × valence interaction. 

This interaction was not significant either (p = 0.744). We did find a marginally 

significant controllability × valence × trial interaction (p = 0.038), but this significance 

disappeared depending on random effects specification. More specifically we also 

predicted that in shock games, uncontrollable conditions would impair learning after 

reversal more than in bonus games. This tentative four-way controllability × valence 

× reversal × trial interaction was not significant (p = 0.337).  
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Subjective perception of control mediates the effect of uncontrollability 

Not everyone perceived the controllability manipulation equally. As shown in Figure 

8, there were differences in the subjective perception of controllability. These ratings 

were obtained in the two extra games (one controllable shock, one uncontrollable 

shock) that participants played at the end outside the scanner, where they rated how 

much they felt in control during that game from a scale of 1 to 4. A Paired Wilcoxon 

signed rank test showed that these controllability ratings were significantly different 

in the extra controllable game from the extra uncontrollable game (p = 0.0005).  

 

 
Figure 8: Subjective ratings of controllability. Ratings of controllability on a 4-point Likert 
scale, with a higher rating indicating a higher sense of control. Red lines indicate participants 
who experienced higher controllability in controllable games compared to uncontrollable 
games, while blue lines indicate participants who experienced higher controllability in 
uncontrollable games. Green lines indicate participants who felt the same sense of control in 
both conditions. 

 

To account for this, we subtracted the self-reported score of sense of control in the 

uncontrollable game from the score in the controllable game, giving us each 

participant's subjective rating of control. A positive value indicates that a participant 

felt more in control in the controllable game relative to the uncontrollable game, with 

the magnitude quantifying the extent of the difference. A value of zero indicates that 

participants experienced equal controllability in both games, while a negative value 

indicates that a participant perceived to be in more control in the uncontrollable 

game. We note that the only negative value observed in the ratings was -1, while the 

positive values ranged from 1 to the maximum possible difference of 3.  This was 

then added as a regressor to the same GLMM as above with this added main factor 

of controllability rating and all possible interactions. We note that this GLMM was not 

included in the main hypotheses and was exploratory.  
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Predictor Estimate SE z-value p-value 
Lower 

CI 

Upper 

CI 

(Intercept) 0.204 0.044 4.661 3.15e-06 0.118 0.290 

trial 0.960 0.031 31.049 1.19e-211 0.900 1.021 

reversal 1.946 0.047 41.666 0.00e+00 1.854 2.037 

controllability 0.109 0.046 2.348 0.01888 0.018 0.200 

valence -0.040 0.046 -0.865 0.38685 -0.131 0.051 

rating 0.048 0.044 1.105 0.269199 -0.038 0.134 

trial:reversal -0.172 0.047 -3.699 0.000217 -0.264 -0.081 

trial:controllability -0.053 0.046 -1.140 0.254174 -0.144 0.038 

reversal:controllability -0.152 0.093 -1.638 0.101344 -0.334 0.030 

trial:valence -0.051 0.047 -1.089 0.276256 -0.142 0.041 

reversal:valence -0.049 0.093 -0.521 0.602341 -0.231 0.134 

controllability:valence -0.032 0.093 -0.346 0.729322 -0.214 0.150 

trial:rating 0.091 0.031 2.881 0.003964 0.029 0.152 

reversal:rating 0.239 0.048 5.021  5.15e-07 0.146 0.332 

controllability:rating 0.115 0.047 2.425 0.015301 0.022 0.207 

valence:rating -0.002 0.047 -0.036 0.971096 -0.095 0.091 

trial:reversal:controlla

bility 
0.201 0.093 2.172 0.029853 0.020 0.383 

trial:reversal:valence -0.097 0.093 -1.043 0.296974 -0.279 0.085 

trial:controllability:vale

nce 
-0.190 0.093 -2.046 0.040779 -0.371 -0.008 

reversal:controllability

:valence 
-0.743 0.186 -4.001 6.31e-05 -1.107 -0.379 

trial:reversal:rating 0.047 0.048 0.985 0.324815 -0.047 0.142 

trial:controllability:rati

ng 
-0.057 0.048 -1.192 0.233397 -0.151 0.037 

reversal:controllability

:rating 
-0.250 0.095 -2.639 0.008321 -0.435 -0.064 
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Predictor Estimate SE z-value p-value 
Lower 

CI 

Upper 

CI 

trial:valence:rating 0.064 0.048 1.329 0.183721 -0.030 0.158 

reversal:valence:ratin

g 
-0.083 0.095 -0.872 0.383232 -0.269 0.103 

controllability:valence:

rating 
0.055 0.095 0.581 0.561234 -0.130 0.240 

trial:reversal:controlla

bility:valence 
-0.179 0.185 -0.967 0.333578 -0.543 0.184 

trial:reversal:controlla

bility:rating 
0.250 0.096 2.608 0.009109 0.062 0.437 

trial:reversal:valence:r

ating 
-0.081 0.096 -0.844 0.398921 -0.269 0.107 

trial:controllability:vale

nce:rating 
-0.026 0.096 -0.271 0.786261 -0.214 0.162 

reversal:controllability

:valence:rating 
-0.069 0.189 -0.365 0.715387 -0.440 0.302 

trial:reversal:controlla

bility:valence:rating 
-0.027 0.191 -0.140 0.888989 -0.402 0.349 

Table 2: Results of the GLMM with controllability rating added as a regressor. In 
addition to the significant main effects and interactions already present in the previous 
model, we also see interactions of controllability rating with trial, reversal, and control. 
Importantly, we also see a significant three-way reversal × controllability × rating and a four-
way trial × reversal × controllability × rating interaction. 

 

As shown in Table 2, in addition to the effects seen in the original model, we 

observed a three-way reversal × controllability × rating and a four-way trial × 

reversal × controllability × rating interaction. Estimated marginal trends for the 

subjective rating of controllability for each combination of conditions were calculated 

from the model. Pairwise contrasts of the estimated slopes—which quantify how 

subjective ratings moderate the drop in accuracy following reversal—revealed that in 

uncontrollable games, the relationship between ratings and accuracy loss differed 

significantly before versus after reversal (p < 0.0001). In other words, in 

uncontrollable games, lower subjective ratings of controllability were associated with 

a greater drop in accuracy after reversal, an effect that was not evident in 

controllable games (p = 0.331).  

 

Similar effects were seen in separate post-hoc models on data split by controllability. 

In uncontrollable games, a reversal × rating interaction was significant (p = 1.25×10-

7), indicating that subjective rating of controllability mediated the reduction in 
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accuracy after reversal. Moreover, this interaction was insignificant in controllable 

games (p = 0.068). Kendall’s correlation tests confirmed the same finding. After 

taking pairwise differences in accuracy after reversal, we correlated this accuracy 

drop with the subjective rating of control. This correlation was significant in 

uncontrollable games (p = 0.031), but not in controllable games (p = 0.648).  

 

 

Figure 9: Pairwise reversal difference by rating. For each subject, the pairwise difference 
in accuracy before and after reversal was taken and was separated by controllable and 
uncontrollable games. Within each condition, the data was split by controllability rating. In 
uncontrollable games, this accuracy difference was correlated with the rating, but was not 
significantly correlated in controllable games. 

 

Brain representation does not differ by controllability or valence 

To find out whether activity in the brain reflected observed behavioural differences, 

we ran four GLMs as detailed in the methods. In the first GLM, we predicted 

differences in activity due to the main effects of controllability and valence as well as 

their interaction within the orbitofrontal cortex and striatum. After correcting for 

family-wise errors, the mean activity for all conditions was present throughout many 

areas of the brain, such as the visual cortex, frontal cortex, medial prefrontal cortex, 

striatum, and others.  

 

Activity across conditions in the brain, however, was quite similar. Even within 

prespecified OFC and striatum ROI masks, there were no voxels in the OFC or 

striatum that differed significantly by main effects of controllability/valence or their 

interaction.  
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Figure 10: Group-level activation for GLM1. Mean activity across conditions associated 
with stimulus presentation in the first GLM. Activation was observed across multiple areas in 
the brain, but no difference in activity across conditions. 

 

The second GLM associated the expected value of each choice at the time of 

stimulus presentation with BOLD activity. The expected value was generated from 

the best-fitting computational model, the basic hidden Markov model with three free 

parameters 𝑝, 𝑞, and 𝜏. The expected value for the chosen option at each trial was 

generated by summing the probabilities of each of the two images being the hidden 

target. After adjusting for family-wise error at the group level, a large cluster of 2700 

voxels located in the ventromedial prefrontal cortex was found. Additionally, two 

clusters of 1053 and 1282 voxels were found to be significant in the left and right 

lateral OFC respectively. The left and right striatum were active too, with significant 

clusters of 661 and 791 voxels respectively. These clusters were used to create 

binary masks, and the mean activity within these clusters was extracted for each 

subject and condition’s contrast image. The ANOVA performed on mean activity in 

the vmPFC or bilateral OFC revealed no significant predictors. The ANOVA 

performed on the striatum showed controllability as a significant predictor (p = 0.03), 

and the follow-up paired t-test was also significant (p = 0.047). There was also a 

significant controllability × valence × rating interaction (p = 0.034), but follow-up 

estimated marginal trends and post-hoc ANOVAs uncovered no differences. 

 



48 
 

  

Figure 11: Mean Activity for GLM2. Activation in the orbitofrontal cortex (left) and the 
striatum (right) associated with the expected value of the chosen option at the time of 
stimulus presentation in each trial. The orbitofrontal cortex contained three clusters, one in 
the ventromedial prefrontal cortex and two in the lateral orbitofrontal cortex. The striatum 
was also bilaterally activated, especially the caudate nucleus. 

 

In GLM3, the activity associated with the expected value of choice at the time of 

reward feedback was similar to GLM2. The vmPFC cluster of size 2603 voxels did 

not differ by any condition. The lateral OFC clusters of size 1222 and 899 voxels did 

not differ by conditions, either. The ANOVA performed on the striatum clusters of 

size 747 and 778 voxels did not show significant effects for controllability (p = 0.064) 

and controllability × valence × rating (p = 0.094). The reward outcome signal at the 

time of reward feedback presentation was present in the OFC in a singular cluster of 

6526 voxels; meanwhile, in the striatum, it was present bilaterally in voxels of sizes 

704 and 705. In both regions, mean activity associated with reward feedback did not 

differ by controllability, valence, controllability ratings, or any of their interactions. 

  

(a) 

  



49 
 

(b) 

  
Figure 12: Mean BOLD Activation for GLM3. (a) The mean activity associated with the 
expected value of the chosen option at the time of reward feedback in the orbitofrontal cortex 
(left) and the striatum (right). The pattern of significant clusters is very similar to the one in 
GLM2, implying that the representation does not differ much from the time of stimulus 
presentation. The mean activity also does not differ significantly across conditions. (b) The 
mean activity associated with reward outcome at the time of reward feedback in the 
orbitofrontal cortex (left) and the striatum (right), which also does not differ across conditions. 

 

The final GLM was run to assess if patterns of voxel activity in the brain could predict 

the condition being experienced. Whole brain searchlight analysis using beta maps 

from the first-level GLM did not uncover any voxels that could predict a condition 

above chance (25%) significantly across participants. Searchlight analysis that 

trained on binary classification, i.e., to be able to classify controllable from 

uncontrollable games also did not give any voxels above chance (50%) that could 

predict controllability.                                                                   
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Chapter 4 Discussion  

 
In this study, we examined whether a lack of control affects how people learn from 

rewards using a probabilistic reversal learning task. We found that uncontrollability 

significantly impaired learning following hidden target reversals, but notably, this 

effect was restricted to games played for monetary bonuses rather than avoidance of 

electric shocks. Moreover, participants' subjective perceptions of controllability 

mediated this impairment across both bonus and shock games, with stronger beliefs 

in uncontrollability leading to more pronounced deficits in adapting after reversal. 

Despite these clear behavioural impacts, our neuroimaging analyses revealed no 

significant differences in brain activation patterns related to controllability or goal 

outcome valence within regions of interest, namely the orbitofrontal cortex and the 

striatum. 

 

As expected, the effect of reversal was quite strong, with a drop in mean accuracy 

after reversal in most conditions. Reduction in accuracy after reversal was more 

pronounced in uncontrollable games over controllable ones, but this effect was 

driven by bonus games. This is because we found that in bonus games, 

uncontrollability exacerbated the impact of reversal, but this wasn’t present in shock 

games. This was contrary to our prediction that a threat of shock would increase the 

effect of uncontrollability on learning. We had also predicted that the threat of shock 

would impair learning after reversal in general, but neither hypothesis was seen. 

Although the threat of shock has been shown to impair learning (Ballard et al., 2019), 

it is also possible that it increases motivation to perform. This has some support in 

the literature, as a study found that Parkinson’s disease patients not on 

dopaminergic medication showed increased vigour in response to avoiding a shock 

compared to gaining money (Shiner et al., 2012). Another study in healthy subjects 

found increased vigour when faced with an instantaneous threat of punishment in the 

form of potential monetary loss (Griffiths and Beierholm, 2017).   

 

It is not just the lack of objective control, but the subjective perception of control that 

affects decision-making too (Wang and Delgado, 2019). Furthermore, there was a lot 

of variation in the perception of controllability, we also performed another model with 

participants’ ratings of how much they felt in control. These controllability ratings 

mediated the effect of the control manipulation. The more participants believed in the 

manipulation, the worse they performed after the reversal in uncontrollable games. 

Their belief did not impact their performance after the target reversal in controllable 

games, suggesting that it was not just a lack of control but the subjective belief in 
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control that affected learning. Taken together, the results point to a clear effect of 

perceived controllability on flexibility in learning.  

 

To explore the neural representations of controllability, we ran four GLMs to test 

different facets of brain activity underlying altered reward learning. Because we had 

behavioural evidence that the subjective belief about controllability affected the 

ability to learn after reversal, we expected to see differences in activity across 

controllability. As shown in the results, we observed a lot of activity associated with 

events in the task. Areas like the visual cortex, frontal cortex, medial and lateral 

prefrontal cortex, striatum, etc. were significantly active during stimulus presentation. 

Multidimensional features, probabilistic feedback, hidden target reversal, and 

controllability manipulations made for a rich and dynamic task environment, so it is 

not surprising that we observed widespread neural activity. However, we did not 

detect any brain regions with significant differences in activation when comparing 

controllable versus uncontrollable games or bonus versus shock games.   

 

The expected value of the choice signal (as predicted by the hidden Markov model) 

at the moment of both stimulus presentation and reward feedback was associated 

with a lot of activity, including the orbitofrontal cortex and the striatum. The 

ventromedial prefrontal cortex within the OFC is thought to represent the value of 

choices as well as outcomes, so it was reassuring to observe a significant activation 

cluster in the vmPFC that represented the expected value both at the time of 

presentation of the options and feedback. Reception of reward is also known to elicit 

lots of activity in the brain, so it was expected to see activity associated with reward 

outcome in the OFC and the striatum.  

 

However, no significant differences in conditions were observed in all three 

univariate analyses, especially in the OFC. This could be due to more subtle or 

distributed effects of controllability despite the clear behavioural differences. As 

stated before, the task is complex and quite demanding, which could result in neural 

responses dominating over any representations of controllability.  

Moreover, it could be a specification issue, since one beta was estimated for all trials 

in a game. Behaviourally, we observed that the effect of reversal on accuracy was 

quite strong, so perhaps specifying reversal explicitly or estimating when each 

participant detects reversal could uncover differences in the neural activity that 

drives differences in behaviour.  

 

There were no differences observed in the representation of expected value by 

controllability either at the time of stimulus presentation or reward feedback, which 

indicates that the actual value representation is not affected. The differences in 

learning could then be because these values are used to a lesser extent in the 

computations underlying decision-making. This is interesting because the motivation 

to learn was kept constant across conditions, as participants were told that they 

would be rewarded with money for each gold star they received, irrespective of the 
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condition and independently of what the goal progress is. The value and information 

of each trial were thus designed to be kept constant, in concordance with our finding 

that the value representation does not differ by condition. Participants performed 

worse when they perceived a lack of control, even if the representation of value was 

unaffected. This could suggest that if one believes that their choices do not matter 

(due to perceived uncontrollability), one may care less about the values, and use 

them to guide learning.   

 

The beta maps generated from the fourth GLM were used to train support vector 

machines to detect differences in voxel pattern activity, going beyond simple activity 

means of univariate analyses to multivariate techniques. Here, too, no voxels were 

able to predict and differentiate between conditions above chance at a group level. 

Despite using cross-validation, the problem here was that there was too little data—

only four games per condition for training and one for testing. We tried to estimate 

separate beta maps for each trial to increase data points, but the inter-stimulus 

interval was only 2.36 seconds on average. Since the peak latency of the canonical 

haemodynamic response function is about 4-6 seconds, it was difficult for the 

algorithm to deconvolve individual trials from the BOLD activity. This resulted in 

highly correlated estimates, an issue not solved even by estimating alternate trials. 

Preliminary representational similarity analyses (not reported in results) using 

correlation-based similarity matrices also revealed that the patterns of each of the 

four conditions were extremely similar to each other. Perhaps if the trials were 

dissociable or if there were more games per condition, MVPA and RSA would be 

able to detect any differences in patterns of voxel activity (if at all they actually exist).  

 

In the future, functional connectivity analyses might provide more insight into the 

neural activity underlying learning impairments observed. Graph-theory-based 

functional connectivity toolboxes (Mijalkov et al., 2017) offer a variety of network 

parameters to quantify. We note that these analyses would be purely exploratory, as 

no predetermined hypotheses were set a priori. On the behavioural side, eye-

tracking data collected during the fMRI scans could be analysed to find the effect of 

controllability on attention and arousal and their interaction with learning. And finally 

on the computational side, model comparison could be used to test whether there is 

evidence for separate model parameters for controllable and uncontrollable games.  

Overall, we found support for the hypothesis that a lack of control, a pre-clinical 

factor, was enough to impair flexible reward learning in healthy people. More 

importantly, it was not just the existence of objective uncontrollability, but their 

subjective belief in controllability that mediated this impairment. This has implications 

for our understanding of uncontrollability as a contributor to learning deficits 

observed in stress and stress-related disorders and perhaps as a potential 

therapeutic target for behavioural treatment strategies.  

 



53 
 

References  
Abercrombie, ED, Keefe, KA, DiFrischia, DS, and Zigmond, MJ (1989). Differential 

Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and 

Medial Frontal Cortex. J Neurochem 52, 1655–1658. 

Amarante, LM, and Laubach, M (2014). For Better or Worse: Reward Comparison by 

the Ventromedial Prefrontal Cortex. Neuron 82, 1191–1193. 

Ballard, T, Sewell, DK, Cosgrove, D, and Neal, A (2019). Information Processing 

Under Reward Versus Under Punishment. Psychol Sci 30, 757–764. 

Bandura, A (1977). Self-efficacy: Toward a unifying theory of behavioral change. 

Psychol Rev 84, 191–215. 

Bates, D, Mächler, M, Bolker, B, and Walker, S (2015). Fitting Linear Mixed-Effects 

Models Using lme4. J Stat Softw 67, 1–48. 

de Berker, AO, Tirole, M, Rutledge, RB, Cross, GF, Dolan, RJ, and Bestmann, S 

(2016). Acute stress selectively impairs learning to act. Sci Rep 6, 29816. 

Bogdan, R, and Pizzagalli, DA (2006). Acute Stress Reduces Reward 

Responsiveness: Implications for Depression. Biol Psychiatry 60, 1147–1154. 

Bogdan, R, Santesso, DL, Fagerness, J, Perlis, RH, and Pizzagalli, DA (2011). 

Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Genetic Variation and 

Stress Interact to Influence Reward Learning. J Neurosci 31, 13246–13254. 

Boorman, ED, Behrens, TEJ, Woolrich, MW, and Rushworth, MFS (2009). How 

Green Is the Grass on the Other Side? Frontopolar Cortex and the Evidence in 

Favor of Alternative Courses of Action. Neuron 62, 733–743. 

Bredemeier, K, Warren, SL, Berenbaum, H, Miller, GA, and Heller, W (2016). 

Executive function deficits associated with current and past major depressive 

symptoms. J Affect Disord 204, 226–233. 

Brown, VM, Zhu, L, Solway, A, Wang, JM, McCurry, KL, King-Casas, B, and Chiu, 

PH (2021). Reinforcement Learning Disruptions in Individuals With Depression and 

Sensitivity to Symptom Change Following Cognitive Behavioral Therapy. JAMA 

Psychiatry 78, 1113–1122. 

Burton, AC, Nakamura, K, and Roesch, MR (2015). From ventral-medial to dorsal-

lateral striatum: Neural correlates of reward-guided decision-making. Neurobiol 

Learn Mem 117, 51–59. 

Cabib, S, Ventura, R, and Puglisi-Allegra, S (2002). Opposite imbalances between 

mesocortical and mesoaccumbens dopamine responses to stress by the same 

genotype depending on living conditions. Behav Brain Res 129, 179–185. 

Chib, VS, Rangel, A, Shimojo, S, and O’Doherty, JP (2009). Evidence for a Common 

Representation of Decision Values for Dissimilar Goods in Human Ventromedial 

Prefrontal Cortex. J Neurosci 29, 12315–12320. 



54 
 

Chrapusta, SJ, Wyatt, RJ, and Masserano, JM (1997). Effects of Single and 

Repeated Footshock on Dopamine Release and Metabolism in the Brains of Fischer 

Rats. J Neurochem 68, 2024–2031. 

Chung, D, Orloff, MA, Lauharatanahirun, N, Chiu, PH, and King-Casas, B (2020). 

Valuation of peers’ safe choices is associated with substance-naïveté in 

adolescents. Proc Natl Acad Sci 117, 31729–31737. 

Cooper, JC, Kreps, TA, Wiebe, T, Pirkl, T, and Knutson, B (2010). When Giving Is 

Good: Ventromedial Prefrontal Cortex Activation for Others’ Intentions. Neuron 67, 

511–521. 

Cuadra, G, Zurita, A, Lacerra, C, and Molina, V (1999). Chronic stress sensitizes 

frontal cortex dopamine release in response to a subsequent novel stressor: reversal 

by naloxone. Brain Res Bull 48, 303–308. 

Daw, ND (2011). Trial-by-trial data analysis using computational models. In: Decision 

Making, Affect, and Learning, Oxford University Press. 

Daw, ND, Niv, Y, and Dayan, P (2005). Uncertainty-based competition between 

prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8, 

1704–1711. 

Del Arco, A, and Mora, F (2008). Prefrontal cortex–nucleus accumbens interaction: 

In vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol 

Biochem Behav 90, 226–235. 

Dickerson, SS, and Kemeny, ME (2004). Acute Stressors and Cortisol Responses: A 

Theoretical Integration and Synthesis of Laboratory Research. Psychol Bull 130, 

355–391. 

Dorfman, HM, and Gershman, SJ (2019). Controllability governs the balance 

between Pavlovian and instrumental action selection. Nat Commun 10, 5826. 

Drummond, N, and Niv, Y (2020). Model-based decision making and model-free 

learning. Curr Biol 30, R860–R865. 

Ferster, CB, and Skinner, BF (1957). Schedules of reinforcement, East Norwalk, CT, 

US: Appleton-Century-Crofts. 

Gagne, C, Zika, O, Dayan, P, and Bishop, SJ (2020). Impaired adaptation of learning 

to contingency volatility in internalizing psychopathology. eLife 9, e61387. 

Gallagher, MW, Bentley, KH, and Barlow, DH (2014a). Perceived Control and 

Vulnerability to Anxiety Disorders: A Meta-analytic Review. Cogn Ther Res 38, 571–

584. 

Gallagher, MW, Naragon-Gainey, K, and Brown, TA (2014b). Perceived Control is a 

Transdiagnostic Predictor of Cognitive–Behavior Therapy Outcome for Anxiety 

Disorders. Cogn Ther Res 38, 10–22. 



55 
 

Gao, W, Yan, X, Chen, Y, Yang, J, and Yuan, J (2025). Situation covariation and 

goal adaptiveness? The promoting effect of cognitive flexibility on emotion regulation 

in depression. Emotion 25, 18–32. 

Giorgi, O, Lecca, D, Piras, G, Driscoll, P, and Corda, MG (2003). Dissociation 

between mesocortical dopamine release and fear-related behaviours in two 

psychogenetically selected lines of rats that differ in coping strategies to aversive 

conditions. Eur J Neurosci 17, 2716–2726. 

Goldfarb, EV, Froböse, MI, Cools, R, and Phelps, EA (2017). Stress and Cognitive 

Flexibility: Cortisol Increases Are Associated with Enhanced Updating but Impaired 

Switching. J Cogn Neurosci 29, 14–24. 

Gradin, VB, Kumar, P, Waiter, G, Ahearn, T, Stickle, C, Milders, M, Reid, I, Hall, J, 

and Steele, JD (2011). Expected value and prediction error abnormalities in 

depression and schizophrenia. Brain 134, 1751–1764. 

Grahek, I, Everaert, J, Krebs, RM, and Koster, EHW (2018). Cognitive Control in 

Depression: Toward Clinical Models Informed by Cognitive Neuroscience. Clin 

Psychol Sci 6, 464–480. 

Griffiths, B, and Beierholm, UR (2017). Opposing effects of reward and punishment 

on human vigor. Sci Rep 7, 42287. 

Guitart-Masip, M, Walsh, A, Dayan, P, and Olsson, A (2023). Anxiety associated with 

perceived uncontrollable stress enhances expectations of environmental volatility 

and impairs reward learning. Sci Rep 13, 18451. 

Halahakoon, DC, Kieslich, K, O’Driscoll, C, Nair, A, Lewis, G, and Roiser, JP (2020). 

Reward-processing behavior in depressed participants relative to healthy volunteers: 

A systematic review and meta-analysis. JAMA Psychiatry 77, 1286–1295. 

Hammen, C (2005). Stress and Depression. Annu Rev Clin Psychol 1, 293–319. 

Hammen, CL (2015). Stress and depression: old questions, new approaches. Curr 

Opin Psychol 4, 80–85. 

Hare, TA, O’Doherty, J, Camerer, CF, Schultz, W, and Rangel, A (2008). 

Dissociating the Role of the Orbitofrontal Cortex and the Striatum in the Computation 

of Goal Values and Prediction Errors. J Neurosci 28, 5623–5630. 

Hartley, CA, Gorun, A, Reddan, MC, Ramirez, F, and Phelps, EA (2014). Stressor 

controllability modulates fear extinction in humans. Neurobiol Learn Mem 113, 149–

156. 

Hartogsveld, B, van Ruitenbeek, P, Quaedflieg, CWEM, and Smeets, T (2020). 

Balancing Between Goal-Directed and Habitual Responding Following                     

Acute Stress. Exp Psychol 67, 99–111. 

Hebart, MN, Görgen, K, and Haynes, J-D (2015). The Decoding Toolbox (TDT): a 

versatile software package for multivariate analyses of functional imaging data. Front 

Neuroinformatics 8. 



56 
 

Hikosaka, O, Nakamura, K, and Nakahara, H (2006). Basal ganglia orient eyes to 

reward. J Neurophysiol 95, 567–584. 

Hiroto, DS, and Seligman, ME (1975). Generality of learned helplessness in man. J 

Pers Soc Psychol 31, 311–327. 

Huys, QJ, Pizzagalli, DA, Bogdan, R, and Dayan, P (2013). Mapping anhedonia onto 

reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3, 12. 

Joormann, J, and Gotlib, IH (2006). Is this happiness I see? Biases in the 

identification of emotional facial expressions in depression and social phobia. J 

Abnorm Psychol 115, 705–714. 

Karsh, N, and Eitam, B (2015). I control therefore I do: Judgments of agency 

influence action selection. Cognition 138, 122–131. 

Kasper, L, Bollmann, S, Diaconescu, AO, Hutton, C, Heinzle, J, Iglesias, S, Hauser, 

TU, Sebold, M, Manjaly, Z-M, Pruessmann, KP, et al. (2017). The PhysIO Toolbox 

for Modeling Physiological Noise in fMRI Data. J Neurosci Methods 276, 56–72. 

Katz, RJ (1982). Animal model of depression: Pharmacological sensitivity of a 

hedonic deficit. Pharmacol Biochem Behav 16, 965–968. 

Katz, RJ, Roth, KA, and Carroll, BJ (1981). Acute and chronic stress effects on open 

field activity in the rat: Implications for a model of depression. Neurosci Biobehav 

Rev 5, 247–251. 

Kendler, KS, Hettema, JM, Butera, F, Gardner, CO, and Prescott, CA (2003). Life 

Event Dimensions of Loss, Humiliation, Entrapment, and Danger in the Prediction of 

Onsets of Major Depression and Generalized Anxiety. Arch Gen Psychiatry 60, 789–

796. 

Knutson, B, Fong, GW, Adams, CM, Varner, JL, and Hommer, D (2001). 

Dissociation of reward anticipation and outcome with event-related fMRI. 

NeuroReport 12, 3683. 

Koolhaas, JM, Bartolomucci, A, Buwalda, B, de Boer, SF, Flügge, G, Korte, SM, 

Meerlo, P, Murison, R, Olivier, B, Palanza, P, et al. (2011). Stress revisited: A critical 

evaluation of the stress concept. Neurosci Biobehav Rev 35, 1291–1301. 

Kumar, P, Waiter, G, Ahearn, T, Milders, M, Reid, I, and Steele, JD (2008). 

Abnormal temporal difference reward-learning signals in major depression. Brain 

131, 2084–2093. 

Lebreton, M, Jorge, S, Michel, V, Thirion, B, and Pessiglione, M (2009). An 

Automatic Valuation System in the Human Brain: Evidence from Functional 

Neuroimaging. Neuron 64, 431–439. 

Lenth, RV (2024). emmeans: Estimated marginal means, aka least-squares means. 

Leong, YC, Radulescu, A, Daniel, R, DeWoskin, V, and Niv, Y (2017). Dynamic 

Interaction between Reinforcement Learning and Attention in Multidimensional 

Environments. Neuron 93, 451–463. 



57 
 

Leotti, LA, and Delgado, MR (2014). The Value of Exercising Control Over Monetary 

Gains and Losses. Psychol Sci 25, 596–604. 

Leotti, LA, Iyengar, SS, and Ochsner, KN (2010). Born to choose: the origins and 

value of the need for control. Trends Cogn Sci 14, 457–463. 

Levy, DJ, and Glimcher, PW (2011). Comparing apples and oranges: using reward-

specific and reward-general subjective value representation in the brain. J Neurosci 

Off J Soc Neurosci 31, 14693–14707. 

Maier, SF (2015). Behavioral control blunts reactions to contemporaneous and future 

adverse events: Medial prefrontal cortex plasticity and a corticostriatal network. 

Neurobiol Stress 1, 12–22. 

Maier, SF, Amat, J, Baratta, MV, Paul, E, and Watkins, LR (2006). Behavioral 

control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci 8, 397–

406. 

Matsumoto, K, Suzuki, W, and Tanaka, K (2003). Neuronal correlates of goal-based 

motor selection in the prefrontal cortex. Science 301, 229–232. 

McClure, SM, Laibson, DI, Loewenstein, G, and Cohen, JD (2004). Separate Neural 

Systems Value Immediate and Delayed Monetary Rewards. Science 306, 503–507. 

McNamee, D, Rangel, A, and O’Doherty, JP (2013). Category-dependent and 

category-independent goal-value codes in human ventromedial prefrontal cortex. Nat 

Neurosci 16, 479–485. 

Mijalkov, M, Kakaei, E, Pereira, JB, Westman, E, Volpe, G, and Initiative,  for the 

ADN (2017). BRAPH: A graph theory software for the analysis of brain connectivity. 

PLOS ONE 12, e0178798. 

Min, S, Mazurka, R, Pizzagalli, DA, Whitton, AE, Milev, RV, Bagby, RM, Kennedy, 

SH, and Harkness, KL (2024). Stressful Life Events and Reward Processing in 

Adults: Moderation by Depression and Anhedonia. Depress Anxiety 2024, 8853631. 

Moscarello, JM, and Hartley, CA (2017). Agency and the Calibration of Motivated 

Behavior. Trends Cogn Sci 21, 725–735. 

Mukherjee, D, Filipowicz, ALS, Vo, K, Satterthwaite, TD, and Kable, JW (2020). 

Reward and punishment reversal-learning in major depressive disorder. J Abnorm 

Psychol 129, 810–823. 

Murphy, FC, Michael, A, and Sahakian, BJ (2012). Emotion modulates cognitive 

flexibility in patients with major depression. Psychol Med 42, 1373–1382. 

Must, A, Horvath, S, Nemeth, VL, and Janka, Z (2013). The Iowa Gambling Task in 

depression – what have we learned about sub-optimal decision-making strategies? 

Front Psychol 4. 

Neubert, F-X, Mars, RB, Sallet, J, and Rushworth, MFS (2015). Connectivity reveals 

relationship of brain areas for reward-guided learning and decision making in human 

and monkey frontal cortex. Proc Natl Acad Sci 112, E2695–E2704. 



58 
 

Noonan, MP, Kolling, N, Walton, ME, and Rushworth, MFS (2012). Re-evaluating 

the role of the orbitofrontal cortex in reward and reinforcement. Eur J Neurosci 35, 

997–1010. 

O’Doherty, J, Kringelbach, ML, Rolls, ET, Hornak, J, and Andrews, C (2001). 

Abstract reward and punishment representations in the human orbitofrontal cortex. 

Nat Neurosci 4, 95–102. 

O’Doherty, JP, Dayan, P, Friston, K, Critchley, H, and Dolan, RJ (2003). Temporal 

Difference Models and Reward-Related Learning in the Human Brain. Neuron 38, 

329–337. 

Otto, AR, Raio, CM, Chiang, A, Phelps, EA, and Daw, ND (2013). Working-memory 

capacity protects model-based learning from stress. Proc Natl Acad Sci 110, 20941–

20946. 

Overmier, JB, and Seligman, ME (1967). Effects of inescapable shock upon 

subsequent escape and avoidance responding. J Comp Physiol Psychol 63, 28–33. 

Padoa-Schioppa, C, and Assad, JA (2006). Neurons in the orbitofrontal cortex 

encode economic value. Nature 441, 223–226. 

Paret, C, and Bublatzky, F (2020). Threat rapidly disrupts reward reversal learning. 

Behav Res Ther 131, 103636. 

Pavlov, IP (1927). Conditioned reflexes: an investigation of the physiological activity 

of the cerebral cortex, Oxford, England: Oxford Univ. Press. 

Peirce, J, Gray, JR, Simpson, S, MacAskill, M, Höchenberger, R, Sogo, H, Kastman, 

E, and Lindeløv, JK (2019). PsychoPy2: Experiments in behavior made easy. Behav 

Res Methods 51, 195–203. 

Petzold, A, Plessow, F, Goschke, T, and Kirschbaum, C (2010). Stress reduces use 

of negative feedback in a feedback-based learning task. Behav Neurosci 124, 248–

255. 

Piray, P, Dezfouli, A, Heskes, T, Frank, MJ, and Daw, ND (2019). Hierarchical 

Bayesian inference for concurrent model fitting and comparison for group studies. 

PLoS Comput Biol 15, e1007043. 

Pizzagalli, DA (2014). Depression, Stress, and Anhedonia: Toward a Synthesis and 

Integrated Model. Annu Rev Clin Psychol 10, 393–423. 

Plassmann, H, O’Doherty, J, and Rangel, A (2007). Orbitofrontal Cortex Encodes 

Willingness to Pay in Everyday Economic Transactions. J Neurosci 27, 9984–9988. 

Plessow, F, Fischer, R, Kirschbaum, C, and Goschke, T (2011). Inflexibly focused 

under stress: Acute psychosocial stress increases shielding of action goals at the 

expense of reduced cognitive flexibility with increasing time lag to the stressor. J 

Cogn Neurosci 23, 3218–3227. 

Posit team (2024). RStudio: Integrated development environment for R, Boston, MA: 

Posit Software, PBC. 



59 
 

R Core Team (2024). R: a language and environment for statistical computing, 

Vienna, Austria: R Foundation for Statistical Computing. 

Rescorla, RA, and Wagner, AR (1972). A theory of Pavlovian conditioning: 

Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical 

Conditioning II: Current Research and Theory. 

Reynolds, JNJ, and Wickens, JR (2002). Dopamine-dependent plasticity of 

corticostriatal synapses. Neural Netw 15, 507–521. 

Robinson, OJ, Cools, R, Carlisi, CO, Sahakian, BJ, and Drevets, WC (2012). Ventral 

Striatum Response During Reward and Punishment Reversal Learning in 

Unmedicated Major Depressive Disorder. Am J Psychiatry 169, 152–159. 

Roesch, MR, and Olson, CR (2004). Neuronal Activity Related to Reward Value and 

Motivation in Primate Frontal Cortex. Science 304, 307–310. 

Rossetti, ZL, Lai, M, Hmaidan, Y, and Gessa, GL (1993). Depletion of mesolimbic 

dopamine during behavioral despair: Partial reversal by chronic imipramine. Eur J 

Pharmacol 242, 313–315. 

Rotter, JB (1966). Generalized expectancies for internal versus external control of 

reinforcement. Psychol Monogr Gen Appl 80, 1–28. 

Rupprechter, S, Stankevicius, A, Huys, QJM, Steele, JD, and Seriès, P (2018). Major 

Depression Impairs the Use of Reward Values for Decision-Making. Sci Rep 8, 

13798. 

Rutledge, RB, Moutoussis, M, Smittenaar, P, Zeidman, P, Taylor, T, Hrynkiewicz, L, 

Lam, J, Skandali, N, Siegel, JZ, Ousdal, OT, et al. (2017). Association of Neural and 

Emotional Impacts of Reward Prediction Errors With Major Depression. JAMA 

Psychiatry 74, 790–797. 

Samejima, K, Ueda, Y, Doya, K, and Kimura, M (2005). Representation of Action-

Specific Reward Values in the Striatum. Science 310, 1337–1340. 

Sanchis-Segura, C, Spanagel, R, Henn, FA, and Vollmayr, B (2005). Reduced 

sensitivity to sucrose in rats bred for helplessness: a study using the matching law. 

Behav Pharmacol 16, 267. 

Schuck, NW, Cai, MB, Wilson, RC, and Niv, Y (2016). Human Orbitofrontal Cortex 

Represents a Cognitive Map of State Space. Neuron 91, 1402–1412. 

Schultz, W (1998). Predictive Reward Signal of Dopamine Neurons. J Neurophysiol 

80, 1–27. 

Schultz, W, Apicella, P, and Ljungberg, T (1993). Responses of monkey dopamine 

neurons to reward and conditioned stimuli during successive steps of learning a 

delayed response task. J Neurosci 13, 900–913. 

Schultz, W, Dayan, P, and Montague, PR (1997). A neural substrate of prediction 

and reward. Science 275, 1593–1599. 



60 
 

Seligman, ME, and Maier, SF (1967). Failure to escape traumatic shock. J Exp 

Psychol 74, 1–9. 

Shiner, T, Seymour, B, Symmonds, M, Dayan, P, Bhatia, KP, and Dolan, RJ (2012). 

The Effect of Motivation on Movement: A Study of Bradykinesia in Parkinson’s 

Disease. PLOS ONE 7, e47138. 

Skinner, EA (1996). A guide to constructs of control. J Pers Soc Psychol 71, 549–

570. 

Smith, KE, and Pollak, SD (2022). Early life stress and perceived social isolation 

influence how children use value information to guide behavior. Child Dev 93, 804–

814. 

Snyder, HR (2013). Major depressive disorder is associated with broad impairments 

on neuropsychological measures of executive function: A meta-analysis and review. 

Psychol Bull 139, 81–132. 

Steele, JD, Kumar, P, and Ebmeier, KP (2007). Blunted response to feedback 

information in depressive illness. Brain 130, 2367–2374. 

Sutton, RS, and Barto, AG (1998). Reinforcement learning: An introduction, MIT 

press Cambridge. 

Tanaka, S, Pan, X, Oguchi, M, Taylor, JE, and Sakagami, M (2015). Dissociable 

functions of reward inference in the lateral prefrontal cortex and the striatum. Front 

Psychol 6. 

Thorndike, E (1898). Some Experiments on Animal Intelligence. Science 7, 818–824. 

Treadway, MT, Bossaller, NA, Shelton, RC, and Zald, DH (2012a). Effort-based 

decision-making in major depressive disorder: A translational model of motivational 

anhedonia. J Abnorm Psychol 121, 553–558. 

Treadway, MT, Buckholtz, JW, Cowan, RL, Woodward, ND, Li, R, Ansari, MS, 

Baldwin, RM, Schwartzman, AN, Kessler, RM, and Zald, DH (2012b). Dopaminergic 

Mechanisms of Individual Differences in Human Effort-Based Decision-Making. J 

Neurosci 32, 6170–6176. 

Tremblay, L, and Schultz, W (2000). Reward-Related Neuronal Activity During Go-

Nogo Task Performance in Primate Orbitofrontal Cortex. J Neurophysiol 83, 1864–

1876. 

Valton, V, Mkrtchian, A, Moses-Payne, M, Gray, A, Kieslich, K, VanUrk, S, 

Samborska, V, Halahakoon, D, Manohar, SG, and Dayan, P (2024). A computational 

approach to understanding effort-based decision-making in depression. bioRxiv, 

2024–06. 

Ventura, R, Cabib, S, and Puglisi-Allegra, S (2002). Genetic susceptibility of 

mesocortical dopamine to stress determines liability to inhibition of mesoaccumbens 

dopamine and to behavioral ‘despair’ in a mouse model of depression. Neuroscience 

115, 999–1007. 



61 
 

Vollmayr, B, and Gass, P (2013). Learned helplessness: unique features and 

translational value of a cognitive depression model. Cell Tissue Res 354, 171–178. 

Vrieze, E, Pizzagalli, DA, Demyttenaere, K, Hompes, T, Sienaert, P, de Boer, P, 

Schmidt, M, and Claes, S (2013). Reduced Reward Learning Predicts Outcome in 

Major Depressive Disorder. Biol Psychiatry 73, 639–645. 

Wang, JX, Kurth-Nelson, Z, Kumaran, D, Tirumala, D, Soyer, H, Leibo, JZ, Hassabis, 

D, and Botvinick, M (2018). Prefrontal cortex as a meta-reinforcement learning 

system. Nat Neurosci 21, 860–868. 

Wang, KS, and Delgado, MR (2019). Corticostriatal circuits encode the subjective 

value of perceived control. Cereb Cortex 29, 5049–5060. 

White, RW (1959). Motivation reconsidered: The concept of competence. Psychol 

Rev 66, 297–333. 

Wickens, JR, Begg, AJ, and Arbuthnott, GW (1996). Dopamine reverses the 

depression of rat corticostriatal synapses which normally follows high-frequency 

stimulation of cortex In vitro. Neuroscience 70, 1–5. 

Wickham, H (2011). ggplot2. WIREs Comput Stat 3, 180–185. 

Wickham, H, Averick, M, Bryan, J, Chang, W, McGowan, LD, François, R, 

Grolemund, G, Hayes, A, Henry, L, Hester, J, et al. (2019). Welcome to the 

Tidyverse. J Open Source Softw 4, 1686. 

Wilke, SA, Lavi, K, Byeon, S, Donohue, KC, and Sohal, VS (2022). Convergence of 

Clinically Relevant Manipulations on Dopamine-Regulated Prefrontal Activity 

Underlying Stress Coping Responses. Biol Psychiatry 91, 810–820. 

Willner, P, Muscat, R, and Papp, M (1992). Chronic mild stress-induced anhedonia: 

A realistic animal model of depression. Neurosci Biobehav Rev 16, 525–534. 

Yin, HH, and Knowlton, BJ (2006). The role of the basal ganglia in habit formation. 

Nat Rev Neurosci 7, 464–476. 

Yin, HH, Knowlton, BJ, and Balleine, BW (2004). Lesions of dorsolateral striatum 

preserve outcome expectancy but disrupt habit formation in instrumental learning. 

Eur J Neurosci 19, 181–189. 

 


	Declaration
	Abstract
	Acknowledgements
	Contributions
	Chapter 1 Introduction
	Reward Learning
	Stress
	Helplessness and Depression
	Controllability

	Chapter 2  Methods
	Task Design
	Collected Data
	Behavioural Data Analyses
	Computational Models
	Neuroimaging Analyses

	Chapter 3 Results
	Lack of control impairs learning after reversal, but only in bonus games
	Subjective perception of control mediates the effect of uncontrollability
	Brain representation does not differ by controllability or valence

	Chapter 4 Di scussion
	References

