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Abstract

In this thesis, we study the Mubayi-Terry multigraph problem, wherein one seeks to max-
imise the product of edge multiplicities in a locally sparse multigraph. A multigraph G is
called an (s, q) graph if every set of s vertices in G spans at most q edges (counting multiplic-
ities). The problem of determining the maximum sum of edge multiplicities in an n-vertex
(s, q) graph is the multigraph analogue of a classical problem in extremal graph theory, which
has been studied extensively over the years. More recently, in 2019, Mubayi and Terry intro-
duced the product version of this problem, for which much less is known. The Mubayi-Terry
problem is motivated by attempts to develop counting theorems for multigraphs.

Our primary contribution is to resolve the Mubayi-Terry multigraph problem for new infinite
families of pairs (s, q). We prove the optimality of a broad class of lower-bound multigraph
constructions for this problem. In so doing, we obtain an asymptotic resolution of a con-
jecture by Day, Falgas-Ravry and Treglown, and vastly generalise previous results on the
problem. Our arguments are highly structural, a feature we then leverage to obtain stability
results.
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Chapter 1

Introduction

1.1 Background and motivation

Extremal graph theory typically deals with questions of the following kind: How big or small
can a parameter of a graph G be, given some constraints G must satisfy? For instance, what
is the maximum number of edges in a triangle-free graph on n vertices? This question is
answered by Mantel’s theorem [19], which states that the maximum number of edges in an
n-vertex triangle-free graph is ⌊n2

4
⌋. Furthermore, the complete bipartite graph with parts

of size ⌊n
2
⌋ and ⌈n

2
⌉ is the unique triangle-free graph on n vertices with ⌊n2

4
⌋ edges. A graph

that attains the extremal (maximal or minimal) value of a given parameter under certain
constraints is called an extremal graph. In the case of Mantel’s theorem, the extremal graph
is the complete bipartite graph K⌊n/2⌋,⌈n/2⌉, as it maximizes the number of edges among all
triangle-free graphs. Mantel’s theorem was further generalised in 1941 by Turán’s theorem
[24], which is a cornerstone of extremal graph theory.

Theorem 1.1.1 (Turán’s theorem). Let G be a Kr+1-free graph on n vertices. Then G has
at most as many edges as the Turán graph T (n, r), which is the complete r-partite graph on
n vertices with part sizes as equal as possible.

Clearly, T (n, r) is Kr+1-free, since any set of r + 1 vertices will contain a pair of vertices
belonging to the same part. Turán’s theorem asserts that T (n, r) attains the maximum
number of edges among all n-vertex Kr+1-free graphs. Henceforth, we denote by tr(n) the

1



number of edges in T (n, r).

Part 1 Part 2

Part 3

Figure 1.1: The Turán graph T (8, 3)

Turán’s theorem was further generalised by Paul Erdős and Arthur Stone in 1946 (see [10]).
Given a graph H, we define ex(n,H) to be the maximum number of edges in an H-free graph
on n vertices. Furthermore, we define the Turán density of H, τ(H), as follows:

τ(H) := lim
n→∞

ex(n,H)(
n
2

) .

Theorem 1.1.2 (Erdős-Stone theorem).

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2).

Consequently, τ(H) = χ(H)−2
χ(H)−1

. Here, χ(H) is the chromatic number of H, the minimum
number of colors needed to color the vertices of H such that no pair of adjacent vertices
receive the same color.

Thus, the Erdős-Stone theorem determines ex(n,H) up to an additive o(n2) error term.
However, for bipartite graphs H (i.e., χ(H) = 2), the theorem does not give tight bounds on
ex(n,H). Observe that χ(Kr+1) = r + 1, and that tr(n) ≈

(
r−1
r

)
n2

2
. Thus, the Erdős-Stone

theorem is an asymptotic generalisation of Turán’s theorem.

In 1963, Erdős [11, 12] raised the following question: given integers s ≥ 2 and 0 ≤ q ≤
(
s
2

)
,

determine ex(n, s, q), the maximum number of edges in an n-vertex graph in which every
set of s vertices spans at most q edges. This problem has received a significant amount of
attention in the literature. When q =

(
s
2

)
− 1, this question is answered by Turán’s theorem.

Erdős [11] resolved the case s ≤ 5, while a theorem of Dirac [8] dealt with the cases q ≥
(
s
2

)
− s

2
.
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In the range q ≥
⌊
s2

4

⌋
, ex(n, s, q) is quadratic in n. Moreover, the asymptotics of ex(n, s, q)

are well understood in this range thanks to the Erdős-Stone theorem, and a number of results
are known about the size of the lower order term (see Gol’berg and Gurvich [15], and Griggs,
Simonovits, and Thomas [16]). It is also known that ex(n, s, q) is linear in n for q < s − 1,
and superlinear but subquadratic in n in the range s − 1 ≤ q <

⌊
s2

4

⌋
(see [15]). In the

case q < s− 1, the value of ex(n, s, q) is known exactly; however, in the “polynomial range”
s − 1 ≤ q <

⌊
s2

4

⌋
, the problem is much more difficult. As Erdős himself observed, the case

q = s− 1 is equivalent to the notoriously difficult and still open problem of determining the
Turán number of the even cycle, ex(n,C2⌊s/2⌋). Here, Cl denotes the cycle on l vertices.

In the late 1990s, Bondy and Tuza [4] and Kuchenbrod [18] independently began to inves-
tigate the integer-weighted version of Erdős’ problem. An integer-weighted graph is a pair
(V,w), where V is a set of vertices and w : V (2) → Z assigns an integer weight to each edge
(i.e. pair of vertices) in V . Let exZ(n, s, q) denote the maximum sum of edge weights in an
integer-weighted graph on n vertices in which the sum of edge-weights inside any set of s
vertices is at most q. Bondy and Tuza showed that an analogue of Turán’s theorem holds
in this setting, with exZ

(
n, s,

(
s
2

)
− 1
)
= ex

(
n, s,

(
s
2

)
− 1
)
. However, unlike the setting of

ordinary graphs, there may be several non-isomorphic extremal constructions in the setting
of integer-weighted graphs. Kuchenbrod, for his part, determined exZ(n, s, q) for all s ≤ 7.

A major breakthrough on this problem came in 2002, when Füredi and Kündgen [14] showed
that for all integers s ≥ 2 and q ≥ 0, we have exZ(n, s, q) = m(s, q)

(
n
2

)
+ O(n), where

m(s, q) ∈ Q≥0 is defined by

m(s, q) := min

{
m :

s−1∑
i=1

⌊1 +mi⌋ > q

}
. (1.1)

Thus, Füredi and Kündgen determined the asymptotic growth rate of exZ(n, s, q) for all
integers s ≥ 2 and q ≥ 0. We now turn our attention to multigraphs, which will be our
primary focus in this thesis.

Definition 1.1.1. A multigraph G is a pair (V,w), where V = V (G) is a set of vertices,
and w = wG is a function w : V (2) 7→ Z≥0 which associates to each pair (or edge) v1v2 ∈ V (2)

a non-negative integer weight (or multiplicity) w(v1v2).

Definition 1.1.2. Given integers s ≥ 2 and q ≥ 0, we say a multigraph G = (V,w) is an
(s, q)-graph if every s-set of vertices in G spans at most q edges; i.e.

∑
v1v2∈X(2) w(v1v2) ≤ q

3



for every X ∈ V (s). Furthermore, we denote by F(n, s, q) the set of all (s, q)-graphs with
vertex set [n] := {1, 2, ..., n}.

Definition 1.1.3. Given a multigraph G = (V,w), we define

e(G) :=
∑

v1v2∈V (2)

w(v1v2),

exΣ(n, s, q) := max{e(G) : G ∈ F(n, s, q)},

exΣ(s, q) := lim
n→∞

exΣ(n, s, q)(
n
2

) .

The existence of the limit exΣ(s, q) follows from an easy variant of the averaging argument due
to Katona, Nemetz and Simonovits [17], by showing that exΣ(n, s, q)/

(
n
2

)
is non-increasing

in n and bounded below by 0. This limiting quantity exΣ(s, q) can be thought of as the
asymptotically maximum arithmetic mean of edge multiplicities in an (s, q)-graph. Clearly,
we have exΣ(n, s, q) ≤ exZ(n, s, q). Füredi and Kündgen observed that for pairs (s, q) with
q > (s − 1)

(
s
2

)
, their constructions of asymptotically optimal integer-weighted graphs did

not involve any negative integer weights, and therefore exΣ(s, q) = m(s, q), with m(s, q) as
defined in Equation (1.1). However, the problem of determining exΣ(s, q) when q ≤ (s−1)

(
s
2

)
is still wide open.

Erdős’ problem has also been extensively studied for hypergraphs, where it is much more
challenging and is known as the Brown-Erdős-Sós problem [5]. For 3-uniform hypergraphs,
the case (s, q) = (6, 3) corresponds for instance to the celebrated Ruzsa-Szemerédi (6, 3)-
theorem [22]. We also note that one of the motivations for studying such extremal problems
for multigraphs is their application to (largely unsolved) extremal problems for hypergraphs.
For instance, Füredi and Kündgen’s results were applied by de Caen and Füredi to resolve
an old conjecture on the Turán density of the Fano plane (see [7] for more details).

More recently, Mubayi and Terry [20] introduced a product version of Erdős’s problem for
multigraphs.

Definition 1.1.4. Given a multigraph G = (V,w), we define

P (G) :=
∏

v1v2∈V (2)

w(v1v2),

exΠ(n, s, q) := max{P (G) : G ∈ F(n, s, q)},

exΠ(s, q) := lim
n→∞

exΠ(n, s, q)

1

(n2) .
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Again, one can show that exΠ(n, s, q)
1/(n2) is non-increasing in n and bounded below by 0,

and therefore the limit exΠ(s, q) exists. The limiting quantity exΠ(s, q) can be thought of as
the asymptotically maximum geometric mean of edge multiplicities in an (s, q)-graph.

Problem 1.1.3 (Mubayi-Terry multigraph problem). Given integers s ≥ 2 and q ≥ 0,
determine exΠ(s, q).

The motivation for determining the quantity exΠ(s, q) stems from attempts to develop count-
ing theorems for multigraphs. Erdős, Kleitman and Rothschild [9] showed that the number
of Kr-free graphs on the vertex set [n] is 2ex(n,Kr)+o(n2). Since their foundational result, it has
been a major goal in extremal graph theory to prove similar counting results for other classes
of graphs. It follows from the Alekseev-Bollobás-Thomason theorem [1, 3] that the number
of graphs on the vertex set [n] in which every s-set spans at most q edges is 2ex(n,s,q)+o(n2).
What can be said about multigraphs with the same property?

Using the powerful hypergraph container theories developed by Balogh, Morris and Samotij
[2] and Saxton and Thomason [23], Mubayi and Terry [20] showed that for q >

(
s
2

)
,∣∣∣∣F (n, s, q − (s2

))∣∣∣∣ = exΠ(s, q)
(n2)+o(n2).

Thus, the problem of determining the size of the multigraph family F
(
n, s, q −

(
s
2

))
is equiv-

alent to determining the product-extremal quantity exΠ(s, q), making exΠ(s, q) the “right”
analogue of Turán density from the point of view of counting.

Assuming Schanuel’s conjecture from number theory, Mubayi and Terry [20] showed that
exΠ(4, 15) is a transcendental number. According to them, this is the first explicit (some-
what natural) question in extremal graph theory whose solution is transcendental. Further-
more, they conjectured that exΠ(4, 6a + 3) is transcendental for all integers a ≥ 2. Day,
Falgas-Ravry and Treglown [6] proved this (under the assumption of Schanuel’s conjecture
from number theory) and in so doing introduced a broad class of Turán type lower bound
constructions for this problem. Our main contribution is to prove the optimality of these
constructions in several cases, and also to obtain corresponding stability results.
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1.2 Preliminaries and Notation

We write [n] for the set {1, 2, ..., n}. Given a set S and k ∈ N, we denote by S(k) the
collection of all subsets of S of size k, hereafter referred to as the k-sets of S. We use
v1v2...vk as shorthand for the set {v1, v2, ...vk}.

A multigraph G is a pair (V,w), where V = V (G) is a set of vertices, and w = wG is a
function w : V (2) 7→ Z≥0 which associates to each pair v1v2 ∈ V (2) a non-negative integer
weight or multiplicity w(v1v2). Given a subset of vertices X ⊆ V (G), we define

e(X) :=
∑

v1v2∈X(2)

w(v1v2) and P (X) :=
∏

v1v2∈X(2)

w(v1v2)

to be the sum and product of edge multiplicities in X respectively. When X = V (G), we
simply write e(G) and P (G) for e(X) and P (X) respectively. For a vertex v ∈ X ⊆ V (G),
we define

dX(v) :=
∑
u∈X

w(uv) and pX(v) :=
∏
u∈X

w(uv)

to be the degree and product-degree of v in X respectively. When X = V (G), we simply write
d(v) = dG(v) and p(v) = pG(v) for dX(v) and pX(v) respectively. We say that a multigraph
H is a submultigraph of G if there exists an injective map f : V (H) → V (G) such that
wH(v1v2) ≤ wG(f(v1)f(v2)) for all v1, v2 ∈ V (H). We call H an induced submultigraph if
wH(v1v2) = wG(f(v1)f(v2)) for each pair v1, v2 ∈ V (H).

Given two multigraphs G = ([n], w) and G′ = ([n], w′), we define ∆(G,G′) := {v1v2 ∈ [n](2) :

w(v1v2) ̸= w′(v1v2)}. We say that G and G′ are δ-close if |∆(G,G′)| ≤ δn2.

All the extremal constructions we will study arise from blow-ups of patterns, which we
formally define as follows:

Definition 1.2.1 (Patterns). Let X be a set of integers. An X-bounded pattern on N

vertices, π, is a function π : [N ] ∪ [N ](2) 7→ X.

Definition 1.2.2 (Blow-ups). Given an X-bounded pattern π on N vertices, the family of
n-vertex blow-ups of π, denoted by B(π, n), is the collection of multigraphs G = ([n], w), such
that there exists an N-partition of the vertex set [n] = ⊔N

i=1Vi, with all edges between Vi and

6



Vj, 1 ≤ i < j ≤ N , having wG-multiplicity π(ij), and all edges inside Vi, 1 ≤ i ≤ N , having
wG-multiplicity π(i).

Furthermore, we define

Σ (π, n) := max{e(G) : G ∈ B(π, n)} and Π(π, n) := max{P (G) : G ∈ B(π, n)}.

Let S(π, n) be the collection of multigraphs G ∈ B(π, n) with e(G) = Σ(π, n). Similarly, let
P(π, n) be the collection of multigraphs G ∈ B(π, n) with P (G) = Π(π, n).

We use standard asymptotic notation. Given any two functions f, g : Z≥0 → R, we say that
f = O(g) if there exists an absolute positive constant C such that |f(n)| ≤ C|g(n)| for all
n sufficiently large. We say that f = o(g) if, for every ϵ > 0, |f(n)| ≤ ϵ|g(n)| for all n
sufficiently large. If g(n) is non-zero for all n, this is equivalent to saying that f/g → 0 as
n → ∞.

1.3 Organization of the Thesis

In Chapter 2, we introduce the lower-bound constructions that will be studied throughout
the thesis and state our main conjecture. Chapter 3 surveys the known results related to our
problem. Chapter 4 introduces some fundamental tools that will be used in our proofs. In
Chapter 5, we analyze key properties of the lower-bound construction introduced in Chapter
2.

In Chapter 6, we present an asymptotic resolution of our main conjecture. Chapter 7 es-
tablishes an improved bound on an existing result due to Day, Falgas-Ravry, and Treglown,
while also providing new examples of “asymptotically flat” intervals. Finally, in Chapter 8,
we prove stability results corresponding to some of the extremal results obtained earlier.

Chapters 5, 6, 7, and 8 consist entirely of original work.
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Chapter 2

The Main Conjecture

2.1 A lower bound construction and some basic proper-

ties

As mentioned in Chapter 1, the constructions we will study arise from blow-ups of certain
patterns, which we describe below.

Definition 2.1.1 (Turán Pattern). For integers R ≥ 2 and a ≥ 1, we define the [a + 1]-
bounded pattern on R vertices πa

R : [R] ∪ [R](2) 7→ [a+ 1] by:

πa
R(i) = a, for all i ∈ [R],

πa
R(ij) = a+ 1, for all 1 ≤ i < j ≤ R.

Henceforth, we denote Σ(πa
R, n) by ΣR(a, n) and Π(πa

R, n) by ΠR(a, n).

Definition 2.1.2 (Generalised Turán Pattern). For integers r, R, d, a ∈ N with a ≥ d + 1,
we define the [a+1]-bounded pattern on r+R vertices πa,d

r,R : [r+R]∪ [r+R](2) 7→ [a+1] by:

πa,d
r,R(i) =

{
a− d if i ≤ r

a otherwise

9



and

πa,d
r,R(ij) =

{
a− d+ 1 if 1 ≤ i < j ≤ r

a+ 1 otherwise

Given a multigraph G ∈ B(πa,d
r,R, n), the vertex set [n] can be partitioned as

[n] = (⊔r
i=1Ui)

⊔
(⊔R

j=1Vj),

such that all edges within the sets Ui have multiplicity a − d, all edges within the sets Vj

have multiplicity a, all edges between distinct Ui have multiplicity a − d + 1 and all other
edges have multiplicity a + 1. We refer to (⊔r

i=1Ui)
⊔
(⊔R

j=1Vj) as the canonical partition of

G. Furthermore, let U := ⊔r
i=1Ui, and V := ⊔R

j=1Vj. Henceforth, we denote Σ
(
πa,d
r,R, n

)
by

ΣR
r,d(a, n), and Π

(
πa,d
r,R, n

)
by ΠR

r,d(a, n).

The multigraph construction obtained from blow-ups of the generalised Turán pattern is a
special case of Construction 12.1 in [6]. Note that when r = 1, this construction is precisely
Construction 3.1 in [6].

Let G ∈ B
(
πa,d
r,R, n

)
, and let (⊔r

i=1Ui)
⊔
(⊔R

j=1Vj) be the canonical partition of G. Set |Ui| =

uin for all i ∈ [r] and |Vj| = vjn for all j ∈ [R]. If G ∈ S
(
πa,d
r,R, n

)
or G ∈ P

(
πa,d
r,R, n

)
, then

by Turán’s theorem, there exists α ∈ (0, 1) such that ui = α + O(n−1) for all i ∈ [r] and
vj =

1−rα
R

+O(n−1) for all j ∈ [R]. Then

e(G) = (a+ 1)

(
n

2

)
−R

((
1−rα
R

)
n

2

)
− d

(
rαn

2

)
− r

(
αn

2

)
+O(n).

An easy exercise in optimisation shows that e(G) is asymptotically maximised when

α =
1

r +R(dr + 1)
.

10



Similarly,

log(P (G)) = log(a+ 1)

(
n

2

)
−R log

(
a+ 1

a

)((
1−rα
R

)
n

2

)
− log

(
a+ 1

a− d+ 1

)(
rαn

2

)
− r log

(
a− d+ 1

a− d

)(
αn

2

)
+O(n).

Using calculus, one can see that P (G) is asymptotically maximised when

α =
log
(
a+1
a

)
r(R + 1) log

(
a+1
a

)
+R log

(
a

a−d

)
+R(r − 1) log

(
a

a−d+1

) .
Thus, in general, the sum-optimal family S

(
πa,d
r,R, n

)
and the product-optimal family

P
(
πa,d
r,R, n

)
are quite different from each other. Indeed, to maximise the sum of edge multi-

plicities, α must be chosen to be 1
r+R(dr+1)

. On the other hand, to maximise the product of
edge multiplicities, α must be strictly less than 1

r+R(dr+1)
(see Proposition 5.1).

Given integers r, R, d ∈ N, we define the function xd
r,R = xd

r,R(a) for all integers a ≥ d+ 1 by

xd
r,R(a) :=

log
(
a+1
a

)
r(R + 1) log

(
a+1
a

)
+R log

(
a

a−d

)
+R(r − 1) log

(
a

a−d+1

) .
For a multigraph G ∈ B

(
πa,d
r,R, n

)
, we observe that P (G) is maximised by making the

product-degrees of all the vertices roughly equal. Explicitly, we may obtain x = xd
r,R(a) as

the unique solution to the following equation:

a

(
a− d

a

)x(
a− d+ 1

a

)(r−1)x(
a+ 1

a

)1−rx

= a

(
a+ 1

a

)1− 1−rx
R

. (2.1)

The left-hand side and right-hand side of Equation (2.1) are obtained by considering the
product-degree of a vertex in U and V respectively. From this, it is easy to see that

ΠR
r,d(a, n) =

[
a

(
a+ 1

a

)1− 1−rx∗
R

](n2)+O(n)

, (2.2)
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where x∗ = xd
r,R(a).

2.2 The conjecture

We are now in a position to state our main conjecture, which is a generalisation of Conjecture
3.2 in [6]. Roughly speaking, the conjecture asserts that the constructions arising from blow-
ups of the generalised Turán pattern are optimal for the Mubayi-Terry problem in several
cases. One of our main contributions is the asymptotic resolution of several instances of this
conjecture.

Conjecture 2.2.1. For all integers r, R, d, a, s ∈ N with a ≥ d + 1, s ≥ r + R(dr + 1) + 1,
and for all n sufficiently large,

exΠ(n, s,Σ
R
r,d(a, s)) = ΠR

r,d(a, n). (2.3)

Roughly speaking, the conjecture states that given a sufficiently large integer s, and q equal
to the maximum sum of edge multiplicities in an s-vertex blow-up of πa,d

r,R, it is an n-vertex
blow-up of πa,d

r,R which maximises P (G) among all multigraphs G ∈ F(n, s, q). Note that the
r = 1 case of Conjecture 2.2.1 corresponds to Conjecture 3.2 in [6].

For Conjecture 2.2.1, we require s ≥ r + R(dr + 1) + 1. For smaller values of s, the sum-
optimal family S

(
πa,d
r,R, s

)
sees at most r vertices in U (see Proposition 5.2). Thus, the edges

of multiplicity a−d are not used at all, and “better” lower bound constructions are available
to us. Raising both sides of Equation (2.3) to 1/

(
n
2

)
and taking the limit as n → ∞, together

with Equation (2.2), yields the following asymptotic version of Conjecture 2.2.1.

Conjecture 2.2.2 (Asymptotic). For all integers r, R, d, a, s ∈ N with a ≥ d + 1 and
s ≥ r +R(dr + 1) + 1, we have

exΠ(s,Σ
R
r,d(a, s)) = a

(
a+ 1

a

)1− 1−rx∗
R

,

where x∗ = xd
r,R(a).

12



Chapter 3

Known Results

In this chapter, we discuss previous work on the Mubayi-Terry multigraph problem, including
current progress on Conjecture 2.2.1.

Theorem 3.1 (Mubayi, Terry [21, Theorem 3]). Let n, s, q, a be integers satisfying n ≥ s ≥
2, a ≥ 1, where q = a

(
s
2

)
+ b for some 0 ≤ b ≤ s− 2. The following hold:

• (Extremal) We have a(
n
2) ≤ exΠ(n, s, q) ≤ a(

n
2)
(
a+1
a

)⌊ b
b+1

n⌋. Thus, exΠ(s, q) = a.

• (Stability) For every δ > 0, there exists ϵ > 0 such that the following holds for all
sufficiently large n: if G ∈ F(n, s, q), and P (G) > exΠ(n, s, q)

1−ϵ, then G is δ-close to
the multigraph on [n] with all edge multiplicities equal to a.

Thus, Mubayi and Terry showed that

exΠ

(
s, a

(
s

2

))
= exΠ

(
s, a

(
s

2

)
+ 1

)
= ... = exΠ

(
s, a

(
s

2

)
+ s− 2

)
= a.

Moreover, the multigraph with all edge multiplicities equal to a is asymptotically optimal
in this interval. This result provides an example of an “asymptotically flat interval”, where,
despite an increase in q (with s held fixed), exΠ(n, s, q) remains asymptotically unchanged.
We will revisit this notion later, as we provide more such examples of asymptotically flat
intervals. Mubayi and Terry also proved the following result, generalising Dirac’s additive
results [8] to the multiplicative setting.
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Theorem 3.2 (Mubayi, Terry [21, Theorem 4]). Let n, s, q, a be integers satisfying a ≥ 1,
n ≥ s ≥ 2, with q = (a+ 1)

(
s
2

)
− t for some 1 ≤ t ≤ s/2.

• (Extremal) For all n ≥ s, exΠ(n, s, q) = a(
n
2)
(
a+1
a

)ts−t(n). Thus, we have exΠ(s, q) =

a
(
a+1
a

) s−t−1
s−t . The maximal product is attained by multigraphs in P(πa

s−t, n).

• (Stability) For every δ > 0, there exists ϵ > 0 such that the following holds for all
sufficiently large n: if G ∈ F(n, s, q) and P (G) > exΠ(n, s, q)

1−ϵ, then G is δ-close to
an element of P(πa

s−t, n).

Thus, Theorems 3.1 and 3.2 resolve the problem of determining exΠ(s, q) whenever the
congruence class of q modulo

(
s
2

)
lies within a certain interval of length about 3s/2. The

smallest case (in the lexicographic ordering of pairs (s, q)) not covered by these results is
(s, q) = (4, 9). Mubayi and Terry [21, Theorem 5] showed that the quantity exΠ(n, 4, 9)

is related to an old question in extremal graph theory. Let ex(n, {C3, ..., Cs}) denote the
maximum number of edges in an n-vertex graph which contains no cycle of length at most
s as a subgraph. Then, for all n ≥ 4, exΠ(n, 4, 9) = 2ex(n,{C3,C4}). This result was further
generalised by Day, Falgas-Ravry and Treglown [6, Theorem 3.12], who showed that for all
n ≥ s ≥ 4, exΠ

(
n, s,

(
s
2

)
+ s− 1

)
= 2ex(n,{C3,...,Cs}).

The next case not covered by Theorems 3.1 and 3.2 is the case (s, q) = (4, 15). This case
was resolved by Mubayi and Terry [20].

Theorem 3.3 (Mubayi, Terry [20, Theorem 2]). For all n ≥ 4,

exΠ(n, 4, 15) = 2γn
2+O(n).

Thus,
exΠ(4, 15) = 22γ,

where γ = β2

2
+ β(1− β) log2 3 and β = log 3

2 log 3−log 2
.

Mubayi and Terry showed that exΠ(4, 15) = 22γ is a transcendental number, assuming
Schanuel’s conjecture from number theory. According to Mubayi and Terry, this is the
first explicit question in extremal graph theory whose solution is transcendental. Further-
more, they conjectured that such transcendental behavior was not an isolated case, and that

14



exΠ(4, 6a+3) is transcendental for all integers a ≥ 2 (see [20, Conjecture 1]). This conjecture
was resolved by Day, Falgas-Ravry and Treglown [6], who proved the following more general
result.

Theorem 3.4 (Day, Falgas-Ravry, Treglown [6, Theorems 3.5-3.8]). For all integers a ≥
2, s ∈ {4, 5, 6, 7} and n sufficiently large,

exΠ(n, s,Σ
1
1,1(a, s)) = Π1

1,1(a, n).

Remark 3.1. Theorem 3.4 resolves the (r, R, d) = (1, 1, 1) case of Conjecture 2.2.1 for
s ∈ {4, 5, 6, 7}. Note that Σ1

1,1(a, 4) = 6a+ 3, and that Theorem 3.4 implies that exΠ(4, 6a+
3) = a

(
a+1
a

)x∗
, where x∗ = x1

1,1(a). Assuming Schanuel’s conjecture from number theory and
using Mihăilescu’s theorem (his proof of Catalan’s conjecture), this quantity can be shown to
be transcendental (see [6, Appendix A]).

Falgas-Ravry [13] further generalised this result.

Theorem 3.5 (Falgas-Ravry [13, Theorem 1.6]). For all integers a ≥ 2 and R ≥ 1, we have

exΠ

(
2R + 2, a

(
2R + 2

2

)
+ ex(2R + 2, KR+2)− 1

)
= a

(
a+ 1

a

)1− 1−x∗
R

,

where x∗ = x1
1,R(a).

Remark 3.2. Theorem 3.5 resolves the (r, d) = (1, 1) case of Conjecture 2.2.2 for all R ≥ 1,
when s = 2R+2. Note that 2R+2 is smallest value of s for which Conjecture 2.2.2 is valid,
and that ΣR

1,1(a, 2R + 2) = a
(
2R+2

2

)
+ ex(2R + 2, KR+2)− 1.

As further evidence in favour of the r = 1 case of Conjecture 2.2.1, Day, Falgas-Ravry and
Treglown [6] proved the following “Step-up” theorem:

Theorem 3.6 (Day, Falgas-Ravry, Treglown [6, Theorem 3.11]). Let R, d ∈ N and let
s ≥ R(d + 1) + 2. Suppose there exist natural numbers a0 and n0 such that the following
holds for all a ≥ a0 and n ≥ n0:

exΠ(n, s,Σ
R
1,d(a, s)) = ΠR

1,d(a, n).

15



Then, there exist natural numbers a1 ≥ a0 and n1 ≥ n0 such that the following holds for all
a ≥ a1 and n ≥ n1:

exΠ(n, s+ 1,ΣR
1,d(a, s+ 1)) = ΠR

1,d(a, n).

Remark 3.3. Theorems 3.5 and 3.6 together resolve the (r, d) = (1, 1) case of Conjecture
2.2.2 for all R ≥ 1, s ≥ 2R + 2 and a sufficiently large.

Finally, Day, Falgas-Ravry and Treglown [6] proved the following result related to the opti-
mality of the Turán pattern described in Definition 2.1.1:

Theorem 3.7 (Day, Falgas-Ravry, Treglown [6, Theorem 3.10]). Let a,R, s be integers with
a,R ≥ 1 and s ≥ R + 1. For all integers n ≥ 2R(s+ 2) +R(s+ 2)

√
s− 1,

exΠ(n, s,Σ
R(a, s)) = ΠR(a, n).

Furthermore, the family of product-maximising multigraphs is precisely P(πa
R, n).

Remark 3.4. When s ≤ 2R, Theorem 3.7 implies Theorem 3.2 (with weaker bounds on n),
making Theorem 3.7 a generalization of Theorem 3.2.

Having now stated all existing results on the Mubayi-Terry multigraph problem, we now
discuss some basic tools we will deploy to prove our results.
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Chapter 4

Basic Tools

In this chapter, we introduce some tools that are instrumental in proving our main results.

Proposition 4.1 (Integral AM-GM Inequality). Let a, n ∈ N and let t ∈ {0}∪ [n]. Suppose
w1, ..., wn are non-negative integers with

∑n
i=1wi = an+ t. Then

n∏
i=1

wi ≤ an−t(a+ 1)t,

with equality if and only if t of the wi are a+ 1, and the remaining n− t are a.

Proof. Suppose there exist i, j ∈ [n] with i ̸= j such that wj ≥ wi + 2. Then

(wi + 1)(wj − 1) = wiwj + wj − wi − 1 ≥ wiwj + 1.

Thus,
∏n

i=1 wi is maximised by making the wi as equal as possible.

The use of the integral AM-GM inequality is natural, as it allows us to upper bound the
product of edge multiplicities in a multigraph, given an upper bound on the sum.

Proposition 4.2 (Weighted geometric averaging). Let m ∈ N, and let α1, ..., αm be non-
negative real numbers summing to 1. Suppose p1, ..., pm are non-negative real numbers. Then,
there exists i ∈ [m] such that pi is at most the {αj}mj=1-weighted geometric mean of the
quantities {pj}mj=1 : pi ≤

∏m
j=1 p

αj

j .
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Proof. Choose i ∈ [m] such that pi = min
j∈[m]

pj. Then, we have pi =
∏m

j=1 p
αj

i ≤
∏m

j=1 p
αj

j .

Proposition 4.3 (Averaging bound). Let s, q, n be integers with n ≥ s ≥ 2 and q ≥ 0. Then

exΣ(n+ 1, s, q) ≤
⌊(

n+ 1

n− 1

)
exΣ(n, s, q)

⌋
.

Proof. Let G ∈ F(n + 1, s, q) be a multigraph with e(G) = exΣ(n + 1, s, q). Then, since
every edge of G is contained in n− 1 subsets of V (G) of size n,∑

X⊆V (G)
|X|=n

e(X) = (n− 1)e(G).

Since every n-subset of V (G) has at most exΣ(n, s, q) edges, we have∑
X⊆V (G)
|X|=n

e(X) ≤ (n+ 1)exΣ(n, s, q).

Thus,

exΣ(n+ 1, s, q) = e(G) ≤
(
n+ 1

n− 1

)
exΣ(n, s, q).

Since exΣ(n+ 1, s, q) is an integer, the proposition follows.

We note that the proof of Proposition 4.3 closely follows the averaging argument introduced
by Katona, Nemetz, and Simonovits [17]. As a simple illustration of the above tools in
action, we quickly show that for all n ≥ s ≥ 2 and a ≥ 1, we have exΠ

(
n, s, a

(
s
2

))
= a(

n
2).

We first prove by induction on n that exΣ
(
n, s, a

(
s
2

))
≤ a

(
n
2

)
. This clearly holds for n = s.

Let us assume that exΣ
(
k, s, a

(
s
2

))
≤ a

(
k
2

)
for some k ≥ s. Then, by Proposition 4.3, we

have exΣ
(
k + 1, s, a

(
s
2

))
≤
(
k+1
k−1

)
a
(
k
2

)
= a

(
k+1
2

)
. Thus, we have exΣ

(
n, s, a

(
s
2

))
≤ a

(
n
2

)
for

all n ≥ s. By Proposition 4.1, we have exΠ
(
n, s, a

(
s
2

))
≤ a(

n
2). The multigraph G on

[n] with all edge multiplicities equal to a is an
(
s, a
(
s
2

))
-graph with P (G) = a(

n
2). Thus,

exΠ
(
n, s, a

(
s
2

))
≥ a(

n
2), which proves the claim.

Proposition 4.4 (Degree removal). Let s ≥ 2 and q ≥ 0 be integers, and let c be a positive
real number. Suppose the following holds: for every ϵ > 0, there exists n0 ∈ N such that for
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all n > n0, every multigraph G ∈ F(n, s, q) contains a vertex v with pG(v) ≤ c(1+ϵ)n. Then

exΠ(s, q) ≤ c.

Proof. Fix ϵ > 0. Let n0 ∈ N be such that for all n > n0, every multigraph G ∈ F(n, s, q)

contains a vertex v with pG(v) ≤ c(1+ϵ)n. Let n > n0 and let Gn ∈ F(n, s, q) satisfy
P (Gn) = exΠ(n, s, q). Then, by repeatedly removing the vertices of lowest product-degree
from Gn until we are left with a multigraph Gn0 on n0 vertices, we have

exΠ(n, s, q) = P (Gn) ≤ P (Gn0)
n∏

i=n0+1

c(1+ϵ)i ≤ exΠ(n0, s, q)
n∏

i=n0+1

c(1+ϵ)i

= c(1+ϵ)(n2)eO(n).

Raising both sides to 1/
(
n
2

)
and letting n → ∞, we get exΠ(s, q) ≤ c1+ϵ. Since ϵ > 0 was

arbitrary, the proposition follows.

With the basic tools in place, we are now in a position to discuss our new contributions.
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Chapter 5

Properties of the Construction

In this chapter, we discuss and prove some key properties of the construction arising from
blow-ups of the generalised Turán pattern, which will be useful in proving some of our results.

Proposition 5.1. For any r, R, d ∈ N, the function xd
r,R = xd

r,R(a) is monotone increasing
in a over the interval [d+ 1,∞). In particular, for all integers a ≥ d+ 1, we have

xd
r,R(d+ 1) ≤ xd

r,R(a) < lim
a→∞

xd
r,R(a) =

1

r +R(dr + 1)
.

Proof. Differentiating xd
r,R(a) with respect to a, we obtain the following expression:

R

a
[f(d) + (r − 1)f(d− 1)] ,

where, for all t ∈ {0} ∪ [a− 1],

f(t) :=
t

a− t
log

(
a+ 1

a

)
− 1

a+ 1
log

(
a

a− t

)
.

Since log
(
a+1
a

)
> 1

a+1
, for all t ∈ {0} ∪ [a− 1],

f(t) ≥ 1

a+ 1

(
t

a− t
− log

(
a

a− t

))
=

1

a+ 1

(
t

a− t
− log

(
1 +

t

a− t

))
≥ 0,
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with equalities only at t = 0. This implies that the derivative of xd
r,R(a) with respect to

a is strictly positive. Thus, xd
r,R(a) is monotone increasing in a. It is easy to see, using

L’Hôpital’s rule, for instance, that

lim
a→∞

xd
r,R(a) =

1

r +R(dr + 1)
.

The proposition follows.

To prove some of the remaining propositions in this chapter, we make use of the following
observation. If a multigraph G ∈ S

(
πa,d
r,R, n

)
has canonical partition (⊔r

i=1Ui)
⊔
(⊔R

j=1Vj)

with U = ⊔r
i=1Ui, then by Turán’s theorem, we may henceforth assume that⌊

|U |
r

⌋
= |U1| ≤ ... ≤ |Ur| =

⌈
|U |
r

⌉
.

Similarly, we may assume that⌊
n− |U |

R

⌋
= |V1| ≤ ... ≤ |VR| =

⌈
n− |U |

R

⌉
.

The following proposition describes how vertices must be distributed among various parts
to maximize the sum of edge multiplicities in a multigraph G ∈ B(πa,d

r,R, n).

Proposition 5.2 (Partition sizes of S
(
πa,d
r,R, n

)
). Let r, R, d, a, n ∈ N with a ≥ d + 1, and

let n = q(Rdr +R+ r) + t, with 0 ≤ t ≤ Rdr +R+ r − 1. If G ∈ S
(
πa,d
r,R, n

)
has canonical

partition (⊔r
i=1Ui)

⊔
(⊔R

j=1Vj) with U = ⊔r
i=1Ui, then

• If r = 1,

|U | =


q, if t = 0,

q or q + 1, if 1 ≤ t ≤ R,

q + 1, if R + 1 ≤ t ≤ Rd+R.
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• If r ≥ 2,

|U |

=



qr, if t = 0,

qr + k − 1 or qr + k, if (k − 1)(Rd+ 1) + 1 ≤ t ≤ (k − 1)(Rd+ 1) +R,

1 ≤ k ≤ r,

qr + k, if (k − 1)(Rd+ 1) +R + 1 ≤ t ≤ k(Rd+ 1),

1 ≤ k ≤ r − 1,

(q + 1)r, if (r − 1)(Rd+ 1) +R + 1 ≤ t ≤ Rdr +R + r − 1.

Proof. The r = 1 case of Proposition 5.2 is covered by Proposition 5.3 in [6]. Therefore, we
restrict our attention to the r ≥ 2 case. The key idea used in this proof is to shift a vertex
from Ur to V1 (if U is too large) or to shift a vertex from VR to U1 (if U is too small), while
increasing the sum of edge multiplicities in the multigraph.

• Case I: t = 0.
If |U | ≤ qr − 1, then |U1| ≤ q − 1. Furthermore, n − |U | ≥ qR(dr + 1) + 1 and
|VR| ≥ q(dr + 1) + 1. Moving a vertex from VR to U1 changes e(G) by at least

q(dr + 1)− d(qr − 1)− (q − 1) = d+ 1 > 0.

On the other hand, if |U | ≥ qr + 1, then |Ur| ≥ q + 1. Furthermore, n − |U | ≤
qR(dr + 1)− 1 and |V1| ≤ q(dr + 1)− 1. Moving a vertex from Ur to V1 changes e(G)

by at least

d(qr) + q − (q(dr + 1)− 1) = 1 > 0.

Thus, |U | = qr.

• Case II: (k − 1)(Rd+ 1) +R + 1 ≤ t ≤ k(Rd+ 1), where 1 ≤ k ≤ r − 1.
If |U | ≤ qr+k−1, then |U1| ≤ q. Furthermore, n−|U | ≥ q(Rdr+R+r)+(k−1)(Rd+

1)+R+1−qr−k+1 = R (q(dr + 1) + d(k − 1) + 1)+1 and |VR| ≥ q(dr+1)+d(k−1)+2.
Moving a vertex from VR to U1 changes e(G) by at least

q(dr + 1) + d(k − 1) + 1− d(qr + k − 1)− q = 1 > 0.
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On the other hand, if |U | ≥ qr+k+1, then |Ur| ≥ q+1. Furthermore, n−|U | ≤ q(Rdr+

R+ r)+ k(Rd+1)− qr− k− 1 = R (q(dr + 1) + kd)− 1 and |V1| ≤ q(dr+1)+ kd− 1.
Moving a vertex from Ur to V1 changes e(G) by at least

d(qr + k) + q − q(dr + 1)− kd+ 1 = 1 > 0.

Thus, |U | = qr + k.

• Case III: (k − 1)(Rd+ 1) + 1 ≤ t ≤ (k − 1)(Rd+ 1) +R, where 1 ≤ k ≤ r.
If |U | ≥ qr + k + 1, then we can increase e(G) by moving a vertex from Ur to V1. The
proof for this follows as in Case II, by observing that (k− 1)(Rd+1)+R ≤ k(Rd+1).
On the other hand, if |U | ≤ qr + k − 2, then |U1| ≤ q. Furthermore, n − |U | ≥
q(Rdr +R+ r) + (k − 1)(Rd+ 1) + 1− qr− k + 2 = R (q(dr + 1) + d(k − 1)) + 2 and
|VR| ≥ q(dr + 1) + d(k − 1) + 1. Moving a vertex from VR to U1 changes e(G) by at
least

q(dr + 1) + d(k − 1)− d(qr + k − 2)− q = d > 0.

Thus, |U | can be either qr+k− 1 or qr+k. It is easy to check that both of them yield
the same value of e(G), so |U | = qr + k − 1 or qr + k.

• Case IV: (r − 1)(Rd+ 1) +R + 1 ≤ t ≤ Rdr +R + r − 1.
If |U | ≤ (q + 1)r − 1, then we can increase e(G) by moving a vertex from VR to U1.
The proof for this follows similarly as in Case II.
On the other hand, if |U | ≥ (q + 1)r + 1, then |Ur| ≥ q + 2. Furthermore, n − |U | ≤
(q+1)(Rdr+R+r)−1−(q+1)r−1 = R(q+1)(dr+1)−2 and |V1| ≤ (q+1)(dr+1)−1.
Moving a vertex from Ur to V1 changes e(G) by at least

d ((q + 1)r) + q + 1− (q + 1)(dr + 1) + 1 = 1 > 0.

Thus, |U | = (q + 1)r.

We now use Proposition 5.2 to prove the following proposition on the growth of ΣR
r,d(a, n).
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Proposition 5.3 (Growth of ΣR
r,d(a, n)). Let r, R, d, a, n ∈ N with a ≥ d + 1, and let

n = q(Rdr +R + r) + t, with 0 ≤ t ≤ Rdr +R + r − 1. Then

ΣR
r,d(a, n+ 1)− ΣR

r,d(a, n)

=


(a+ 1)n− q(dr + 1)− dk, if t = k(Rd+ 1), 0 ≤ k ≤ r − 1,

(a+ 1)n− q(dr + 1)− dk − l, if k(Rd+ 1) + 1 + lR ≤ t ≤ k(Rd+ 1) + (l + 1)R,

0 ≤ k ≤ r − 1, 0 ≤ l ≤ d− 1,

(a+ 1)n− (q + 1)(dr + 1) + 1, if r(Rd+ 1) ≤ t ≤ Rdr +R + r − 1.

Proof. We may read off the values of ΣR
r,d(a, n + 1) − ΣR

r,d(a, n) from Proposition 5.2. Let

G ∈ S
(
πa,d
r,R, n

)
have canonical partition (⊔r

i=1Ui)
⊔
(⊔R

j=1Vj) and let U = ⊔r
i=1Ui.

• Case I: t = k(Rd+ 1), where 0 ≤ k ≤ r − 1.
Consider G ∈ S

(
πa,d
r,R, n

)
with |U | = qr + k. We may obtain a multigraph G′ ∈

S
(
πa,d
r,R, n+ 1

)
from G by adding a vertex to U1. Since |U1| = q, we have

ΣR
r,d(a, n+ 1)− ΣR

r,d(a, n) = (a+ 1)n− d(qr + k)− q = (a+ 1)n− q(dr + 1)− dk.

• Case II: k(Rd+ 1) + lR + 1 ≤ t ≤ k(Rd+ 1) + (l + 1)R, where 0 ≤ k ≤ r − 1 and
0 ≤ l ≤ d− 1.
Consider G ∈ S

(
πa,d
r,R, n

)
with |U | = qr + k + 1. We may obtain a multigraph G′ ∈

S
(
πa,d
r,R, n+ 1

)
from G by adding a vertex to V1. Since

R (q(dr + 1) + dk + l) ≤ n− |U | ≤ R (q(dr + 1) + dk + l + 1)− 1,

we have |V1| = q(dr + 1) + dk + l. Thus,

ΣR
r,d(a, n+ 1)− ΣR

r,d(a, n) = (a+ 1)n− q(dr + 1)− dk − l.

• Case III: r(Rd+ 1) ≤ t ≤ Rdr +R + r − 1.
Consider G ∈ S

(
πa,d
r,R, n

)
with |U | = (q + 1)r. We may obtain a multigraph G′ ∈
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S
(
πa,d
r,R, n+ 1

)
from G by adding a vertex to V1. Since

R ((q + 1)(dr + 1)− 1) ≤ n− |U | ≤ R ((q + 1)(dr + 1))− 1,

we have |V1| = (q + 1)(dr + 1)− 1. Thus,

ΣR
r,d(a, n+ 1)− ΣR

r,d(a, n) = (a+ 1)n− (q + 1)(dr + 1) + 1.

This proves the proposition.

Proposition 5.4. Let r, R, d, s ∈ N. There exists a natural number a1 with a1 ≥ d+ 1 such
that for all a ≥ a1,

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 < (a+ 1)s−

(
1− rxd

r,R(a)

R

)
s.

Proof. By Proposition 5.1, xd
r,R(a) increases to 1/(Rdr+R+ r). Therefore, (1− rxd

r,R(a))/R

decreases to (dr + 1)/(Rdr + R + r). In particular, for all a sufficiently large and any
c < (a+ 1)s− dr+1

Rdr+R+r
s, we have c < (a+ 1)s−

(
1−rxd

r,R(a)

R

)
s. To prove Proposition 5.4, it

therefore suffices to show that

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 < (a+ 1)s− dr + 1

Rdr +R + r
s. (5.1)

Equation (5.1) can be proved using Proposition 5.3. Let s = q(Rdr + R + r) + t, where
0 ≤ t ≤ Rdr + R + r − 1, and q = (s− t)/(Rdr + R + r) ∈ Z≥0. We consider the following
cases:

• Case I : t = k(Rd+ 1), where 0 ≤ k ≤ r − 1.
By Proposition 5.3, we have

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 = (a+ 1)s− (s− t)
dr + 1

Rdr +R + r
− dk − 1.

Since t = k(Rd+ 1), it suffices to show that

dk + 1 >
k(Rd+ 1)(dr + 1)

Rdr +R + r
.
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Expanding out the terms, it is easy to see that the above holds for all 0 ≤ k ≤ r − 1,
and the result follows.

• Case II: k(Rd+ 1) + lR + 1 ≤ t ≤ k(Rd+ 1) + (l + 1)R, where 0 ≤ k ≤ r − 1

and 0 ≤ l ≤ d− 1.
By Proposition 5.3, we have

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 = (a+ 1)s− (s− t)
dr + 1

Rdr +R + r
− dk − l − 1.

Since t ≤ k(Rd+ 1) + (l + 1)R, it suffices to show that

dk + l + 1 >
(dr + 1) (k(Rd+ 1) + (l + 1)R)

Rdr +R + r
.

By rearranging terms, it is easy to see that the above holds whenever 0 ≤ k ≤ r − 1

and 0 ≤ l ≤ d− 1. The result follows.

• Case III: r(Rd+ 1) ≤ t ≤ Rdr +R + r − 1.
By Proposition 5.3, we have

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 = (a+ 1)s− (s− t)
dr + 1

Rdr +R + r
− dr − 1.

Since t ≤ Rdr +R + r − 1, we have

dr + 1 >
t(dr + 1)

Rdr +R + r
.

The result follows.
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Chapter 6

Resolving the Main Conjecture for Large
a

In this chapter, we resolve Conjecture 2.2.2 for large a, thereby asymptotically resolving
Conjecture 2.2.1 and proving the product-optimality of the generalised Turán pattern in the
large a regime.

6.1 Main Results

We asymptotically resolve the “base” case of Conjecture 2.2.1 for sufficiently large a, marking
one of the primary contributions of this thesis.

Theorem 6.1.1. Let r, R, d ∈ N, and let s0 = r + R(dr + 1) + 1. Furthermore, let a be a
natural number satisfying

(a+ 1)r(d−1)(2r−1)+2r(a− d)2r−1(a− d+ 1)(2r−1)(r−1) ≥ ard(2r−1)+2r. (6.1)

Then

exΠ(s0,Σ
R
r,d(a, s0)) = a

(
a+ 1

a

)1− 1−rx∗
R

,

where x∗ = xd
r,R(a).
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Remark 6.1.1. The polynomial inequality given by Equation (6.1) holds for all a satisfying

a ≥ d(2r − 1) (d(2r − 1) + 1) + (d− 1)(2r − 1)(r − 1) (r(d− 1)(2r − 1) + 2r) = O(d2r4).

See Proposition A4 for a proof.

Next, we prove the following “Step-up” theorem:

Theorem 6.1.2 (Step-up in Conjecture 2.2.1). Let r, R, d, s ∈ N with s ≥ r+R(dr+1)+1.
Suppose there exist natural numbers a0, n0 with a0 ≥ d+ 1 such that the following holds for
all a ≥ a0 and n ≥ n0:

exΠ(n, s,Σ
R
r,d(a, s)) = ΠR

r,d(a, n).

Then there exist natural numbers a1, n1 with a1 ≥ a0 and n1 ≥ n0 such that the following
holds for all a ≥ a1 and n ≥ n1:

exΠ(n, s+ 1,ΣR
r,d(a, s+ 1)) = ΠR

r,d(a, n).

For fixed natural numbers r, R, d, Theorem 6.1.2 asserts that proving Conjecture 2.2.1 for
some value of s ≥ r + R(dr + 1) + 1 with a sufficiently large implies Conjecture 2.2.1 for
s + 1 with a sufficiently large. Note that Theorem 6.1.2 is a generalisation of Theorem 3.6
(which corresponds to the r = 1 case of Theorem 6.1.2). The resolution of the “base” case
of Conjecture 2.2.2, together with Theorem 6.1.2, implies the following corollary:

Corollary 6.1.3. Let r, R, d ∈ N. For all integers s ≥ r + R(dr + 1) + 1, there exists
a0 = a0(s) such that, for all a ≥ a0, we have

exΠ(s,Σ
R
r,d(a, s)) = a

(
a+ 1

a

)1− 1−rx∗
R

,

where x∗ = xd
r,R(a).

Thus, Conjecture 2.2.2 holds for all r, R, d, s ∈ N with s ≥ r+R(dr+1)+1 and a sufficiently
large. Since the r = 1 case of Conjecture 2.2.1 corresponds to Conjecture 3.2 in [6], our results
provide an asymptotic resolution of Conjecture 3.2 in the large a regime.
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As mentioned in Chapter 3, Conjecture 2.2.2 (the asymptotic form of Conjecture 2.2.1) had
previously been resolved only for the (r, d) = (1, 1) case with a sufficiently large. Our results,
therefore, represent a vast generalisation of all previous work and provide the first proof of
the product-optimality of a pattern with four different edge multiplicities and arbitrarily
large gaps between the smallest and largest multiplicities. At first glance, our results may
seem somewhat counterintuitive. The integral AM-GM inequality suggests that, to maximise
the product of edge multiplicities in a multigraph under a (local) constraint on their sum,
one would expect the edge multiplicities to be roughly equal. However, the generalised
Turán pattern, which we have shown to be product-optimal in the large a regime, features
an arbitrarily wide spread of edge multiplicities.

6.2 Broad Outline of the Proofs

To prove Theorem 6.1.2, we first show that if G ∈ F(n, s+1,ΣR
r,d(a, s+1))\F(n, s,ΣR

r,d(a, s)),
then for n ≥ N ≥ n0 with N sufficiently large, and sufficiently large a, G has a vertex of low
product-degree.

Next, we consider a multigraph G ∈ F(n, s+1,ΣR
r,d(a, s+1)) and sequentially delete vertices

of lowest product-degree to construct a sequence of multigraphs

G = Gn, Gn−1, Gn−2, . . . ,

where each Gi is an induced submultigraph of G on i vertices. We continue this process until
we obtain a submultigraph Gn′ of G, where either n′ = N or Gn′ ∈ F(n′, s,ΣR

r,d(a, s)).

In the first case, by ensuring that n is sufficiently large compared to N , we guarantee that
a large number of vertices of low product-degree have been deleted, allowing us to upper
bound P (G). In the second case, we can upper bound P (Gn′) (and consequently P (G)) by
assumption.

To prove Theorem 6.1.1, using Proposition 4.4, it suffices to show that for n sufficiently
large, every multigraph G ∈ F(n, s0,Σ

R
r,d(a, s0)) has a vertex of low product-degree, which

we hereafter refer to as a poor vertex.

We first show that sets of size smaller than s0 in G must be consistent with our construction
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(i.e., G is a (t,ΣR
r,d(a, t))-graph for all 2 ≤ t ≤ s0); otherwise, G contains a poor vertex.

Next, we argue, using weighted geometric averaging (with carefully chosen weights), that it
suffices to find “good” partite structures in G to establish the existence of a poor vertex.

To show that such partite structures exist, the key idea is to find a regular submultigraph
T on s1 > s0 vertices in G. Using the regularity of T , we demonstrate that every vertex
sending many edges into T induces one part of the “good” partite structure we seek. Finally,
by showing that many vertices send a large number of edges into T , we can establish the
existence of the required partite structure. This is the novel part of our approach, which
allows us to eschew the structural case analysis in previous work (the existence of partite
structures had already been used by Falgas-Ravry [13]).

6.3 Proof of Theorem 6.1.2

Proof. By Proposition 5.4, we may fix a1 ≥ a0 such that for all a ≥ a1, we have

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 ≤ as+

[
1−

(
1− rxd

r,R(a)

R

)]
s− ϵ,

for some ϵ > 0. Henceforth, we write x∗ for xd
r,R(a). Let N ≥ n0 be a sufficiently large

natural number to be determined later, and let n1 = N
(
1 + s

ϵ

)
. We claim that for all a ≥ a1

and n ≥ n1, we have

exΠ(n, s+ 1,ΣR
r,d(a, s+ 1)) = ΠR

r,d(a, n).

Fix a ≥ a1 and n ≥ n1. Since every multigraph in P(πa,d
r,R, n) is an (s+1,ΣR

r,d(a, s+1))-graph,
we have

exΠ(n, s+ 1,ΣR
r,d(a, s+ 1)) ≥ ΠR

r,d(a, n),

and thus we need only concern ourselves with proving the upper bound. Let G ∈ F(n, s +

1,ΣR
r,d(a, s+1)). We sequentially delete vertices of lowest product-degree to obtain a sequence

of multigraphs G = Gn, Gn−1, Gn−2, ..., where each Gi is an induced submultigraph of G on
i vertices. We stop when we obtain a submultigraph of G, Gn′ , where either n′ = N or
Gn′ ∈ F(n′, s,ΣR

r,d(a, s)).

32



Suppose there exists an s-set U ⊆ V (Gi) with e(U) ≥ ΣR
r,d(a, s) + 1. Since Gi is an (s +

1,ΣR
r,d(a, s+ 1))-graph, every vertex outside U sends into U at most

ΣR
r,d(a, s+ 1)− ΣR

r,d(a, s)− 1 ≤ as+

[
1−

(
1− rx∗

R

)
− ϵ

s

]
s edges .

Consider p :=
∏

u∈U p(u)
1
s . By the integral AM-GM inequality (Proposition 4.1), the con-

tribution of every vertex outside U to p is at most a
(
a+1
a

)1−(
1−rx∗

R

)
− ϵ

s . Since all the edges in
Gi have bounded multiplicities, the contribution to p due to vertices in U can be bounded
above by an absolute constant (O(1)). Thus,

p ≤ ai
(
a+ 1

a

)[
1−

(
1−rx∗

R

)
− ϵ

s

]
i+O(1)

.

From Equation (2.2), we have

ΠR
r,d(a, i)

ΠR
r,d(a, i− 1)

= ai
(
a+ 1

a

)[
1−

(
1−rx∗

R

)]
i+O(1)

.

Thus, for all i ≥ N , with N sufficiently large, we have

p ≤
ΠR

r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

i

≤
ΠR

r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

N

.

By weighted geometric averaging (Proposition 4.2), Gi contains a vertex u ∈ U with

pGi
(u) ≤

ΠR
r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

N

.

We now consider the following cases:

• Case I: n′ > N .
In this case, Gn′ ∈ F(n′, s,ΣR

r,d(a, s)). Since a ≥ a1 ≥ a0 and n′ > N ≥ n0, by
assumption, we have

P (Gn′) ≤ exΠ(n
′, s,ΣR

r,d(a, s)) = ΠR
r,d(a, n

′).
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Then,

P (G) ≤ P (Gn′)
n∏

i=n′+1

ΠR
r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

N

≤ ΠR
r,d(a, n

′)
n∏

i=n′+1

ΠR
r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

N

≤ ΠR
r,d(a, n).

• Case II: n′ = N .
In this case, GN ∈ F(N, s + 1,ΣR

r,d(a, s + 1)). By averaging over all sets of size s + 1,
we can argue that the average multiplicity of edges in GN is at most a + 1. Thus,
P (GN) ≤ (a+ 1)(

N
2 ). Since ΠR

r,d(a,N) ≥ a(
N
2 ), we have

P (GN) ≤ ΠR
r,d(a,N)

(
a+ 1

a

)(N2 )
.

Then,

P (G) ≤ P (GN)
n∏

i=N+1

ΠR
r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

N

≤ ΠR
r,d(a,N)

(
a+ 1

a

)(N2 ) n∏
i=N+1

ΠR
r,d(a, i)

ΠR
r,d(a, i− 1)

(
a+ 1

a

)− ϵ
2s

N

= ΠR
r,d(a, n)

(
a+ 1

a

)(N2 )− ϵ
2s

N(n−N)

.

Since n ≥ n1 ≥ N
(
1 + s

ϵ

)
, we have P (G) ≤ ΠR

r,d(a, n).

Thus, for all a ≥ a1 and n ≥ n1, exΠ(n, s+ 1,ΣR
r,d(a, s+ 1)) ≤ ΠR

r,d(a, n). The result follows.
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6.4 Proof of Theorem 6.1.1

Proof. Since every multigraph in P(πa,d
r,R, n) is an (s0,Σ

R
r,d(a, s0))-graph, we have

exΠ(n, s0,Σ
R
r,d(a, s0)) ≥ ΠR

r,d(a, n).

Raising both sides to 1/
(
n
2

)
and taking the limit as n → ∞, combined with Equation (2.2),

yields

exΠ(s0,Σ
R
r,d(a, s0)) ≥ a

(
a+ 1

a

)1− 1−rx∗
R

.

Therefore, it suffices to prove the upper bound. By Proposition 4.4, it suffices to show the
following: for every ϵ > 0, there exists n0 ∈ N such that for all n > n0, every multigraph

G ∈ F(n, s0,Σ
R
r,d(a, s0)) contains a vertex v with pG(v) ≤ an

(
a+1
a

)(1− 1−rx∗
R

+ϵ
)
n.

Definition 6.4.1. We define a vertex v in a multigraph G ∈ F(n, s0,Σ
R
r,d(a, s0)) to be ϵ-poor

if pG(v) ≤ an
(
a+1
a

)(1− 1−rx∗
R

+ϵ
)
n.

Henceforth, we fix ϵ > 0 and write “poor” for “ϵ-poor”. We first show that sets of size smaller
than s0 in a multigraph G ∈ F(n, s0,Σ

R
r,d(a, s0)) must be consistent with our construction

(i.e., G is a (t,ΣR
r,d(a, t))-graph for all 2 ≤ t ≤ s0); otherwise, G contains a poor vertex.

Lemma 6.4.1. Let G ∈ F(n, s0,Σ
R
r,d(a, s0)). For n sufficiently large, either G contains a

poor vertex or G ∈
⋂

2≤t≤s0
F(n, t,ΣR

r,d(a, t)).

Proof. Suppose G /∈
⋂

2≤t≤s0
F(n, t,ΣR

r,d(a, t)). Let t be the largest integer less than s0 such
that G /∈ F(n, t,ΣR

r,d(a, t)). Observe that 2 ≤ t ≤ s0 − 1. There exists a set of t vertices
with at least ΣR

r,d(a, t) + 1 edges. Let us denote this set by T . By the maximality of t, every
vertex outside T sends into T at most

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1 ≤ at+

(
1− d(r − 1) + 1

R[d(r − 1) + 1] + r − 1

)
t edges.

The last inequality follows from Proposition A2. Consider p :=
∏

v∈T p(v)
1
t . By the integral

AM-GM inequality (Proposition 4.1), the contribution of every vertex outside T to p is at

most a
(
a+1
a

)1− d(r−1)+1
R[d(r−1)+1]+r−1 . Since G is an (s0,Σ

R
r,d(a, s0))-graph, edges in G have bounded
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multiplicity. Therefore, the contribution of vertices inside T to p can be bounded above by
an absolute constant (O(1)), and we have

p ≤ an
(
a+ 1

a

)(1− d(r−1)+1
R[d(r−1)+1]+r−1)n+O(1)

.

Since d(r−1)+1
R[d(r−1)+1]+r−1

> d(2r−1)+2
R[d(2r−1)+2]+2r−1

(this can be seen by rearranging the terms), it follows
from part (3) of Proposition A1 that we have

p ≤ an
(
a+ 1

a

)(
1− 1−rx∗

R

)
n+O(1)

.

By weighted geometric averaging (Proposition 4.2), it follows that for n sufficiently large, G
contains a poor vertex.

Remark 6.4.1. By Lemma 6.4.1, we may assume that G is a (2,ΣR
r,d(a, 2))-graph. This

means that the multiplicity of every edge is at most a+ 1.

Next, we prove that it suffices to find “good” partite structures to establish the existence of
a poor vertex. We denote by HL the multigraph in B(πa,d

r,R, RL + r) with |Ui| = 1 for all
1 ≤ i ≤ r, and |Vj| = L for all 1 ≤ j ≤ R, where (⊔r

i=1Ui)
⊔
(⊔R

j=1Vj) denotes the canonical
partition of HL.

Lemma 6.4.2. Let G = ([n], w) ∈ F(n, s0,Σ
R
r,d(a, s0)). Suppose G contains a copy of HL,

with L satisfying

L ≥ max

{
1− rx∗

Rrx∗ ,
rd log

(
a+1
a

)
log
(

a+1
a+1−d

) (1− rx∗

Rrx∗

)}
.

Then, for n sufficiently large, G contains a poor vertex.

Proof. By Lemma 6.4.1, we may assume that G ∈
⋂

2≤t≤s0
F(n, t,ΣR

r,d(a, t)), otherwise G

contains a poor vertex. Let (⊔r
i=1Ui)

⊔
(⊔R

j=1Vj) be the canonical partition of the copy of HL

in G. Furthermore, let U := ⊔r
i=1Ui and V := ⊔R

j=1Vj.
Consider p :=

∏
u∈U pG(u)

x∗∏
v∈V pG(v)

1−rx∗
RL . Let y be an arbitrary vertex in G outside HL,

and let w(y) := max
u∈U

w(uy). We consider the contribution of y to p in various cases.

36



• Case I: w(y) = a− d+ 1 + k, where 1 ≤ k ≤ d.
In this case, there exists a part Vj to which y sends at most d− k edges of multiplicity
a+1. Otherwise, the union of (d−k+1)-sets V ′

j ⊆ Vj with all edges from y to V ′
j having

multiplicity a+1 and u ∈ U with w(uy) = a−d+1+k, taken together with y forms a
set of R(d−k+1)+2 vertices with ΣR

2,d−k(a,R(d−k+1)+2) = ΣR
r,d(a,R(d−k+1)+2)+1

edges. This contradicts our assumption that G ∈
⋂

2≤t≤s0
F(n, t,ΣR

r,d(a, t)). Thus, the
contribution of y to p is at most

(a+ 1)

(
a− d+ 1 + k

a+ 1

)rx∗ (
a

a+ 1

)(1− d−k
L )

(
1−rx∗

R

)

= a

(
a+ 1

a

)1− 1−rx∗
R

+

[
( d−k

L )
(

1−rx∗
R

)
−rx∗

log( a+1
a−d+1+k)

log(a+1
a )

]
.

Claim. For all 1 ≤ k ≤ d,(
d− k

L

)(
1− rx∗

R

)
− rx∗ log

(
a+1

a−d+1+k

)
log
(
a+1
a

) ≤ 0.

Proof. For k = d, equality holds. Hence, we may assume that 1 ≤ k ≤ d − 1. Let
l = d− k. To prove the claim, we need to show that for all 1 ≤ l ≤ d− 1, we have

L ≥
l log

(
a+1
a

)
log
(

a+1
a+1−l

) (1− rx∗

Rrx∗

)
.

By the integral AM-GM inequality (Proposition 4.1), we have (a + 1)l(a + 1 − l) ≤
al(a + 1), which, in turn, implies that log

(
a+1
a

)
≤ 1

l
log
(

a+1
a+1−l

)
. Since L ≥ 1−rx∗

Rrx∗ by
assumption, the claim follows.

Thus, the contribution of y to p is at most a
(
a+1
a

)1− 1−rx∗
R in this case.

• Case II: w(y) ≤ a− d+ 1.
In this case, unless all edges between y and U have multiplicity a−d+1, the contribution
of y to p is at most

a

(
a− d

a

)x∗ (
a− d+ 1

a

)(r−1)x∗ (
a+ 1

a

)1−rx∗

= a

(
a+ 1

a

)1− 1−rx∗
R

.

The equality holds by Equation (2.1). On the other hand, if all edges between y and
U have multiplicity a− d+1, there exists a part Vj to which y sends at most dr edges
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of multiplicity a + 1. Otherwise, the union of (dr + 1)-sets V ′
j ⊆ Vj with all edges

between y and V ′
j having multiplicity a + 1 and U , taken together with y forms a set

of s0 vertices with ΣR
1,d−1(a, s0) = ΣR

r,d(a, s0) + 1 edges. This is not possible since G is
an (s0,Σ

R
r,d(a, s0))-graph. Thus, the contribution of y to p is at most

(a+ 1)

(
a− d+ 1

a+ 1

)rx∗ (
a

a+ 1

)(1− dr
L )

(
1−rx∗

R

)

= a

(
a+ 1

a

)1− 1−rx∗
R

+

[
dr
L

(
1−rx∗

R

)
−rx∗

log( a+1
a−d+1)

log(a+1
a )

]
.

Since L ≥ rd log(a+1
a )

log( a+1
a+1−d)

(
1−rx∗

Rrx∗

)
by assumption, we have dr

L

(
1−rx∗

R

)
− rx∗ log(

a+1
a−d+1)

log(a+1
a )

≤ 0.

Thus, the contribution of y to p is at most a
(
a+1
a

)1− 1−rx∗
R in this case as well.

Therefore, the contribution of every vertex outside HL to p is at most a
(
a+1
a

)1− 1−rx∗
R . The

contribution of vertices within HL to p can be bounded above by an absolute constant (O(1)).
Hence, we have

p ≤ an
(
a+ 1

a

)(
1− 1−rx∗

R

)
n+O(1)

.

By weighted geometric averaging (Proposition 4.2), for n sufficiently large, G contains a poor
vertex.

Next, we show that all sets of size somewhat larger than s0 in G must also be consistent
with our construction.

Lemma 6.4.3. For all s0 ≤ t ≤ 2r +R[d(2r − 1) + 2], exΣ(t, s0,ΣR
r,d(a, s0)) = ΣR

r,d(a, t).

Proof. We proceed by induction on t. The lemma clearly holds for t = s0. Suppose
exΣ(t, s0,Σ

R
r,d(a, s0)) = ΣR

r,d(a, t) for some s0 ≤ t ≤ (2r−1)+R[d(2r−1)+2]. Clearly, exΣ(t+
1, s0,Σ

R
r,d(a, s0)) ≥ ΣR

r,d(a, t+1). Therefore, it suffices to show that exΣ(t+1, s0,Σ
R
r,d(a, s0)) ≤

ΣR
r,d(a, t+ 1). By Proposition 4.3, it suffices to show that⌊(

t+ 1

t− 1

)
ΣR

r,d(a, t)

⌋
≤ ΣR

r,d(a, t+ 1),
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which is equivalent to showing that⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
≤ ΣR

r,d(a, t+ 1)− ΣR
r,d(a, t).

We consider the following cases:

• Case I: t = Rdr +R + r + k(Rd+ 1), where 1 ≤ k ≤ r − 1.
From Proposition 5.2, we have

ΣR
r,d(a, t) = (a+ 1)

(
t

2

)
−R

(
d(k + r) + 1

2

)
− d

(
k + r

2

)
− k.

Furthermore, ⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
= (a+ 1)t− d(k + r)−

⌈
2k

t− 1

⌉
.

Since k ≥ 1,⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
≤ (a+ 1)t− d(k + r)− 1 = ΣR

r,d(a, t+ 1)− ΣR
r,d(a, t).

The last equality follows from Proposition 5.3.
• Case II: t = Rdr+R+ r+ k(Rd+1)+1+ lR+ j, where 0 ≤ k ≤ r− 2, 0 ≤ l ≤ d− 1

and 0 ≤ j ≤ R− 1.
From Proposition 5.2, we have

ΣR
r,d(a, t) = (a+ 1)

(
t

2

)
−R

(
d(k + r) + l + 1

2

)
− j (d(k + r) + l + 1)

− d

(
k + r + 1

2

)
− (k + 1).

Furthermore,⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
= (a+ 1)t− d(k + r)− l

−
⌈
j (d(k + r) + l) + 2j + (k + r)(d− l) + 2(k + 1)

t− 1

⌉
.
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Since l ≤ d− 1,⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
≤ (a+ 1)t− d(k + r)− l − 1 = ΣR

r,d(t+ 1)− ΣR
r,d(a, t).

The last equality follows from Proposition 5.3.
• Case III: t = Rdr +R + r + (r − 1)(Rd+ 1) + 1 + j, where 0 ≤ j ≤ R− 1.

From Proposition 5.2, we have

ΣR
r,d(a, t) = (a+ 1)

(
t

2

)
−R

(
d(2r − 1) + 1

2

)
− j (d(2r − 1) + 1)− d

(
2r

2

)
− r.

Furthermore,⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
= (a+ 1)t− d(2r − 1)−

⌈
(j + 1)d(2r − 1) + 2(j + r)

t− 1

⌉
.

Since j ≥ 0,⌊(
2

t− 1

)
ΣR

r,d(a, t)

⌋
≤ (a+ 1)t− d(2r − 1)− 1 = ΣR

r,d(a, t+ 1)− ΣR
r,d(a, t).

The last equality follows from Proposition 5.3.

The lemma follows.

Henceforth, we let s1 := 2r +R (d(2r − 1) + 2).

Definition 6.4.2. Let G ∈ F(n, s0,Σ
R
r,d(a, s0)). For all integers 2 ≤ t ≤ s1, a set of t

vertices T ⊆ V (G) is called a heavy set if e(T ) = ΣR
r,d(a, t).

We now show that we can find a heavy set on s1 vertices in G. Furthermore, this heavy set
must be regular.

Lemma 6.4.4. Let G ∈ F(n, s0,Σ
R
r,d(a, s0)). For n sufficiently large, either G contains a

heavy set on s1 vertices or G contains a poor vertex.

Proof. Using Lemmas 6.4.1 and 6.4.3, we may assume that G is a (t,ΣR
r,d(a, t))-graph for all

2 ≤ t ≤ s1. Otherwise, G contains a poor vertex. We may also assume that G contains a
heavy set on 2 vertices. Otherwise, all edges in G have multiplicity at most a, and there
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exists a vertex with product-degree at most an.
Suppose G does not contain a heavy set on s1 vertices. Let 2 ≤ t ≤ s1 − 1 be the largest
integer such that G contains a heavy set on t vertices. Let us denote this set by T . By the
maximality of t, every vertex outside T sends into T at most

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1 ≤ at+

(
1− d(2r − 1) + 2

R[d(2r − 1) + 2] + 2r − 1

)
t edges.

The last inequality follows from Propositions A2 and A3. Consider p :=
∏

v∈T pG(v)
1
t . By

the integral AM-GM inequality (Proposition 4.1), the contribution of every vertex outside
T to p is at most

a

(
a+ 1

a

)1− d(2r−1)+2
R[d(2r−1)+2]+2r−1

≤ a

(
a+ 1

a

)1− 1−rx∗
R

.

The last inequality follows from part (3) of Proposition A1. The contribution to p due to
the vertices within T can be bounded above by an absolute constant (O(1)). Thus, we have

p ≤ an
(
a+ 1

a

)(
1− 1−rx∗

R

)
n+O(1)

.

By weighted geometric averaging (Proposition 4.2), for n sufficiently large, G contains a poor
vertex.

Lemma 6.4.5. Let G ∈ F(n, s0,Σ
R
r,d(a, s0)), and let T ⊆ V (G) be a heavy set on s1 vertices.

Then, for every vertex v ∈ T , dT (v) = (a+ 1)(s1 − 1)− d(2r − 1)− 1.

Proof. By Lemma 6.4.3, every set of s1 − 1 vertices in G contains at most ΣR
r,d(a, s1 − 1)

edges. Thus, for every vertex v ∈ T , we have

dT (v) ≥ ΣR
r,d(a, s1)− ΣR

r,d(a, s1 − 1) = (a+ 1)(s1 − 1)− d(2r − 1)− 1.

Otherwise, T \ {v} is a set of s1 − 1 vertices with at least ΣR
r,d(a, s1 − 1) + 1 edges. (Note

that the last equality above follows from Proposition 5.3.) Furthermore, from Proposition
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5.2, we have

ΣR
r,d(a, s1) = (a+ 1)

(
s1
2

)
−R

(
d(2r − 1) + 2

2

)
− d

(
2r

2

)
− r

=
s1
2
((a+ 1)(s1 − 1)− d(2r − 1)− 1) .

Since
∑

v∈T dT (v) = 2e(T ) = 2ΣR
r,d(a, s1) = s1 ((a+ 1)(s1 − 1)− d(2r − 1)− 1), the lemma

follows.

Finally, we prove that we can indeed find the “good” partite structure we are looking for in
G.

Lemma 6.4.6. Let G = ([n], w) ∈ F(n, s0,Σ
R
r,d(a, s0)). For n sufficiently large, either G

contains a copy of HL, with L = d(2r − 1) + 2, or G contains a poor vertex.

Proof. By Lemmas 6.4.1 and 6.4.4, we may assume that G ∈
⋂

2≤t≤s0
F(n, t,ΣR

r,d(a, t)), and
that G contains a heavy set on s1 vertices. Otherwise, G contains a poor vertex. Let us
denote this heavy set on s1 vertices by T .

Claim. Every vertex outside T sends into T at most (a+ 1)s1 − d(2r − 1)− 2 edges.

Proof. By Lemma 6.4.3, G is an (s1,Σ
R
r,d(a, s1))-graph. By Proposition 4.3, every set of

s1 + 1 vertices in G contains at most
⌊(

s1+1
s1−1

)
ΣR

r,d(a, s1)
⌋

edges. Since e(T ) = ΣR
r,d(a, s1),

every vertex outside T sends into T at most⌊
2

s1 − 1
ΣR

r,d(a, s1)

⌋
=

⌊
s1

s1 − 1
((a+ 1)(s1 − 1)− d(2r − 1)− 1)

⌋
= (a+ 1)s1 −

⌈
s1

s1 − 1
(d(2r − 1) + 1)

⌉
≤ (a+ 1)s1 − d(2r − 1)− 2 edges.

Let A := {v ∈ [n] \ T : v sends (a + 1)s1 − d(2r − 1) − 2 edges into T}, and let v ∈ A. We
make the following claims:
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Claim. w(vu) ≥ a for all u ∈ T .

Proof. Suppose there exists a vertex u ∈ T such that w(vu) ≤ a − 1. By Lemma 6.4.5,
dT (u) = (a+ 1)(s1 − 1)− d(2r − 1)− 1. Thus,

dT∪{v}(u) = dT (u) + w(vu) ≤ (a+ 1)s1 − d(2r − 1)− 3,

and (T \ {u}) ∪ {v} is a set of s1 vertices with

e(T ) + (a+ 1)s1 − d(2r − 1)− 2− dT∪{v}(u) ≥ ΣR
r,d(a, s1) + 1 edges.

This contradicts the fact that G is an (s1,Σ
R
r,d(a, s1))-graph.

Therefore, v sends d(2r − 1) + 2 edges of multiplicity a, and s1 − d(2r − 1) − 2 edges of
multiplicity a+ 1 into T .

Claim. Suppose w(vu) = a for some vertex u ∈ T . Then, for all vertices y ∈ T \ {u},
w(vy) = w(uy).

Proof. By Lemma 6.4.5, dT (u) = (a+ 1)(s1 − 1)− d(2r − 1)− 1. We have

dT∪{v}(u) = dT (u) + w(vu) = (a+ 1)s1 − d(2r − 1)− 2 = dT∪{v}(v).

Thus, deleting either u or v from T ∪ {v} yields a heavy set on s1 vertices, wherein every
vertex must have the same degree, by Lemma 6.4.5. The claim follows.

For all vertices v ∈ A, we define Bv := {u ∈ T : w(vu) = a}. The claims above imply that
|Bv| = d(2r− 1)+ 2. Moreover, all edges within Bv have multiplicity a, while all edges from
Bv to T \Bv have multiplicity a+ 1.

Claim. Let v1, v2 ∈ A. Then, either Bv1 = Bv2 or Bv1 ∩Bv2 = ∅.

Proof. For each i ∈ [2], all edges within Bvi have multiplicity a, while all edges between Bvi

and T \Bvi have multiplicity a+ 1. The claim follows.
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Let m be the largest integer such that there exist vertices v1, ..., vm ∈ A with Bv1 , ..., Bvm

being pairwise disjoint. Since |Bvi | = d(2r − 1) + 2 for each i ∈ [m], and |T | = s1 =

2r +R[d(2r − 1) + 2], we have m ≤ R. For each i ∈ [m], we define

Ai := {v ∈ A : Bv = Bvi}.

By the maximality of m, we have A = ∪m
i=1Ai. Let n′ = |[n] \T | = n− s1, and let |A| = αn′.

Consider p :=
∏

u∈T pG(u)
1
s1 . By the integral AM-GM inequality (Proposition 4.1), the

contribution of every vertex in A to p is at most a
(
a+1
a

)1− d(2r−1)+2
s1 , while the contribution of

every vertex in ([n] \ T ) \ A to p is at most a
(
a+1
a

)1− d(2r−1)+3
s1 . The contribution of vertices

within T to p can be bounded above by an absolute constant (O(1)). Therefore,

p ≤ an
(
a+ 1

a

)(
1− d(2r−1)+3

s1
+ α

s1

)
n+O(1)

.

If 1−d(2r−1)+3
s1

+ α
s1

≤ 1−1−rx∗

R
, then by geometric averaging (Proposition 4.2), for n sufficiently

large, G contains a poor vertex. Thus, we may assume that 1 − d(2r−1)+3
s1

+ α
s1

> 1 − 1−rx∗

R
,

which is equivalent to α > R−2r+rs1x∗

R
.

For each i ∈ [m], let |Ai| = αin
′. Consider a vertex u ∈ Bvi . We have

p(u) ≤ an
(
a+ 1

a

)(1−αi)n+O(1)

.

If 1 − αi ≤ 1 − 1−rx∗

R
, then for n sufficiently large, u is a poor vertex. Therefore, we may

assume that 1 − αi > 1 − 1−rx∗

R
, which is equivalent to αi <

1−rx∗

R
. Since α =

∑m
i=1 αi, we

have α < m
(
1−rx∗

R

)
. Combining the upper and lower bounds on α, we get

m >
R− 2r + rs1x

∗

1− rx∗ .

We observe that R−2r+rs1x∗

1−rx∗ ≥ R − 1 is equivalent to d(2r − 1) + 3 ≥ (2r − 1)1−rx∗

Rrx∗ , which
holds by part (2) of Proposition A1. Thus, m > R − 1. Since m ≤ R, this means that
m = R.
Let T ′ := T \ (∪R

i=1Bvi). Observe that |T ′| = 2r.

Claim. All edges in T ′ have multiplicity at most a− d+ 1.
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Proof. Suppose there exists an edge y1y2 in T ′ with w(y1y2) = a−d+1+k for some k ∈ [d].
Then {y1, y2}, taken along with d−k+1 vertices from each Bvi yields a set of R(d−k+1)+2

vertices with ΣR
2,d−k(a,R(d−k+1)+2) = ΣR

r,d(a,R(d−k+1)+2)+1 edges. This contradicts
the assumption that G ∈

⋂
2≤t≤s0

F(n, t,ΣR
r,d(a, t)).

For every vertex y ∈ T ′, we have

dT ′(y) = dT (y)− (a+ 1) (R(d(2r − 1) + 2))

= (a+ 1)(s1 − 1)− d(2r − 1)− 1− (a+ 1) (R(d(2r − 1) + 2))

= (2r − 1)(a− d+ 1)− 1.

Since every edge in T ′ has multiplicity at most a − d + 1, this means that T ′ consists of
a perfect matching of edges of multiplicity a − d, with all other edges having multiplicity
a− d+ 1. One vertex from each edge of the perfect matching, together with ∪R

i=1Bvi yields
a copy of HL, with L = d(2r − 1) + 2.

By the integral AM-GM inequality (Proposition 4.1), we have (a+1)d(a+1−d) ≤ ad(a+1).

Therefore,
d log(a+1

a )
log( a+1

a+1−d)
≤ 1. Since r ≥ 1, we have

max

{
1− rx∗

Rrx∗ ,
rd log

(
a+1
a

)
log
(

a+1
a+1−d

) (1− rx∗

Rrx∗

)}
≤ r

(
1− rx∗

Rrx∗

)
.

By part (2) of Proposition A1, we have

L = d(2r − 1) + 2 ≥ (2r − 1)
1− rx∗

Rrx∗ ≥ max

{
1− rx∗

Rrx∗ ,
rd log

(
a+1
a

)
log
(

a+1
a+1−d

) (1− rx∗

Rrx∗

)}
.

Thus, from Lemmas 6.4.2 and 6.4.6, it follows that every multigraph G ∈ F(n, s0,Σ
R
r,d(a, s0))

contains a poor vertex, for n sufficiently large. This proves Theorem 6.1.1.
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Chapter 7

Results on the Turán Pattern

In this chapter, we present and prove two results related to the optimality of the Turán
pattern, as described in Definition 2.1.1.

7.1 An Improved Bound for Theorem 3.7

Day, Falgas-Ravry, and Treglown ([6, Theorem 3.10], stated as Theorem 3.7 in this thesis)
proved that for all natural numbers a,R, s, n with s ≥ R + 1 and n ≥ 2R(s + 2) + R(s +

2)
√
s− 1, we have

exΠ(n, s,Σ
R(a, s)) = ΠR(a, n).

The first open problem raised by Day, Falgas-Ravry, and Treglown in [6, Section 13] was
whether the correct bound for this result is simply n ≥ s. We prove that this is indeed the
case.

Theorem 7.1.1 (Multigraph Turán Theorem). Let R, a, s ∈ N with s ≥ R + 1. For all
n ≥ s, we have

exΣ(n, s,Σ
R(a, s)) = ΣR(a, n) = a

(
n

2

)
+ tR(n).

47



Consequently,

exΠ(n, s,Σ
R(a, s)) = ΠR(a, n) = a(

n
2)
(
a+ 1

a

)tR(n)

.

Proof. From the lower bound construction given by the family B(πa
R, n), it is easy to see

that for all n ≥ s, we have exΣ(n, s,Σ
R(a, s)) ≥ ΣR(a, n) and exΠ(n, s,Σ

R(a, s)) ≥ ΠR(a, n).
Therefore, it suffices to prove the upper bounds. We will show by induction on n, that for all
n ≥ s, we have exΣ(n, s,Σ

R(a, s)) ≤ ΣR(a, n). This clearly holds for n = s. Let us assume
that it holds for some n = k, with k ≥ s. By averaging (Proposition 4.3), we have

exΣ(k + 1, s,ΣR(a, s)) ≤
⌊(

k + 1

k − 1

)
exΣ(k, s,Σ

R(a, s))

⌋
=

⌊(
k + 1

k − 1

)
ΣR(a, k)

⌋
=

⌊(
k + 1

k − 1

)(
a

(
k

2

)
+ tR(k)

)⌋
= a

(
k + 1

2

)
+

⌊(
k + 1

k − 1

)
tR(k)

⌋
.

Now,

(k + 1)tR(k)− (k − 1)tR(k + 1) = (k − 1)(tR(k)− tR(k + 1)) + 2tR(k)

≤ (k − 1)

(⌊
k

R

⌋
− k

)
+ 2

(
R

2

)(
k

R

)2

≤ (k − 1)

(
k

R
− k

)
+ 2

(
R

2

)(
k

R

)2

= k − k

R
< k − 1,

since k ≥ s ≥ R + 1. Rearranging, we get
(
k+1
k−1

)
tR(k) < tR(k + 1) + 1, which implies that⌊(

k+1
k−1

)
tR(k)

⌋
≤ tR(k + 1). Thus, we have

exΣ(k + 1, s,ΣR(a, s)) ≤ a

(
k + 1

2

)
+

⌊(
k + 1

k − 1

)
tR(k)

⌋
≤ a

(
k + 1

2

)
+ tR(k + 1)

= ΣR(a, k + 1).

So, for all n ≥ s, we have exΣ(n, s,Σ
R(a, s)) = ΣR(a, n) = a

(
n
2

)
+ tR(n). By the integral
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AM-GM inequality (Proposition 4.1), we then have

exΠ(n, s,Σ
R(a, s)) ≤ a(

n
2)
(
a+ 1

a

)tR(n)

= ΠR(a, n).

This concludes the proof.

7.2 Asymptotically Flat Intervals

Mubayi and Terry ([21, Theorem 3], stated as Theorem 3.1 in this thesis) showed that for
all natural numbers a, s with s ≥ 2, we have

exΠ

(
s, a

(
s

2

))
= exΠ

(
s, a

(
s

2

)
+ 1

)
= · · · = exΠ

(
s, a

(
s

2

)
+ s− 2

)
= a.

This result provides an example of an “asymptotically flat interval”, where, despite an increase
in q (with s held fixed), exΠ(s, q) remains unchanged. Falgas-Ravry [13] raised the following
conjecture, which, if true, generalizes the previous result and provides new examples of
asymptotically flat intervals.

Conjecture 7.2.1 (Conjecture 5.1, [13]). For every R, a ∈ N and for every s ≥ 2R+ 1, we
have

exΠ
(
s,ΣR(a, s)

)
= exΠ

(
s,ΣR(a, s) + 1

)
= · · · = exΠ

(
s,ΣR(a, s) +

⌊
s− 1

R

⌋
− 1

)
= a

1
R (a+ 1)

R−1
R .

Here, we require s ≥ 2R + 1, since this would ensure that
⌊
s−1
R

⌋
− 1 ≥ 1, which guarantees

at least two distinct values of q in the interval. Note that the R = 1 case of Conjecture 7.2.1
corresponds to the result due to Mubayi and Terry. We prove that Conjecture 7.2.1 is true.

Theorem 7.2.2. Let R, a, s ∈ N with s ≥ 2R + 1. We have

exΠ(s,Σ
R(a, s)) = exΠ(s,Σ

R(a, s) + 1) = · · · = exΠ

(
s,ΣR(a, s) +

⌊
s− 1

R

⌋
− 1

)
= a

1
R (a+ 1)

R−1
R .

49



Proof. From Theorem 7.1.1, it is easy to see that exΠ(s,ΣR(a, s)) = a
1
R (a+1)

R−1
R . Therefore,

it suffices to show that exΠ
(
s,ΣR(a, s) +

⌊
s−1
R

⌋
− 1
)
≤ a

1
R (a+ 1)

R−1
R . To do so, we will first

show by induction on n, that for all n ≥ s, we have exΣ
(
n, s,ΣR(a, s) +

⌊
s−1
R

⌋
− 1
)
≤

ΣR(a, n) +
⌊
n−1
R

⌋
− 1. This holds trivially for n = s. Suppose that it holds for some n = k,

with k ≥ s. By averaging (Proposition 4.3), we have

exΣ

(
k + 1, s,ΣR(a, s) +

⌊
s− 1

R

⌋
− 1

)
≤
⌊(

k + 1

k − 1

)
exΣ

(
k, s,ΣR(a, s) +

⌊
s− 1

R

⌋
− 1

)⌋
≤
⌊(

k + 1

k − 1

)(
ΣR(a, k) +

⌊
k − 1

R

⌋
− 1

)⌋
.

It suffices to show that(
k + 1

k − 1

)(
ΣR(a, k) +

⌊
k − 1

R

⌋
− 1

)
< ΣR(a, k + 1) +

⌊
k

R

⌋
.

Since ΣR(a, k) = a
(
k
2

)
+ tR(k), this is equivalent to

2tR(k) + (k − 1)(tR(k)− tR(k + 1)) + (k + 1)

⌊
k − 1

R

⌋
< k + 1 + (k − 1)

⌊
k

R

⌋
.

Now, as, tR(k + 1)− tR(k) = k −
⌊
k
R

⌋
, it is enough to show that

2tR(k) + (k + 1)

⌊
k − 1

R

⌋
< k2 + 1.

This holds, since we have

2tR(k) + (k + 1)

⌊
k − 1

R

⌋
< 2

(
R

2

)(
k

R

)2

+
k2

R
= k2 < k2 + 1.

Thus, for all n ≥ s, we have exΣ
(
n, s,ΣR(a, s) +

⌊
s−1
R

⌋
− 1
)
≤ ΣR(a, n) +

⌊
n−1
R

⌋
− 1. By the

integral AM-GM inequality (Proposition 4.1), we have

exΠ

(
n, s,ΣR(a, s) +

⌊
s− 1

R

⌋
− 1

)
≤ a(

n
2)
(
a+ 1

a

)tR(n)+⌊n−1
R ⌋−1

.

Raising both sides to 1/
(
n
2

)
and taking the limit as n → ∞ yields the desired result.
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Chapter 8

Stability Results

As mentioned Chapter 1, extremal graph theory is fundamentally concerned with determin-
ing how large or small a given parameter of a graph G can be, subject to certain constraints.
Beyond optimizing this parameter, one can also investigate whether the problem exhibits
stability - namely, whether graphs that are nearly optimal must resemble the extremal con-
structions. In this chapter, we prove stability results corresponding to Theorems 6.1.1 and
7.1.1.

8.1 A Property of Near-Extremal Multigraphs

Given integers s ≥ 2 and q ≥ 0, we first show that any multigraph G ∈ F(n, s, q) with P (G)

close to exΠ(n, s, q) (for sufficiently large n) contains a large induced submultigraph G′ in
which every vertex has high product-degree. Using the fact that G′ has no low product-degree
vertices, we deduce structural properties of G′ and use these properties to prove stability
results.

Proposition 8.1.1. Let s ≥ 2 and q ≥ 0 be integers such that exΠ(s, q) = c > 1. For all
0 < δ1, δ2 < 1, there exists ϵ > 0 such that the following holds for all n sufficiently large:
Suppose G ∈ F(n, s, q) and P (G) ≥ exΠ(n, s, q)

1−ϵ. Then there exists an induced submulti-
graph G′ ⊆ G on n′ vertices such that:

1. pG′(v) ≥ c(1−δ1)(n′−1) for every vertex v ∈ V (G′).
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2.
(
n
2

)
−
(
n′

2

)
≤ δ2

(
n
2

)
.

Proof. Fix 0 < δ1, δ2 < 1, and let ϵ = δ1δ2
2−δ2

. Since exΠ(n, s, q)

1

(n2) decreases to c as n → ∞,
there exists N0 ∈ N such that the following holds for all n ≥ N0:

c(
n
2) ≤ exΠ(n, s, q) ≤ c(1+ϵ)(n2).

Suppose G ∈ F(n, s, q) and P (G) ≥ exΠ(n, s, q)
1−ϵ. This means that P (G) ≥ c(1−ϵ)(n2).

From G, we sequentially delete the vertices with the lowest product-degree until we obtain
a multigraph G′ on n′ vertices such that pG′(v) ≥ c(1−δ1)(n′−1) for every vertex v ∈ V (G′).
Since G′ is an (s, q)-graph, P (G′) ≤ q(

n′
2 ). We have

c(1−ϵ)(n2) ≤ P (G) ≤ P (G′)
n∏

i=n′+1

c(1−δ1)(i−1) ≤ q(
n′
2 )c(1−δ1)(n2).

Therefore,
(
n′

2

)
≥ (δ1−ϵ) log c

log q

(
n
2

)
. Since ϵ = δ1δ2

2−δ2
< δ1, for n sufficiently large, n′ ≥ N0. Thus,

we have

c(1−ϵ)(n2) ≤ P (G) ≤ P (G′)
n∏

i=n′+1

c(1−δ1)(i−1) ≤ c(1+ϵ)(n
′
2 )c

(1−δ1)
[
(n2)−(

n′
2 )

]
.

This means that
(
n′

2

)
≥ δ1−ϵ

δ1+ϵ

(
n
2

)
, which in turn implies that

(
n
2

)
−
(
n′

2

)
≤ 2ϵ

δ1+ϵ

(
n
2

)
= δ2

(
n
2

)
.

8.2 Stability for Theorem 6.1.1

Theorem 8.2.1. Let r, R, d ∈ N, and let s0 = r + R(dr + 1) + 1. Furthermore, let a be a
natural number satisfying

(a+ 1)r(d−1)(2r−1)+2r(a− d)2r−1(a− d+ 1)(2r−1)(r−1) > ard(2r−1)+2r. (8.1)

For every δ > 0, there exists ϵ > 0 such that the following holds for all n sufficiently large:
Suppose G ∈ F(n, s0,Σ

R
r,d(a, s0)) and P (G) ≥ exΠ(n, s0,Σ

R
r,d(a, s0))

1−ϵ. Then G is δ-close to
an element of P(πa,d

r,R, n).
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Remark 8.2.1. The polynomial inequality given by Equation (8.1) holds for all a satisfying

a > d(2r − 1) (d(2r − 1) + 1) + (d− 1)(2r − 1)(r − 1) (r(d− 1)(2r − 1) + 2r) = O(d2r4).

This can easily be seen from the proof of Proposition A4.

Proof. The proof of Theorem 8.2.1 is closely related to the proof of Theorem 6.1.1. We write
x∗ for xd

r,R(a). Fix δ > 0. Let δ0 > 0 be sufficiently small. By Proposition 8.1.1, there exists
ϵ > 0 such that the following holds for all n sufficiently large:
Suppose G = ([n], w) ∈ F(n, s0,Σ

R
r,d(a, s0)) and P (G) ≥ exΠ(n, s0,Σ

R
r,d(a, s0))

1−ϵ. Then
there exists an induced submultigraph G′ ⊆ G on n′ vertices such that:

1. pG′(v) ≥ an
′ (a+1

a

)(1− 1−rx∗
R

−δ0
)
n′

for every vertex v ∈ V (G′).

2.
(
n
2

)
−
(
n′

2

)
≤ δ
(
n
2

)
.

Observe that n′ can be made sufficiently large by making n sufficiently large. By part
(3) of Proposition A1, we have 1−rx∗

R
< d(2r−1)+2

R[d(2r−1)+2]+2r−1
. For δ0 sufficiently small, we have

1−rx∗

R
+2δ0 ≤ d(2r−1)+2

R[d(2r−1)+2]+2r−1
. We may assume that G′ ∈

⋂
2≤t≤s0

F(n′, t,ΣR
r,d(a, t)) and that

G′ contains a heavy set T on s1 = 2r + R (d(2r − 1) + 2) vertices. Otherwise, by Lemmas
6.4.1 and 6.4.4, G′ contains a vertex with product-degree at most

an
′
(
a+ 1

a

)(1− d(2r−1)+2
R[d(2r−1)+2]+2r−1)n′+O(1)

≤ an
′
(
a+ 1

a

)(
1− 1−rx∗

R
−2δ0

)
n′+O(1)

.

For n′ sufficiently large, this is strictly less than an
′ (a+1

a

)(1− 1−rx∗
R

−δ0
)
n′

, a contradiction. Note
that G′ is a (2,ΣR

r,d(a, 2))-graph. This implies that every edge in G′ has multiplicity at most
a+ 1.
As in the proof of Theorem 6.1.1, let A := {v ∈ [n′] \ T : v sends (a + 1)s1 − d(2r − 1) −
2 edges into T}. For all vertices v ∈ A, we define Bv := {u ∈ T : w(vu) = a}. Let m be the
largest integer such that there exist vertices v1, ..., vm ∈ A with Bv1 , ..., Bvm being pairwise
disjoint. For each i ∈ [m], we define Ai := {v ∈ A : Bv = Bvi}. By the maximality of m, we
have A = ∪m

i=1Ai. Similar to the proof of Lemma 6.4.6, if we can establish that m > R− 1,
this would imply that G′ contains a copy of HL with L = d(2r − 1) + 2.
Let |A| = α(n′ − s1), and for each i ∈ [m], let |Ai| = αi(n

′ − s1). As in the proof of Lemma
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6.4.6, T contains a vertex with product-degree at most an
′ (a+1

a

)(1− d(2r−1)+3
s1

+ α
s1

)
n′+O(1), and

Bvi contains a vertex with product-degree at most an
′ (a+1

a

)(1−αi)n
′+O(1). We may assume

that

1− d(2r − 1) + 3

s1
+

α

s1
> 1− 1− rx∗

R
− 2δ0 and 1− αi > 1− 1− rx∗

R
− 2δ0.

Otherwise, for n′ sufficiently large, G′ contains a vertex with product-degree strictly less

than an
′ (a+1

a

)(1− 1−rx∗
R

−δ0
)
n′

, a contradiction. Therefore, we have

R− 2r + rs1x
∗ − 2δ0s1R

R
< α =

m∑
i=1

αi < m

(
1− rx∗

R
+ 2δ0

)
.

This implies that m > R−2r+rs1x∗−2δ0s1R
1−rx∗+2δ0R

. Since R−2r+rs1x∗

1−rx∗ > R − 1 is equivalent to d(2r −
1)+3 > (2r−1)

(
1−rx∗

Rrx∗

)
, which holds by part (2) of Proposition A1, for δ0 sufficiently small,

we have R−2r+rs1x∗−2δ0s1R
1−rx∗+2δ0R

≥ R − 1. Thus, m > R − 1, and G′ contains a copy of HL with
L = d(2r − 1) + 2.
Let (⊔r

i=1Ui)
⊔
(⊔R

j=1Vj) be the canonical partition of the copy of HL in G′, and for all i ∈ [r],
let ui denote the vertex in Ui. Furthermore, let U := ∪r

i=1Ui and V := ∪R
j=1Vj. For all i ∈ [r],

we define Ui to be the set of vertices y ∈ [n′]\HL such that w(yui) = a−d, w(yul) = a−d+1

for all l ∈ [r] \ {i} and w(yv) = a + 1 for all v ∈ V . For all j ∈ [R], we define Vj to be the
set of vertices y ∈ [n′] \ HL such that w(yv) = a for all v ∈ Vj and w(yv) = a + 1 for all
v ∈ HL \ Vj. Finally, we denote by Z the set of all the remaining vertices in [n′] \HL.
We make the following observations:

• Every edge v1v2 in U (2)
i has multiplicity at most a − d. Otherwise, {v1, v2}, taken

together with dr+1 vertices from each Vj, and U \{ui}, yields a set of s0 vertices with
strictly more than ΣR

r,d(a, s0) edges.

• Every edge v1v2 in Ui1 ×Ui2 , with i1 ̸= i2, has multiplicity at most a−d+1. Otherwise,
if w(v1v2) = a−d+1+k for some k ∈ [d], {v1, v2}, taken together with d−k+1 vertices
from each Vj yields a set of R(d− k+1)+2 vertices with ΣR

2,d−k(a,R(d− k+1)+2) =

ΣR
r,d(a,R(d− k + 1) + 2) + 1 edges.

• Every edge v1v2 in V(2)
j has multiplicity at most a. Otherwise, {v1, v2}, taken together

with u1, and one vertex from each Vl with l ̸= j, yields a set of R + 2 vertices with
ΣR

r,d(a,R + 2) + 1 edges.
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Let |Ui| = µi(n
′ − LR− r), |Vj| = νj(n

′ − LR− r) and |Z| = θ(n′ − LR− r). Consider p :=∏
u∈U pG′(u)x

∗∏
v∈V pG′(v)

1−rx∗
RL . The contribution of all the vertices in (∪r

i=1Ui)
⋃
(∪R

j=1Vj)

to p is precisely a
(
a+1
a

)1− 1−rx∗
R . By part (2) of Proposition A1, we have d(2r − 1) + 2 >

(2r − 1)1−rx∗

Rrx∗ ≥ max

{
1−rx∗

Rrx∗ ,
rd log(a+1

a )
log( a+1

a+1−d)

(
1−rx∗

Rrx∗

)}
. This, together with the proof of Lemma

6.4.2, implies that the contribution of every vertex in Z to p is at most a
(
a+1
a

)1− 1−rx∗
R

−δ′ ,

for some δ′ > 0. Thus, we have p ≤ an
′ (a+1

a

)(1− 1−rx∗
R

−δ′θ
)
n′+O(1). If 1 − 1−rx∗

R
− δ′θ ≤

1− 1−rx∗

R
− 2δ0, then for n′ sufficiently large, by weighted geometric averaging (Proposition

4.2), G′ contains a vertex with product-degree strictly less than an
′ (a+1

a

)(1− 1−rx∗
R

−δ0
)
n′

, a
contradiction. Therefore, we may assume that 1 − 1−rx∗

R
− δ′θ > 1 − 1−rx∗

R
− 2δ0, which is

equivalent to

θ <
2δ0
δ′

. (8.2)

For each j ∈ [R], consider a vertex v ∈ Vj. We have pG′(v) ≤ an
′ (a+1

a

)(1−νj)n
′+O(1). For n′

sufficiently large, we may assume that 1 − νj > 1 − 1−rx∗

R
− 2δ0, which implies that for all

j ∈ [R],

νj <
1− rx∗

R
+ 2δ0. (8.3)

Let µ =
∑r

i=1 µi, and let ν =
∑R

j=1 νj. Since µ+ ν + θ = 1, from Equations (8.2) and (8.3),
we have

µ > rx∗ − 2Rδ0 −
2δ0
δ′

. (8.4)

For each i ∈ [r], we have

pG′(ui) ≤ an
′
(
a− d+ 1

a+ 1

)µn′ (
a− d

a− d+ 1

)µin
′ (

a+ 1

a

)n′+O(1)

.

For n′ sufficiently large, we may assume that

an
′
(
a− d+ 1

a+ 1

)µn′ (
a− d

a− d+ 1

)µin
′ (

a+ 1

a

)n′

> an
′
(
a+ 1

a

)(
1− 1−rx∗

R
−2δ0

)
n′

.
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Applying Equation (8.4) and simplifying, we have that for all i ∈ [r],

µi < x∗ +
2 log

(
a+1
a

)
+
(
2R + 2

δ′

)
log
(

a+1
a−d+1

)
log
(
a−d+1
a−d

) δ0. (8.5)

Equations (8.2), (8.3) and (8.5), along with the fact that µ+ ν + θ = 1, imply the existence
of a constant c such that

0 ≤ θ < cδ0, (8.6)

x∗ − cδ0 < µi < x∗ + cδ0 for all i ∈ [r], and (8.7)
1− rx∗

R
− cδ0 < νj <

1− rx∗

R
+ cδ0 for all j ∈ [R]. (8.8)

We say that an edge v1v2 in G′ is light if:

• v1v2 ∈ U (2)
i and w(v1v2) < a− d.

• v1v2 ∈ Ui1 × Ui2 , with i1 ̸= i2, and w(v1v2) < a− d+ 1.
• v1v2 ∈ V(2)

j and w(v1v2) < a.
• v1v2 ∈ Vj1 × Vj2 , with j1 ̸= j2, and w(v1v2) < a+ 1.
• v1v2 ∈ Ui × Vj and w(v1v2) < a+ 1.

For every vertex v ∈ V (G′), let fv denote the number of light edges incident to v. Consider a
vertex v ∈ Vj, for some j ∈ [R]. We have pG′(v) ≤ an

′ (a+1
a

)(1−νj)n
′−fv+O(1). For n′ sufficiently

large, we may assume that (1 − νj)n
′ − fv >

(
1− 1−rx∗

R
− 2δ0

)
n′. Together with Equation

(8.8), this yields

fv < (c+ 2)δ0n
′. (8.9)

Finally, consider a vertex v ∈ Ui, for some i ∈ [r] . We have

pG′(v) ≤ an
′
(
a− d+ 1

a+ 1

)µn′ (
a− d

a− d+ 1

)µin
′ (

a+ 1

a

)n′−fv+O(1)

.

For n′ sufficiently large, we may assume that

an
′
(
a− d+ 1

a+ 1

)µn′ (
a− d

a− d+ 1

)µin
′ (

a+ 1

a

)n′−fv

> an
′
(
a+ 1

a

)(
1− 1−rx∗

R
−2δ0

)
n′

.
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Applying Equation (8.7) and simplifying, we get

fv <
2 log

(
a+1
a

)
+ c log

(
a−d+1
a−d

)
+ rc log

(
a+1

a−d+1

)
log
(
a+1
a

) δ0n
′. (8.10)

By Equations (8.9) and (8.10), every vertex in G′ has O(δ0n
′) light edges incident to it.

Therefore, G′ contains O(δ0n
′2) light edges. By Equations (8.6), (8.7) and (8.8), we can

ensure that µi = x∗ for all i ∈ [r], νj = 1−rx∗

R
for all j ∈ [R] and θ = 0 by shifting O(δ0n

′)

vertices. We can obtain a multigraph in P(πa,d
r,R, n

′) from G′ by appropriately altering the
multiplicity of light edges and shifting vertices among various parts. In so doing, we alter
at most O(δ0n

′2) edges. Thus, for δ0 sufficiently small, G′ differs from a multigraph in
P(πa,d

r,R, n
′) in at most δ

2
n′2 edges, and G differs from a multigraph in P(πa,d

r,R, n) in at most
δ
(
n
2

)
+ δ

2
n′2 < δn2 edges. This proves Theorem 8.2.1.

8.3 Stability for Theorem 7.1.1

Theorem 8.3.1. Let R, a, s ∈ N with R ≥ 2 and s ≥ R + 1. For every δ > 0, there exists
ϵ > 0 such that the following holds for all n sufficiently large: Suppose G ∈ F(n, s,ΣR(a, s))

and P (G) ≥ ΠR(a, n)1−ϵ. Then, G is δ-close to an element of P(Πa
R, n).

Remark 8.3.1. Theorem 8.3.1 holds for all natural numbers a and all s ≥ R + 1. This
contrasts with Theorem 8.2.1, which requires a to be sufficiently large and s0 = r + R(dr +

1) + 1.

Proof. We first prove the following lemma:

Lemma 8.3.2. Suppose G ∈ F(n, s,ΣR(a, s)). Then, either G ∈ F(n,R+ 1,ΣR(a,R+ 1)),

or G contains a vertex v with pG(v) ≤ an−1
(
a+1
a

)(1− 1
R
− 1

R(s−1)
+o(1))(n−1).

Proof. Suppose G /∈ F(n,R + 1,ΣR(a,R + 1)). Let t be the largest integer less than s such
that G /∈ F(n, t,ΣR(a, t)). Clearly, R + 1 ≤ t ≤ s− 1. Then, there exists a set of t vertices
with at least ΣR(a, t) + 1 edges. Let us denote this set by T . By the maximality of t, every
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vertex outside T sends into T at most

ΣR(a, t+ 1)− ΣR(a, t)− 1 = at+ t−
⌊
t

R

⌋
− 1 edges.

Consider p :=
∏

v∈T pG(v)
1
t . By the integral AM-GM inequality (Proposition 4.1), the

contribution of every vertex outside T to p is at most

[
at
(
a+ 1

a

)t−⌊ t
R⌋−1

] 1
t

.

Since
⌊

t
R

⌋
≥ t−(R−1)

R
, this is at most a

(
a+1
a

)1− 1
R
− 1

Rt ≤ a
(
a+1
a

)1− 1
R
− 1

R(s−1) . The contribution
of vertices within T to p can be bounded above by an absolute constant. Thus, we have
p ≤ an−1

(
a+1
a

)(1− 1
R
− 1

R(s−1)
)(n−1)+O(1). By weighted geometric averaging (Proposition 4.2), the

lemma follows.

Fix δ > 0. Observe that ΣR(a,R + 1) = (a + 1)
(
R+1
2

)
− 1. By Theorem 3.2 (Stability),

there exists ϵ′ > 0 such that the following holds for all n′ sufficiently large: suppose G′ ∈
F(n′, R + 1,ΣR(a,R + 1)) and P (G′) ≥ ΠR(a, n′)1−ϵ′ . Then, G′ is δ

2
-close to an element of

P(πa
R, n

′).

Let δ1 = min

 1
2R(s−1)

,
ϵ′ log

[
a(a+1

a )
1− 1

R

]
2 log(a+1

a )

. By Proposition 8.1.1, there exists ϵ > 0 such

that the following holds for all n sufficiently large: Let G ∈ F(n, s,ΣR(a, s)) and P (G) ≥
ΠR(a, n)1−ϵ. Then there exists an induced submultigraph G′ ⊆ G on n′ vertices such that:

1. pG′(v) ≥ an
′−1
(
a+1
a

)(1− 1
R
−δ1)(n′−1) for every vertex v ∈ V (G′).

2.
(
n
2

)
−
(
n′

2

)
≤ δ
(
n
2

)
.

By Lemma 8.3.2, G′ ∈ F(n′, R + 1,ΣR(a,R + 1)), for n (and consequently n′) sufficiently
large. It now suffices to show that P (G′) ≥ ΠR(a, n′)1−ϵ′ . This would imply that G′ is δ

2
-close

to an element of P(πa
R, n

′), and consequently that G differs from an element of P(πa
R, n) in

at most δ
(
n
2

)
+ δ

2
n′2 < δn2 edges. We have P (G′) ≥ a(

n′
2 )
(
a+1
a

)(1− 1
R
−δ1)(n

′
2 ), by the minimum
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product-degree assumption. Observe that

a(
n′
2 )
(
a+ 1

a

)(1− 1
R)(

n′
2 )

≤ ΠR(a, n′) = a(
n′
2 )
(
a+ 1

a

)tR(n′)

≤ a(
n′
2 )
(
a+ 1

a

)(1− 1
R)

[
(n

′
2 )+

n′
2

]
.

(8.11)

It suffices to show that a(
n′
2 )
(
a+1
a

)(1− 1
R
−δ1)(n

′
2 ) ≥ ΠR(a, n′)1−ϵ′ . Using Equation (8.11), it is

enough to show that

(
a+ 1

a

)δ1(n
′
2 )+(1−

1
R)

n′
2

≤

[
a

(
a+ 1

a

)1− 1
R

]ϵ′(n′
2 )

.

For n′ sufficiently large, we have
(
1− 1

R

)
n′

2
≤ δ1

(
n′

2

)
, and it suffices to show that δ1 ≤

ϵ′ log

[
a(a+1

a )
1− 1

R

]
2 log(a+1

a )
, which holds by our choice of δ1.
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Chapter 9

Concluding Remarks

Our primary contribution in this thesis was to resolve Conjecture 2.2.2 for sufficiently large
a by proving the optimality of blow-ups of the generalised Turán pattern for the Mubayi-
Terry multigraph problem. While we have established the conjecture in the large a regime, it
remains open for small values of a, and it would be interesting to obtain a complete resolution
of the conjecture.

The generalised Turán pattern can be further extended by considering “iterated” versions of
the pattern, as described below.

Definition 9.1 (Iterated Turán pattern). Given integers r1, r2, . . . , rk ∈ N and a1 > a2 >

. . . > ak ≥ 0, we define the iterated Turán pattern πr(a) := πr1,r2,...,rk(a1, a2, . . . ak) as follows.
Set R :=

∑k
i=1 ri. For every v ∈ [R] with

∑
i<j ri < v ≤

∑
i≤j ri and every v′: v < v′ ≤ R,

set πr(a)(v) = aj and πr(a)(vv
′) = aj + 1.

Note that the cases k = 1 and k = 2 of the iterated Turán pattern correspond to the Turán
pattern (see Definition 2.1.1) and the generalised Turán pattern (see Definition 2.1.2), respec-
tively, both of which we have shown to be optimal for the Mubayi-Terry problem. Proving
the optimality of the iterated Turán pattern for k ≥ 3 (even for large edge multiplicities)
would be a significant generalisation of our results and a major step towards a complete
resolution of the Mubayi-Terry problem for general pairs (s, q).
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Appendix

Proposition A1. Let r, R, d, a ∈ N with a ≥ d+1. The following statements are equivalent:

(1) (a+ 1)r(d−1)(2r−1)+2r(a− d)2r−1(a− d+ 1)(2r−1)(r−1) ≥ ard(2r−1)+2r,

(2) d(2r − 1) + 2 ≥ (2r − 1)
1− rxd

r,R(a)

Rrxd
r,R(a)

,

(3)
d(2r − 1) + 2

R[d(2r − 1) + 2] + 2r − 1
≥

1− rxd
r,R(a)

R
.

Moreover, strict inequality holds in one of these statements if and only if it holds in all.

Proof. The equivalence of (1) and (2) can be shown by observing that

1− rxd
r,R(a)

Rrxd
r,R(a)

=
r log

(
a+1
a

)
+ log

(
a

a−d

)
+ (r − 1) log

(
a

a−d+1

)
r log

(
a+1
a

) .

The equivalence of (2) and (3) follows from a simple calculation.

Proposition A2. Let r, R, d, a ∈ N with a ≥ d+ 1. Then

max
2≤t≤Rdr+R+r

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− d(r − 1) + 1

R[d(r − 1) + 1] + r − 1
.

Proof. We consider the following cases:

• Case I: t = k(Rd+ 1), where 1 ≤ k ≤ r − 1.
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By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− dk + 1

k(Rd+ 1)
,

and

max
1≤k≤r−1

1− dk + 1

k(Rd+ 1)
= 1− d(r − 1) + 1

Rd(r − 1) + r − 1
.

• Case II: k(Rd + 1) + lR + 1 ≤ t ≤ k(Rd + 1) + (l + 1)R, where 0 ≤ k ≤ r − 1 and
0 ≤ l ≤ d− 1.
By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− dk + l + 1

t
≤ 1− dk + l + 1

R[dk + l + 1] + k
,

and

max
0≤k≤r−1
0≤l≤d−1

1− dk + l + 1

R[dk + l + 1] + k
= 1− d(r − 1) + 1

R[d(r − 1) + 1] + r − 1
.

• Case III: r(Rd+ 1) ≤ t ≤ Rdr +R + r − 1.
By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− dr + 1

t
,

and

max
r(Rd+1)≤t≤Rdr+R+r−1

1− dr + 1

t
= 1− dr + 1

R[dr + 1] + r − 1
.

• Case IV: t = Rdr +R + r. By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− dr + 2

Rdr +R + r
.

By taking the maximum over all possible cases, the proposition follows. Note that we do
not consider Case I when r = 1.
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Proposition A3. Let r, R, d, a ∈ N with a ≥ d+ 1. Furthermore, let s0 = Rdr +R+ r + 1

and s1 = 2r +R[d(2r − 1) + 2]. Then

max
s0≤t≤s1−1

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− d(2r − 1) + 2

R[d(2r − 1) + 2] + 2r − 1
.

Proof. We consider the following cases:

• Case I: t = Rdr +R + r + k(Rd+ 1), where 1 ≤ k ≤ r − 1.
By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− d(k + r) + 2

R[d(k + r) + 1] + k + r
,

and

max
1≤k≤r−1

1− d(k + r) + 2

R[d(k + r) + 1] + k + r
= 1− d(2r − 1) + 2

R[d(2r − 1) + 1] + 2r − 1
.

• Case II: Rdr+R+ r+ k(Rd+1)+ lR+1 ≤ t ≤ Rdr+R+ r+ k(Rd+1)+ (l+1)R,
where 0 ≤ k ≤ r − 2 and 0 ≤ l ≤ d− 1.
By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− d(k + r) + l + 2

t

≤ 1− d(k + r) + l + 2

R[d(k + r) + l + 2] + k + r
,

and

max
0≤k≤r−2
0≤l≤d−1

1− d(k + r) + l + 2

R[d(k + r) + l + 2] + k + r
= 1− d(2r − 2) + 2

R[d(2r − 2) + 2] + 2r − 2
.

• Case III: Rdr +R + r + (r − 1)(Rd+ 1) + 1 ≤ t ≤ s1 − 1.
By Proposition 5.3, we have

ΣR
r,d(a, t+ 1)− ΣR

r,d(a, t)− 1− at

t
= 1− d(2r − 1) + 2

t
,
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and

max
Rdr+R+r+(r−1)(Rd+1)+1

≤t≤s1−1

1− d(2r − 1) + 2

t
= 1− d(2r − 1) + 2

R[d(2r − 1) + 2] + 2r − 1
.

By taking the maximum over all possible cases, the proposition follows. Note that we do
not consider Cases I and II when r = 1.

Proposition A4. Let r, d ∈ N. The polynomial inequality given by

(a+ 1)r(d−1)(2r−1)+2r(a− d)2r−1(a− d+ 1)(2r−1)(r−1) ≥ ard(2r−1)+2r

holds for all a satisfying

a ≥ d(2r − 1)[d(2r − 1) + 1] + (d− 1)(2r − 1)(r − 1)[r(d− 1)(2r − 1) + 2r].

Proof. Bernoulli’s inequality states that for all r ∈ Z≥0 and for all x > −1, we have

(1 + x)r ≥ 1 + rx.

The polynomial inequality in the proposition is equivalent to(
1 +

1

a

)r(d−1)(2r−1)+2r (
1− d

a

)2r−1(
1− d− 1

a

)(2r−1)(r−1)

≥ 1.

Using Bernoulli’s inequality, it suffices to show that

(a+ r(d− 1)(2r − 1) + 2r)(a− d(2r − 1))(a− (2r − 1)(r − 1)(d− 1))− a3 ≥ 0.

The left-hand side is a quadratic function of a. The coefficient of a2 is 1, and the constant
term is non-negative. The coefficient of a is

− (d(2r − 1)[d(2r − 1) + 1] + (d− 1)(2r − 1)(r − 1)[r(d− 1)(2r − 1) + 2r]) .

The proposition follows.
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