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Abstract

In industrial process plants, optimization of the Condensate Recovery Factor
(CRF) is critical with regard to energy efficiency and sustainability since
it quantifies the reuse of condensate - a byproduct of a steam system, to
reduce waste of resources and cost of operations. Despite the developments in
[oT-enabled data gathering, there are challenges in transforming minute-scale
steam production and the succeeding condensate recovery information into
actionable conclusions.  Traditional frameworks struggle with changing
operational complexities such as varying rates of steam flow and system
delay, whereas black-box machine learning methods lacks transparency, which
hinders trust and practical implementation.

This research addresses these gaps by suggesting a hybrid framework that
combines physics-informed machine learning with domain knowledge. A
Fourier-inspired neural network structure is employed to represent temporal
condensate recovery cycle patterns, assisted with genetic algorithms for
hyperparameter adaptation. To bridge the gap between automation and
human judgement, Explainable Artificial Intelligence (XAI) techniques like
SHAP and LIME are leveraged to explain the model behavior, thus enabling
engineers to compare predictions with operational limitations. The approach
focuses on interpretability without compromising on predictive power, ensuring
that the insights gained are consistent with industrial best practices.

By harmonizing [oT data streams with collaborative human-Al analysis, this
work advances data-driven decision-making in steam system operations. It
illustrates how Industry 4.0 technologies can transform underutilized datasets
and convert it into strategic assets, driving sustainability through smarter
resource utilization. The outcomes highlights the relevance of embedding
domain knowledge into an Al system, and providing a scalable solution for
industries to achieve operational excellence amidst the intricacies of digital
innovations transformation.
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1 Introduction

“In God we trust; all others bring data.”
— W. Edwards Deming

1.1 Motivation

Efficient resource management stands as a pillar of industrial sustainability,
most notably with respect to conserving energy and optimizing cost. With the
advanced digitalization taking place, the manufacturing industry is collecting
massive amount of data, most of which remains under-utilized. By leveraging
these datasets, especially pertaining to steam generation and condensate
recovery in the process plants, processes can be optimized to lower costs,
improve quality, and enhance sustainability.

The Condensate Recovery Factor (CRF) stands as a pivotal metrics,
reflecting the proportion of condensate effectively recovered and reused. In
process plants, steam is converted to condensate after it has lost its latent
heat of enthalpy in heat exchangers and thereafter recovered and returned to
the boiler feedwater tank to be reused. Higher levels of CRF are preferred
and strongly encouraged since it enhances plant efficiency. [1] Optimizing the
CRF has far-reaching implications for energy efficiency, operational costs, and
environmental impact, and, hence, it has become a priority for industries bent
on improving its performance in an increasingly competitive and eco-conscious
landscape.

Optimizing the CRF has far-reaching implications for energy efficiency,
operational costs, and environmental impact, making it a priority for industries
striving to enhance their performance in an increasingly competitive and
eco-conscious landscape.

Despite its significance, accurate measurement and optimization of the CRF
remains an area of challenge. Due to variations in steam flow rates,
operational lags, and varying condensate recovery cycles, a multitude of
challenges arise that prevent reliable estimation and improvement efforts.
In this thesis, overcoming these challenges is discussed with the proposition
of a robust framework for measurement, prediction and optimization of the
CRF in process plants, focusing on data-driven approaches and advanced
methodologies.



To extract meaningful insights from such large and complex datasets, a balance
between automated analysis and human expertise must be fostered. While the
algorithm may be able to identify trends with great efficiency, it is the domain
knowledge of steam system engineers that creates the difference between
identifying those patterns that are noteworthy or just noise.

While the CRF challenge is central to this research; however, its significance is
further highlighted against the backdrop of Industry 4.0 and the ongoing digital
transformation of the manufacturing milieu. Digitalization and Internet of
Things (IoT) devices give prospects never seen before to capture, monitor, and
analyze real-time data for smarter decision-making and operational efficiency
enhancement.[2] These technologies are the ones that enable us to gather such
intelligence, and in doing so, they present the capabilities to better deal with
the complexities inherent in the CRF optimization problem.

1.2 Research Question and Sub-Questions

The main research question of this work is:

How can a data-driven approach optimize the Condensate Recovery Factor
(CRF) in industrial plants while ensuring model interpretability and
actionable insights for both Al experts and domain engineers?

To narrow down the research field of the thesis the following subquestions have
been added:

1. How can a machine learning model be designed for predicting CRF

while ensuring its interpretability and transparency for non-expert
stakeholders?

2. What key features and operational parameters significantly impact CRF,
as identified through interpretable methods, ensuring alignment with
industrial best practices and sustainability goals?

3. How can the insights from interpretable machine learning be leveraged
to improve decision-making in condensate recovery and steam system
efficiency?



Based on the research questions, the goal of this work is twofold: first, to
provide an overview of the current methodologies and advancements in the
optimization of the Condensate Recovery Factor (CRF) for industrial plants,
focusing on data-driven approaches such as machine learning models; and
second, to design, develop, and evaluate a predictive model that optimizes
CRF'. This model will be trained on a dataset collected from multiple plants
to accurately forecast CRF and identify key operational trends.

Additionally, to better understand the relationships between operational
parameters and CRF, the neural network model will be analyzed using
Explainable AI (XAI) methods.  Such techniques will lead to model
transparency, enhance interpretability, and so provide insight into the key
factors affecting CRF. With the integration of XAI, this work ensures that
the decision-making process is interpretable and therefore credible for the
alternative optimization strategy in the industrial setting.

1.3 Outline

This research, conducted by Forbes Marshall India Pvt. Limited utilize
real-world industrial data that have been obtained from multiple plants.
This research acts as a bridge between theoretical advancements and their
practical applications, demonstrating how data science and optimization tools
can deliver real benefits to plant performance. This thesis thus addresses
the CRF challenge and contributes to both the academic debate on resource
efficiency and the practical world of industrial sustainability.

The following chapters build upon the basic concepts of Industry 4.0,
digitalization of manufacturing processes, and, finally, implement innovative
solutions toward optimizing the CRF. All these put together form a complete
roadmap toward improving resource efficiency and operational excellence in
process plants.



2 Preliminaries

This chapter discusses the basic theories of the concepts that were implemented
in this thesis. These topics cover the most essential basics to be able to
understand the main problem proposed in the thesis as well as the various
approaches that were followed to address the problem.

Relevant concepts

2.1 Industry 4.0 and IoT

Industry 4.0 marks a shift in manufacturing by incorporating advanced
technologies such as artificial intelligence, automation, and real-time data
analytics into traditional systems. At the heart of this transformation is the
Internet of Things (IoT). IoT refers to the network of interconnected devices
and sensors that collect, exchange, and analyze data to facilitate its seamless
exchange across the production environment.  This interconnectedness
enhances operational efficiency, reduces downtime, and promotes sustainability
by optimizing resource use. [2]

In the context of Condensate Recovery Factor (CRF), Industry 4.0 and IoT
play pivotal roles by:

e Monitoring Steam and Condensate Flow: Sensors provide
real-time data on flow rates, pressures, and temperatures.

e Analyzing Operational Data: [oT systems enable predictive
analytics, identifying inefficiencies or delays in condensate recovery.

e Facilitating Automation: Automated controls dynamically adjust
system parameters to improve condensate recovery performance.

The integration of these technologies forms a foundation for our challenge of
optimizing the Condensate Recovery Factor (CRF), ensuring a more efficient,
intelligent, and environmentally responsible manufacturing process. [1]



2.2 Condensate Recovery Factor (CRF)

What is Condensate?

Steam is widely utilized in most process plants for heating and evaporation
purposes. Once the steam is used, it releases its latent heat and transforms
into condensate. This condensate, whether generated from a single application
or multiple applications across various locations, is typically pumped at
atmospheric pressure to a feed water tank in the boiler house, a condensate
recovery header, or another suitable system. Recovering this condensate is
crucial for optimizing overall efficiency and lowering the operational costs of
the plant. [1]

Latent Heat vs. Sensible Heat

In industries that utilize steam, latent heat refers to the energy required to
convert water into steam, also known as the enthalpy of vaporization. Water
absorbs this energy to transform into steam, and when steam releases it, it
returns to high-temperature water, referred to as condensate.

During the condensation process, at the exact point of phase change, the
condensate retains the same temperature as the steam because only the latent
heat has been removed, while all the sensible heat remains. This state is
referred to as saturated water. Recovering and reusing this sensible heat,
rather than letting it go to waste, is a key objective of condensate recovery
efforts. [1]

When one kilogram of steam fully condenses, it produces an equivalent
kilogram of condensate at the same pressure and temperature.



Higher energy state Lower energy state
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Figure 2.1: 1 kg of steam, when fully condensed, results in 1 kg of condensate.

What is Condensate Recovery?

When 1 ton per hour (t/h) of steam is supplied to equipment for heating,
an equivalent amount of condensate i.e 1 ton per hour (t/h) is discharged
during the process. Condensate recovery involves reusing the water and
the sensible heat contained in this discharged condensate. Instead of
discarding it, recovering condensate offers substantial benefits, including
energy conservation, reduced chemical treatment costs and decreased demand
for make-up water.

Mathematical Formula for CRF

The Condensate Recovery Factor (CRF) is defined as the ratio of the
condensate recovered to the total steam supplied:

CRF — Aj‘j X 100% (1)

S

where:
e M. = Mass of condensate recovered (kg/h),
e M, = Mass of steam supplied (kg/h).

In an ideal system where all condensate is recovered, C RF = 100%. However,

in practical scenarios, due to system inefficiencies and losses, C RF' is usually
less than 100%.



Importance of Condensate Recovery

e Economic Benefits: Condensate is a valuable resource, and even small
amounts are often worth recovering. The discharge from a single steam
trap can lead to substantial savings when recovered. Without recovery,
the condensate must be replaced by cold make-up water, which incurs
additional costs for water treatment and fuel required to heat the water
from a lower temperature.

¢ Reduction in Water Charges: Any unreturned condensate results
in the need for make-up water, leading to increased water charges from
local suppliers. Reducing water consumption also aligns with sustainable
practices and lowers operational costs.

e Maximizing Boiler Efficiency: Colder feedwater in the boiler reduces
its steaming rate, requiring more heat and fuel to raise the water
temperature. This not only decreases boiler efficiency but also impacts
the overall steam production.

e Boiler Feedwater Quality: Condensate is essentially distilled water,
with very low total dissolved solids (TDS). Boilers need to be blown
down periodically to manage TDS levels. Returning more condensate
reduces the need for blowdown, minimizing energy loss.

2.3 Machine Learning (ML) and Explainable AT (XAI)

Supervised Learning Basics

Supervised learning involves training ML models to map input variables to
output targets using labeled datasets. This paradigm is broadly categorized
into regression and classification. In regression tasks, the objective is to
predict continuous numerical values, such as the Condensate Recovery Factor
(CRF), which quantifies condensate recovery efficiency as a percentage or mass
flow rate (e.g., kg/hr). Classification, conversely, assigns discrete categorical
labels to inputs (e.g., categorizing CRF as “High,” “Medium,” or “Low”).



For CRF prediction, regression is the appropriate framework, as the target
variable is inherently continuous and requires precise numerical estimation for
operational decision-making.

Central to regression is the use of loss functions, which quantify the
discrepancy between predicted (7) and observed (y) values. Two widely
adopted loss functions are:

1 N
MAE:— Z'—Ai
N;:l |Yi — Uil

N
1
RMSE: - i Ai 2
N ;:1(1/ 9i)

where:

e MAE computes the average absolute deviation between predictions
and ground truth. It is robust to outliers and aligns with industrial
applications where sensor noise or transient anomalies may occur.

e RMSE penalizes larger errors quadratically, emphasizing accuracy in
typical operating regimes but amplifying the impact of outliers.

For CRF prediction, MAE is favored due to its interpretability in absolute
terms (e.g., 5% error) and resilience to sporadic measurement faults
common in industrial IoT systems.  This choice ensures that models
prioritize thermodynamic consistency (e.g., respecting CREF’s physical
bounds of 0-100%) while providing actionable insights for steam system
optimization. = The regression framework thus enables precise modeling
of CRF dynamics, supporting granular operational adjustments such as
blowdown cycle optimization or pump threshold tuning.

Deep Neural Networks

Neural networks containing multiple layers of differentiable functions are deep
neural networks. These functions of multiple layers are the reason they are
called deep. The neural networks that are relevant to the thesis are Feed
Forward Neural Networks, which is explained below.

Feedforward mneural networks are computational models designed to
approximate complex relationships between input features and target outputs



through interconnected layers of neurons. The architecture begins with an
input layer configured to accept a predefined number of features (e.g.,
sensor measurements), followed by hidden layers that transform inputs via
weighted connections and non-linear activation functions. A distinguishing
feature of this framework is the use of parallel processing branches, where
distinct layers apply specialized transformations to the input data before
merging their outputs.

This modular design enhances the network’s ability to capture diverse patterns
in industrial time-series data, such as cyclical trends or transient anomalies.

Activation Functions

Activation Functions form an important component of neural networks. They
are the ones deciding whether the neuron should be activated or not which
gets calculated by the weighted sum of inputs and adding bias to this value.
To address domain-specific challenges, the network employs tailored activation
functions:

e Periodic Activations: The sine activation function, defined as f(z) =
sin(z), and the cosine activation function, f(z) = cos(z), are integrated
into separate layers to model recurring patterns inherent to industrial
processes. These functions decompose temporal signals into cyclical
components, enabling the network to learn relationships such as:

yr = Asin(wt + ¢) + B cos(wt + ¢)

where A, B, w, and ¢ are learned amplitudes, frequency, and phase
shifts, respectively. This formulation captures periodic phenomena like
daily operational cycles or machinery vibrations.

e Non-Linear Activation: A quadratic activation function, formulated
as f(r) = ka? with k = constant, introduces controlled non-linearity.
The small constant £ ensures minimal curvature, allowing the model to
approximate relationships like:

y = ka® +bx +c

without overwhelming linear or periodic terms. This is particularly
effective for modeling weak non-linear dependencies (e.g., pressure-temperature
hysteresis).



Genetic Algorithm for Hyperparameter Optimization

Genetic algorithms (GAs) are evolutionary optimization techniques used
to automate the selection of hyperparameters—settings that govern model
training and architecture. In this framework, GAs iteratively refine three
critical hyperparameters:

e Batch size: Controls the number of samples processed before updating
model weights.

e Number of periodic-activated units: Determines the capacity of layers
dedicated to cyclical pattern detection.

Each candidate solution (individual) is encoded as a chromosome with three
genes, corresponding to the hyperparameters above.

Evolutionary Operators

e Crossover: Combines genes from two parent chromosomes to generate
offspring, preserving beneficial traits (e.g., high-performing batch sizes).

e Mutation: Introduces random adjustments to genes (e.g., altering the
number of periodic units) to explore new regions of the hyperparameter
space.

e Selection: Retains top-performing individuals based on validation loss,
ensuring iterative population refinement.

Fitness Evaluation The fitness of each candidate is quantified using a
composite score balancing three metrics:

Fitness = o x Train Score + 8 x Validation Score + v x Test Score

where «, 3,7 are weights prioritizing generalization performance. Validation
loss (Validation Score) serves as the primary metric to mitigate overfitting,
while the weighted aggregate ensures robustness across diverse operational
scenarios. [3,4]

10



Explainable AI (XAI) for Model Transparency

Explainable Al (XAI) techniques bridge the gap between complex machine
learning models and actionable human insights, ensuring transparency in
critical industrial applications. [5]

Two pivotal methods that are used in this thesis are:

e SHAP (SHapley Additive exPlanations): A game-theoretic
method derived from cooperative game theory. SHAP assigns each
feature x; a Shapley value ¢;, quantifying its contribution to the
difference between a model’s prediction f(x) and the baseline expectation

E[f ()]

o= 3 BHEZEED 0y - s
SCF\{i}

where F' is the set of all features and S is a subset excluding i.
SHAP values enable global interpretation of feature importance while
maintaining consistency with physical principles. [6]

e LIME (Local Interpretable Model-agnostic Explanations):
Generates locally faithful explanations by approximating complex

models with interpretable surrogates. For a prediction instance a/,
LIME solves:

g(x) = argmin L(f, g, m) + Q(g)
geG

where £ measures fidelity to the original model f, m, is a proximity
kernel, and Q(g) penalizes surrogate model complexity. Linear
surrogates (g(z) = wlz +b) provide intuitive explanations for individual
predictions. [7]

These methods transform opaque predictions into interpretable,
physics-aligned narratives, enabling validation of model logic against
domain knowledge (e.g., thermodynamic constraints) while maintaining
operational relevance.

11



3 Broader Implications of Industry
4.0, IoT, and AI in Process
Efficiency

3.1 The Dawn of Industry 4.0

Industry 4.0 marks the onset of the new industrial revolution, while introducing
integration of the physical and digital dimensions into the production
processes and economic capabilities. To understand its impact better, we
can have a brief overlook at how the industrial revolutions have been evolving
with time: the First Industrial Revolution, Industry 1.0 brought in steam
power, which essentially changed the way people mechanised; the Second
Industrial Revolution, Industry 2.0 revolutionised electric power through mass
production; and the Third Industrial Revolution, Industry 3.0 brought in
computers and automation that laid the foundation for digital systems.

Currently, Industry 4.0, the Fourth Industrial Revolution, builds on these
bases by incorporating more complex technologies that include IoT, AlI,
and cyber-physical systems. This revolution enables communication and
self-optimization of machines and systems, thus emerging with ”smart
factories,” which is characterised with better efficiency and data processing
in real-time, with an ability to manufacture adaption.

Introduction of
steam power Revolution of
electric power  Advent of
computers and  Integration of
automation loT, Al, and
cyber-physical
systems

Figure 3.1: Evolution of Industrial Revolutions.

Industry 4.0, besides being an incremental advancement; it’s also the
revolution that combines machinery, human capital, and process operations
into a highly responsive and adaptive system. As more companies begin to

12



adopt this paradigm, the possibilities for increased efficiency, responsiveness,
and cost-effectiveness sets a new standard, fundamentally reshaping the future
of manufacturing and industry as a whole.

Building Blocks: Technologies that Power Industry 4.0

The transformative power of Industry 4.0 stems from a set of core technologies
that are reshaping how businesses operate and compete. This set of
fundamental technologies goes on to change the operation and competitive
environment in which businesses operate - a fact that bestows a revolutionary
potential upon Industry 4.0. Among them, the Internet of Things, artificial
intelligence, cloud computing, and digital twins are the most representative.
Each of these technologies offers particular functionalities, but together they
create an integrated environment characterised by a data-centric industrial
estate that maximises efficiency and flexibility.

Internet of Things connects all points across the production lines when
it connects machines, sensors, and devices, thereby creating the real-time
collection of a vast amount of data. These connectivities allow for predictive
maintenance. IoT sensors can tell and alert a problem before its course turns
into an expensive downtime.

Artificial Intelligence uses that information to monitor patterns, identify
inefficiencies, and forecast needs. At the same time, the use of cloud
computing—scalable solutions to store the data and computational
capacity—enables Al to play around with these vast amounts of data across a
geographic area to identify opportunities for optimization that might otherwise
not be seen.

Together, these technologies form a self-sustaining loop of data gathering,
analysis, and actionable intelligence that actually makes Industry 4.0 contexts
not only more intelligent but also increasingly resilient and adaptive. The
interaction between IoT, Al, cloud computing, and digital twins guides the
promise of Industry 4.0 to drive an unprecedentedly efficient and responsive
manufacturing system.

Challenges and Ethical Considerations
The advent of Industry 4.0 has its benefits. However, it also comes with
notable drawbacks and contains critical ethical dilemmas. Omne of the

most apparent challenges is the implementation costs. Transitioning to a
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version that utilises high technologies such as IoT, Artificial intelligence,
and automation necessitates adopting a costly infrastructure and acquiring
more human resources, which can be very expensive especially for small to
medium-sized enterprises. In addition to this, interconnectivity of systems
also welcomes cybersecurity threats

Furthermore, ethical issues in this case arise because of the very nature of
automation that can easily get rid of jobs that are basic and repetitive.
Automating tasks that domain-skilled workers currently do will leave them
without any employment, whereas those with technical capabilities will be in
demand. However, it is not just the concern over automation; data privacy and
responsible usage of artificial intelligence are also at the core as organisations
have to draw a line between data collection and the right of people to privacy.
All these calls for careful strategizing, appropriate policy formulation, and
ethical use of technology.

The Road Ahead for Industry 4.0

The onset of Industry 4.0 is likely to revolutionise the present era of
globalisation and industrialisation in the world by promoting efficiency,
sustainable development and innovation. Industry 4.0 is about the
incorporation of smart technologies in production processes by companies
bearing in mind the need to eliminate waste, make better use of resources and
cut emissions, paving the way for environmentally conscious operations.

It is evident this transition toward a smarter and greener industry is
beneficial, however a course on responsible innovation must be in place. If
managed correctly, Industry 4.0 has the potential to assist global industries in
achieving more sustainable growth and development without purely focusing
on the economy. The voyage of Industry 4.0 is on the genesis, with yet to go
the full way of expectations for smart, flexible, and responsive industries all
over the globe.

14



3.2 The Digital Shift in the Industry

With the aforementioned new industrial revolution , the face of industry has
completely changed, for better; now, industry has evolved from analog systems
to interconnected, data-driven ecosystems, powered by the influence of big
data. In an earlier context, industry was not dominantly reliant on automation
but saw it as part of manual processes with a good portion of human tamper,
and independent, closed-loop production lines. Without real-time feedback,
production lines were often isolated, operating independently and making
optimization a challenging task. Today, the rise of digitalization has shifted
this paradigm, where data is now at the heart of every operation, enabling
smarter and more efficient workflows

A cornerstone of this transformation is the Internet of Things (IoT),
enabling the real-time linkage and communications of devices and machines.
[oT allows one to bring on board many data to analyse and optimise
operations, predict maintenance needs, and improve decision-making
processes. This transformation from traditional methods to digital solutions
is greatly enhancing the operational efficiencies.

Internet of Things (IoT) Fundamentals: Building the Connected
Ecosystem

[oT is one of the key enablers of the digital revolution, changing the very
trajectory of industrial operations by integrating devices and providing a
seamless flow of data. At its core, IoT is based on converting physical
machinery, sensors, and equipment into interconnected nodes within the
extensive digital network. In that regard, through real-time data gathering
from different production lines, supply chains, and logistics - IoTs share and
analyse data to optimise performance and decision-making.

Within the manufacturing settings, it monitors everything including but not
limited to - machine performance to environmental conditions. Sensors placed
on such equipment capture data and report this information to the central
systems for analysis.

With a constant flow of data, businesses can detect abnormalities and
immediately adjust to avoid disruptions. This brings with it invaluable
predictability in the likelihood of equipment failure and subsequent downtime.
Predictive analytics of lIoT-based data can help to determine how much time
was needed to initiate maintenance in advance of a breakdown, thus drastically

15



reducing unplanned downtime. Use of IoT in predictive maintenance has hence
become one of the important strategies to gain operational efficiency and cost
cutting.

To sum up, [oT transforms traditionally isolated systems into data-rich
environments that enable organisations to work more efficiently, increase
visibility, and enhance decision-making capabilities.

Data Power: Leveraging Analytics and Al

The true value of IoT data is unlocked through integration with artificial
intelligence (AI) and advanced analytics. IoT devices are currently collecting
real-time data from machines and production lines, but this raw data
doesn’t have all the insights for promoting operational excellence. Al
and analytics combined can turn such kind of information into actionable
intelligence-leading informed decision making, predictive maintenance, and
operational optimization.

The role of AI becomes critical in analysing the huge amounts of collected data
by the different [oT sensors. With machine learning algorithms, Al can analyse
patterns and trends in the real time data, enabling systems to predict most
issues even before they occur. For instance, in predictive maintenance, Al can
note the slight and subtle changes such as temperature changes or unusual
vibrations for an early detection of a malfunction in an equipment. Thus
there would have been much less downtimes along with machinery utilities
becoming more economical as downtime is reduced along with the losses caused
by production interruptions. This is particularly significant in industries where
downtime can be costly and detrimental to productivity.

In the long run, the combination of IoT, Al, and advanced analytics transform
traditional approaches into proactive strategies that optimise performance,
improves decision-making, and foster a more agile and efficient business
environment.

16



3.3 Conclusion: The Future of IoT and Digitalization
in Industry 4.0

As we look toward the future; innovation, efficiency, and sustainability across
industries will still fundamentally be driven by IoT and digitization. These
technologies are not just reshaping the process of business management in
the present but are also laying the foundation for smarter and more adaptive
industries in the future. By collecting and analyzing real-time data, loT helps
companies optimize production, improve customer experiences, and enhance
supply chains. Digitalization, with its interconnected ecosystems, fosters
collaboration and agility, which are crucial in today’s fast-evolving markets.
However, for IoT and digitalization to reach its full potential, challenges like
data security, high implementation costs, and scalability needs to be addressed.
Ensuring that IoT solutions are secure, affordable, and accessible to businesses
of all sizes is critical for realizing their full impact.

Ultimately, IoT and digitalization will be indispensable for businesses
striving to stay competitive, adaptable, and sustainable in the evolving
landscape of Industry 4.0.
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4 Dataset Description and Modeling
Approach

To start off, a detailed dataset on steam generated and condensate recovered
was needed for the time series forecasting of CRF. This was made available
by Forbes Marshall’s CRM (Condensate Recovery Meter), working along with
its pressure-pumped package units across different locations. It assesses the
total amount of steam pumped and condensate recovered over any given time
period. The data obtained is stamped every minute and saved into a CSV file.
This dataset served as the foundation for training the neural network model,
allowing it to operate on realistic, current data obtained from different types
of industries.

The list of data points collected for the analysis are mentioned below with
their description:

Parameter Unit Description

Timestamp minutely | Recorded in a minutely resolution, ensuring
precise tracking of events and changes over
time.

Steam Flow Rate kg/h Represents the amount of steam generated and

utilized within the plant, a critical input for
assessing condensate recovery.

Steam Total kg The cumulative steam flow across specific time
periods, used to calculate efficiency metrics.

Total Condensate Recovered kg The volume of condensate collected from both
direct and indirect steam consumers, crucial
for calculating the CRF.

Condensate Recovery kg Reflects the contribution of condensate pumps
in the system, allowing for detailed analysis of
equipment-specific recovery.

Condensate Temperature °C Temperature measurements are necessary to
assess thermal efficiency and potential heat
losses in the condensate system.

Feed Water Temperature °C The temperature of water fed into the boiler,
influencing steam generation and overall
energy balance.

Blowdown TDS kg The concentration of dissolved solids in boiler
blowdown, which impacts boiler performance
and condensate quality.

Blowdown TDS Total kg The total mass of dissolved solids removed
through blowdown.
Boiler ON/OFF Status binary This binary indicator helps differentiate

between operational and non-operational
states of the boiler, providing critical context
for analyzing delays and dynamic behavior in
the system.

Table 4.1: Key Data Points Collected for Analysis
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4.1 Data Preprocessing and Feature Engineering

Condensate Recovery Factor or CRF is regulated by thermodynamic laws
where steam flow dynamics, efficiency in recovering condensate, and boiler
operational settings adheres to the conservation laws of energy and mass.
In this systems, excessive preprocessing risks obscuring critical physical
relationships, such as brief steam usage profiles or phase-change-driven
condensate yield, that underpin CRF variability.[1] This philosophy aligns
with physics-based modelling paradigms, where raw data fidelity retains
mechanistic interpretability unadulterated by artificial distortions imposed by
aggressive transformations.|8]

In Industrial IoT products such as Forbes Marshall’s pressure-driven pump
units and Condensate Recovery Meters (CRM); minutely telemetry of steam
flow rates, condensate temperatures, and feedwater dynamics provides
relevance information concerning system behavior.  This is important
in deciding anomalies including steam trap malfunction or boiler cycling
inefficiencies.

Although the minutely recorded IoT data was largely clean, occasional sensor
faults or communication failures resulted in missing values. These were
addressed using appropriate imputation techniques such as forward-filling to
maintain data continuity while ensuring the system’s overall behaviour was
not artificially modified. Since the raw readings were already structured and
inherently meaningful, no additional feature engineering was required, except
for Min-max scaling (it transforms data to a fixed range to preserves the
original distribution while compressing extreme values) which was done purely
to ease neural network training due to features like Steam Total (kg) and
Total Condensate Recovered(kg) being in the range of 10°. These large input
values can lead to numerical instability in neural networks, causing issues like
vanishing or exploding gradients. [9]

By leveraging the IoT data as close to its original form as possible, the
predicting model remains aligned with the actual operational conditions of
steam and condensate recovery, ensuring both accuracy and interpretability in
optimizing CRF.
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4.2 Neural Network Model Architecture

Predicting nonlinear trends in time-series data is a long-standing challenge
with significant applications across industrial process optimization, finance,
and control systems. Although traditional neural networks, according to their
universal function approximation properties [10], can model any function,
they frequently struggle at extrapolation and, rather, fit the data well yet
mis-generalize beyond the observed patterns. Fourier-based approaches have
been tried to circumvent this constraint, using sinusoidal activation functions
to capture periodic trends in time-series forecasting [11,12,13,14]. However,
ensuring training stability and preventing overfitting are key obstacles.

An essential element often overlooked in time-series modeling is the explicit
treatment of time as a feature. Many of the traditional methods consider past
observations alone to predict future behavior, making them susceptible to the
influence of short-term fluctuation and noise [15,16]. Instead, incorporating
time directly into the model and using it as a separate feature allows the
better handling of periodicity and long-term trend forecasts, especially in such
nonlinear dynamical systems as industrial steam management.

To overcome these challenges, we propose a Fourier-based Feedforward Neural
Network (FNN) optimized by a Genetic Algorithm (GA) for the selection
of hyperparameters.[11,4] The FNN is an effective function approximator,
utilizing Fourier features to enhance extrapolation behavior. Meanwhile, GA
effectively searches the space of hyperparameters, optimizing network structure
and regularization parameters to improve forecast accuracy. This hybrid
model approach balances precision and computation efficiency, which renders
it especially suited for optimizing condensate recovery factors (CRF) in process
plants.

By combining domain-specific insights with deep learning methods, this model

is designed to enhance forecasting accuracy, better interpretability of system
behavior, and improved robustness against process condition variations.
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4.3 Model Implementation

A feedforward neural network was chosen for time series prediction due to its
ability to learn complex periodic and nonlinear patterns from historical data.
The architecture consisted of:

e Input Layer: Accepting multiple time series features, including
time-based inputs and process variables.

e Hidden Layers: Three parallel fully connected layers, each with
different activation functions to capture distinct data characteristics:
— Sine Activation: Capturing periodic trends in the dataset.

— Cosine Activation: Complementing sine activation for better
Fourier representation.

— Quadratic Activation: Modeling polynomial trends for
non-periodic variations.

e Concatenation Layer: Merging outputs from the three hidden layers
to integrate periodic and polynomial features.

e Output Layer: A final fully connected layer with a linear activation
function to predict the next time step’s Condensate Recovery Factor

(CRF).

This hybrid approach enhances the model’s ability to generalize across periodic
and nonlinear trends, improving time-series forecasting accuracy.

4.4 Model Training and Evaluation

The dataset was divided into training, validation, and test sets based on
temporal partitions to prevent data leakage. After the model was trained,
its performance was evaluated using the following metrics:

e Mean Absolute Error (MAE): Measures the average absolute
difference between actual and predicted values:

1 N
MAE:— ,L'—Ai
N;:l i — il
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e Root Mean Squared Error (RMSE): Captures the magnitude of
prediction errors, penalizing larger deviations:

N
1 Z .

=1

e Mean Absolute Percentage Error (MAPE): Assesses relative
prediction accuracy in percentage terms:

N

100%
MAPE =
>

Yi — Ui
Yi

e RMS Percentage Error (RMSPE): Provides insight into the model’s
consistency across different scales:
> 2

100% o [ yi — G
RMSPE =

4.5 Interpretability and Explainability

While the Fourier-inspired neural network (FNN) inherently provides
interpretability through its additive structure, to enhance the model’s
transparency even further, SHAP (SHapley Additive exPlanations) and LIME
(Local Interpretable Model-agnostic Explanations) were utilized. [6,7] SHAP,
based on game theory, assigns each feature a contribution value, providing a
global and local understanding of the model’s predictions. LIME, on the other
hand, builds locally interpretable models around individual predictions by
perturbing inputs and observing their effects. These methods bridge the gap
between the FNN’s mathematical transparency and actionable operational
guidance, ensuring stakeholders understand why and how the model makes
predictions.
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5 Neural Network Design and
Evolutionary Optimization

The methods we implement include a neural network, inspired by Fourier
analysis, and a genetic algorithm to search for optimal hyperparameters for
the network. One key advantage of this approach is that it only requires the
time variable to predict new values. Despite being a neural network, it is
not a black box, as it contains only one hidden layer with simple activation
functions. This simplicity allows for an easily extractable mathematical model
from the network, as will be explained below.

Fourier Analysis decomposes a time series into a sum of sine and cosine
functions, with different amplitudes and frequencies, revealing the components
that make up the signal.

- omit 2mit
f(tk):c—k;aisin( Tk)—kbicos( Tk) (1)

Here, n represents the number of points in f, and ¢, denotes the discrete time
variable corresponding to point £ in the series. The total duration of the series
is given by T' = t,ax — to, Where t,, and ¢y are the maximum and initial time
points, respectively. The term c is a bias correction constant, which can also
be interpreted as the i = 0 term in the summation.

The coefficients a; and b; are determined such that the summation of sine and
cosine functions accurately reconstructs each point in the original time series.
However, despite the perfect accuracy of this function for known points, it is
not well-suited for forecasting future values. For times t > t,,.y, the function
simply repeats the values from ty to t,.x periodically. This limitation arises
because the summation consists solely of periodic functions, which restrict the
representation to frequencies that do not exceed the fundamental period or
domain of the original time series.

Nevertheless, many time series exhibit clear periodicity. To address this,
we relaxed the rigidity of the original Fourier decomposition and allowed a
neural network to learn the natural frequencies of the time series, including
those related to arbitrarily long time periods, which is very useful for future
predictions.

For instance, a time series used to train the network might cover a period
of two months, but this doesn’t prevent the network from learning patterns
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and trends that could last for four months or even a year, in addition to the
patterns already present in the series.
The architecture of the neural network used is shown in the following picture.

wo @ Ap

»( sinay,,

Figure 5.1: Fourier Neural Network (FNN) architecture with periodic and
non-linear activation functions.

Here, t is the time-related value of a point in the series, so ¢t values are only
a linear succession of numbers (like [0,1,2,3 ...] or [0,2,4,6 ...], f(t) is the
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net output, the value that is desired to match with the corresponding of the
column to predict and:

a; = ws;t + ¢, (2)
b; = we,t + ¢, (3)
t' = (wot + co)? (4)

After training the network to approximate f(¢) to the series to predict, we
obtain the learned coefficients w’s, ¢’s, and A’s. We can then make predictions
for t greater than its maximum value given in the training. Mathematically,
f(t) is expressed as:

ft) =c+ At + > Ay sing + Y A, cosb; (5)
i=1 =1

A quadratic term ¢’ is included in the network because a linear or a very
smooth quadratic long-term trend is observed in most of the series. It could
be different from quadratic, but since the forecasts are not far from this trend,
this approximation is sufficient.

5.1 Neural Network Architecture

5.1.1 Input Layer

e Time-Only Model: Scalar t € R

e Time + Exogenous Model: Augmented vector z = [t,x] € R™™,
where x € R™ are exogenous features

5.1.2 Hidden Layers

1. Sine and Cosine Terms

Each node computes :-
Si(t,x) = As, sin (wzzz + csl.) , Cj(t,x) = A, cos <WZ;Z + ccj>

here,
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® Wy, W, € RI*™: Frequency weights
® ¢, ¢, € R: Phase biases

o A, Ac; € R Amplitudes

2. Quadratic Trend Term

Q(t,x) = Ag (W z + 00)2

here, wy € R'™™ and ¢, € R.

5.1.3 Output Layer

y(t,x) =c+ 9Q(t,x) + ZSSi(t,X) + chj(t,x)
i=1 j=1

5.2 Time-Only Model (¢)

For univariate input, the predicted CRF is:

CRF(t) = ¢+ Ay - (wot + o) + Z A, sin (a;) + Z A, cos (b;),

i=1 j=1
a; = wgt+cs, Vie{l, ..., ng},

bj = we;t +c.;, ViEAL ... N},

t' = (wot + co)” .
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5.3 Time + Exogenous Variables (¢, Xexog) Model

For multivariate inputs, let Xes € R™ denote exogenous features. Define
z = [t, Xexog) € R™™. Thus, the predicted CRF is:

CRF(t,Xexog) = ¢+ Ag - (Woz + 00)2 + Z A, sin (a;) + Z A, cos (b;),

i=1 j=1
(7)

a; = WSTZ,Z—I—CSZ., Vie{l,...,ns},

b; :Wgz—i—ccj, Vie{l,...,n.},

t'= (Wgz + 60)2 .

5.4 Training Objective

The model minimizes the Mean Absolute Error (MAE):

1 N
L= N Z |f<tk7 XeXOg,k)—CRFtrue,k

k=1

where:

e L: MAE loss

Denseg, (X)
f(-) = Densejipear | Concatenate | Densecos(x)
Densequadratic (X)
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5.5 Variables Summary

Table 5.1: Symbol Definitions and summary of the variables

Symbol Description Notes

t Time variable - Scalar temporal feature
- Dimension: R

Xexog Exogenous - Contains m external predictors
feature vector - Dimension: R™

Z Augmented - Combined [t, Xexog]
input vector - Dimension: R!'*™

Wy Quadratic term - Linear coefficients for constant term
weights - Dimension: R'*™

Wi, We j Sine/cosine - Frequency parameters per node
weights - Dimension: R*™

€0,y Cs t) Ce,j Phase biases - Temporal offsets

- Dimension: R

Ap, Ast, Ac;  Amplitudes - Output scaling coefficients
- Dimension: R

Ng, Ne Node counts - Sine/cosine units in architecture
- Dimension: Z"

5.6 Genetic Algorithm for Hyperparameter
Optimization

Once the neural network architecture is finalized, the critical task is to identify
optimal hyperparameters: the number of sine nodes (ng), cosine nodes (n..),
and batch size (b).

The optimization of neural network hyperparameters represents a critical
challenge in machine learning, particularly when the relationship between
hyperparameters and model performance is nonlinear, discontinuous, or noisy.
Traditional grid or random search methods, while straightforward, often
prove computationally prohibitive and fail to exploit the latent structure of
promising hyperparameter combinations. To address this, we employ a Genetic
Algorithm (GA) that iteratively evolves hyperparameter configurations by
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balancing exploration of the search space and exploitation of high-performing
candidates. The algorithm prioritizes minimizing the Mean Absolute Error
(MAE) on validation data while explicitly guarding against overfitting through
a weighted evaluation metric. Below, we formalize the steps of the GA.

5.7 Algorithmic Formulation

5.7.1 Hyperparameter Representation
Each candidate model is defined by a hyperparameter vector:

Ns
0= |n | €6 CN3
b

where © is the bounded search space:

Ng S [ns,mina ns,max]7 ne S {nc,mina nc,max]7 b S [bminy bmax]-

5.7.2 Algorithm Workflow

The GA proceeds as follows:

1. Initial Population: Generate N = 50 models with uniformly sampled
hyperparameters:
Ro= {0917, 09~ 14,0(0).
2. Parent Selection & Crossover: Select M = 25 parent pairs. For each
pair (1) §2)) generate a descendant #(Y) and for each hyperparameter
7, choose the crossover method via:

B; ~ Bernoulli(0.5), where ; € {0,1}.

ajﬁj(-pl) +(1— ozj)H(pQ), if 5; =1 (coin-toss inheritance)

J
(d) — (p1) | p(P2)
9 \‘ej T J
b

5 if 5; =0 (arithmetic mean inheritance)

here, «; ~ Bernoulli(0.5) governs the coin-toss inheritance for
hyperparameter j.
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3. Mutation: Perturb each descendant hyperparameter with probability
Pmut = 0.05:

mut,j ~ )

@ {umt(@j), with probaibility 0.05,
e(d)

e otherwise,

4. Survival Selection: Retain the top 50 models from the combined
population (P, U D) based on validation MAE:

P,y = arg top-50 (—MAE,.(9)) .
e P, UDy

5. Termination: Repeat for T'= 10 generations.

5.7.3 Final Model Selection

The final population Pr is evaluated using:
E(6) = 0.25 - MAE 4 4 0.25 - MAE + 0.5 - MAEq. (8)

To ensure robustness against overfitting, the optimal model 6* is selected using
a weighted evaluation metric E that emphasizes generalization to unseen data.
The optimal model is:
0* = arg min E(6). (9)
QEPT

Here, MAE: is computed on a held-out test dataset representing the most
recent segment of the time series. The weights reflect a design priority: test
performance is twice as critical as training or validation performance.

5.7.4 Algorithm Advantages

1. Adaptive Search: The GA dynamically balances exploration (via
mutation and stochastic crossover) and exploitation (via arithmetic
averaging and elitist selection).

2. Overfitting Mitigation: The composite metric 'E’ prioritizes test
performance, discouraging over-optimization on validation data..

3. Scalability: Parallelizable training of candidate models reduces
wall-clock runtime.
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5.8 Variables Summary

Table 5.2: Summary of Genetic Algorithm Variables

Symbol Description Domain/Type Notes

Ux
0 Hyperparameter vector N3 0= |n.

b
g Sine nodes [ mins Tos max) User-defined bounds
e Cosine nodes [7e.mins Te,max) User-defined bounds
b Batch size [bimins Dmax] User-defined bounds
P, Population at generation ¢ Set of ¢ |P,| = 50
T Total generations N T =10
Pmut Mutation probability 0,1] Pmut = 0.05
E(0) Weighted metric R* Prioritizes test MAE
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6 Results and Discussion

In this chapter, the final stage of the thesis is outlined: testing and validation
of the predictive model developed for condensate recovery factor (CRF'). This
chapter includes the major conclusions of the thesis and the rationale behind
the methodologies used and the conclusions from the results attained. The
chapter is segmented into sections according to the primary model that was
used in CRF optimization.

6.1 Model Selection Process & Challenges

The process of selecting the most appropriate model to predict the
Condensate Recovery Factor (CRF) involved several iterations, where different
architectures were tested before settling on the chosen Fourier Neural Network
(FNN). Each approach had its own strengths. However, they were ultimately
found to be insufficient in properly capturing the unique temporal dynamics
involved with the CRF.

Initial Approaches and Challenges

6.1.1 Statistical and Kernel-Based Methods (ARIMA, SARIMA &
SVR)

ARIMA (AutoRegressive Integrated Moving Average) and its seasonally
adjusted variant SARIMA (Box & Jenkins, 1976) were tested because of
their strong performance in classical time series forecasting challenges. [17]
These models seem to work very well with stationary data having clear
trends and seasonality. However, CRF’s continuously increasing nature caused
the aforementioned models to perform poorly, as differencing and season
adjustment couldn’t accurately simulate its accumulation tendency. This
obstacle is documented in Wang et al., 2019; Why Are the ARIMA and
SARIMA Not Sufficient. [18]

Similarly, Support Vector Regression (SVR) can also capture nonlinearity
in data through kernel mappings, but it also lacks the flexibility to capture
extended long-term trends, as noted by Smola and Schélkopf (2004). [19]
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6.1.2 Recurrent Neural Networks (RNNs) & Long Short-Term
Memory (LSTM) Networks)

Although RNNs and LSTMs are intended to manage sequential dependencies,
their performance on continuously increasing series like CRF is often affected
by issues like vanishing gradients over extended sequences. This challenge
is well-documented in (Hochreiter & Schmidhuber, 1997; Pascanu et al.,
2013). [20,21] Our experiments confirmed that these models struggles to
maintain long-term dependencies, which is critical for accurately forecasting
CRF trends. To add, the high computational costs and sensitivity to
hyperparameters rendered them impracticle for our industrial application.

6.2 Adoption of Fourier inspired Neural Network
(FNN) as the Final Choice

Due to the aforementioned constraints, we eventually chose to proceed with
the Fourier Neural Network (FNN) approach (Mingo et al, 2004). [11] The
FNN complements time series forecasting by spectrally decomposing it into
its frequency components to achieve periodicity and long-term trends. This
approach not only provides better accuracy in forecasting but also increased
interpretability for domain experts to appreciate the frequency-based drivers of
CRF without the need for computational complexity as in the case of complex
repeating patterns.

In short, the transition to FNNs provided us with the model that is accurate
as well as computationally efficient, hence suitable for industrial real-time
application.

Model Performance Evaluation

Model performance evaluation is essential in establishing the accuracy
and effectiveness of predictive models. Known statistical metrics such as
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square Percentage Error
(RMSPE), provides insights into the model’s ability to learn patterns from
data. Models that are evaluated well gains trust and, hence, are reliable in
decision-making based on their predictions.
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We trained the Time-Only model (¢) for 500 epochs which took about 14
hours and the Time + Exogenous Variables (¢, Xexog) model for 100 epochs
which took about 12 hours in the 13th Gen Intel Core i5-1335U (12-core)
processor with 16 GB RAM. The latter approach while fostering improved
decision-making and trust, it came with an increased computational cost. This
trade-off highlighted the need to assess whether the additional complexity is
justified, especially in resource-constrained environments.

The findings from both these evaluation is shown in Figure 6.1 below.
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Figure 6.1: Forecasted vs. Actual Total Condensate Recovery (CRF) of
Time-Only model (¢) (left) and Time + Exogenous Variables (¢, Xcxog)
model.

(The two graphs display the best model results for forecasting Total Condensate Recovery (CRF). In both,
the forecast (orange) closely matches the actual data (blue). The top graph includes train, validation, and
test data, while the second focuses only on the validation and test data. Both model’s graph shows that
the model accurately captures the CRF trend, demonstrating strong predictive performance across all

datasets.)
Model MAE RMSE MAPE (%) RMSPE (%)
Time-Ounly (¢) (500 epochs) 429.5146 510.7662 0.0257 0.0306
Time + Exogenous (¢, Xexog) (100 epochs) 323.0992 390.4674 0.0190 0.0230

Table 6.1: Performance comparison of models with and without exogenous
variables.
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Performance Insights

The results indicate that the inclusion of exogenous variables significantly
improves forecast accuracy. The Time + Exogenous (¢, Xexog) model performs
better than the Time-Only (¢) model on all measures, lowering the MAE by
24.7% and RMSE by 23.5%, despite being trained for just 100 epochs versus
the 500 epochs for the time-only model. This demonstrates the forecasting
capability of external factors in optimizing CRF forecasting, and suggests that
the additional tuning with domain-specific exogenous features could enhance
model performance even further.

Accuracy vs. Computational Cost

The comparison between the two models highlights a vital trade-off in
forecasting CRF: accuracy against computational cost. Although adding
exogenous features leads to significantly enhanced predictive accuracy, it is
done at the expense of additional resource. The inclusion of exogenous
variables requires additional processing due to Genetic Algorithm (GA) tuning
increases the computational complexities.

Despite training for only 100 epochs, the Time + Exogenous (t, Xexog) model
achieves superior accuracy, indicating the strong impact of external factors on
CRF dynamics. This trade-off indicates that while the inclusion of exogenous
features is desirable for accuracy, deployability, however, is a function of
computational resources available. Optimization of the GA process or the
choice of most significant exogenous features would be a potential means of
balancing accuracy and efficiency.

Model Advantages

e The model’s design primarily depends on dynamics in time, eliminating
the obligatory presence of exogenous factors. While incorporating
exogenous factors can enhance performance in circumstances where
previous observations are sparse, they are not strictly required for making
accurate predictions.

e The chosen network structure facilitates the extraction of a mathematical
representation of the series, effectively covering its built-in periodicities
and its natural frequency elements.
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e In contrast to complex architectures such as LSTMs, CNNs, or
Transformers, this model is more interpretable and computationally
efficient  alternative while maintaining competitive predictive
capabilities.

e The neural network architecture of the model makes it highly flexible. It
can be easily integrated with other functions or reinforced with additional
hidden layers, with a fine balance between complexity and explainability.

e Its applicability extends beyond specific datasets, making it a versatile
tool for the analysis of a wide range of time series, regardless of domain.

Model Disadvantages

e The interpretability of the model’s predictions is closely linked to their
breakdown into natural frequency components, which may not always fit
within specific explanatory frameworks relevant to the domain.

e The model struggles to anticipate infrequent, abrupt changes in the time
series, such as sudden spikes or unpredictable disruptions.

6.3 Explainable AI Insights

This section discusses the results of the interpretability experiments conducted
in relation to this work.

LIME (Local Interpretable Model-Agnostic Explanations)

LIME can be critical in explaining individual CRF predictions, particularly
in instances where domain experts want to understand the fluctuations.
LIME works by approximating the decision boundary of the trained Fourier
Neural Network by fitting an interpretable, linear surrogate model to small
perturbations around the instance in question.

This approach allows for a deeper analysis of the factors that affect CRF
variations. The LIME results provides explanations tailored to each instance,
emphasizing the variables that were linked with the observed fluctuations in
CRF. These explanations can greatly aid in understanding the predictions,
which is valuable for evaluating Al-driven CRF modeling.
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To examine the model’s behavior on a case-by-case basis, random data points
were chosen, and LIME was utilized to create local explanations. The following
plots in the Figure 6.2 demonstrate how different parameters contributed to
the predicted CRF values, shedding light on the factors that influenced each

prediction.
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Figure 6.2: LIME Explanation for CRF Prediction

Each plots shows how various parameters either positively (in green/orange)
or negatively (in red/blue) influence the predicted CRF value, shedding light
on the model’s decision-making process. The numeric values alongside the
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features represent their respective contributions or presence in the analyzed
instance.
The local explanation analysis gave valuable information on the behaviour
of the Condensate Recovery Factor (CRF). When the boiler was ON it had
notably positive effect, while OFF was negatively influencing CRF due to
insufficient generation of steam. A high steam flow rate was desirable, but
a low or zero flow rate negatively impacted CRF, reflecting limited steam
availability for condensate recovery. The condensate temperature from Pump
2 showed a negative effect at higher levels, which might indicate inefficiencies
in heat transfer or losses in the system.
On the other hand, the recovery of the condensate from Pump 2 has been
proved to be beneficial to CRF, highlighting the need for effective condensate
return. There was a mild positive effect from the feedwater temperature, likely
because it helps to mitigate thermal shock in the boiler system. By contrast,
the total dissolved solids (TDS) of blowdown and the overall blowdown losses
usually stand for a negative impact, as excessive blowdown means steam loss
and diminished recovery efficiency.

Furthermore, the positive contributions made by the total steam values
reinforces the idea that more steam in the system leads to enhanced recovery.

These critical findings can help engineers and other stakeholders in analyzing
predictions with greater nuance and understanding how various conditions
affects the CRF estimates. This insight derived from these statements can
prove beneficial in the assessment of model outputs vis-a-vis identifying critical
operational factors affecting condensate recovery.

SHAP (SHapley Additive exPlanations)

While LIME assists the explanation of individual predictions, it is equally
important to consider the general behaviors of the model for different types of
test instances. This is where SHAP (SHapley Additive Explanations) comes
in use, it provides a broader view on how much each feature is driving the
model’s predictions across the range of test samples.

To accomplish this global interpretability, we have investigated the SHAP
summary plot, violin plot, and dependence plots. When taken together, these
can provide insights about feature importance, distribution of effects, and
interaction between variables.
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The SHAP summary plot collects and ranks the contributions of features
from all test samples according to their importance. Each dot indicates a
SHAP value, and the value of the feature being considered is represented on
a color gradient with red for high and blue for low. The SHAP layered violin
plot complements this by showing the distribution of SHAP values for each
feature, offering insights into the consistency and variability of their influence
on predictions.

High High

Steam Total *% : -: & Steam Total — o
: - ey
Pump 2 Condensate Rec H# Pump 2 Condensate Rec —Q—+7
Blowdown TDS I'" - B 1 TDS %
Blowdown TDS Total ] E B 1 TDS Total { E
Steam Flow Rate l g Steam Flow Rate g
Pump 2 Condensate Temp | 3 Pump 2 Condensate Temp 3
Pump 1 Condensate Rec l Pump 1 Condensate Rec
FEED WATER TEMP | FEED WATER TEMP %
Pump 1 Condensate Temp I Pump 1 Condensate Temp %
Boiler ON I Boiler ON
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=100 =50 0 50 100 -100 =50 0 50 100

SHAP value (impact on model output) SHAP value (impact on model output)

Figure 6.3: Global interpretability of feature importance using SHAP
(The SHAP summary plot (left) ranks features by their impact, with a color-coded distribution that
indicates whether feature values are high (red) or low (blue). The layered violin plot (right) provides a
further visualization of the spread and density of SHAP values, emphasizing the variability in feature
influence across test samples.)

From these plots, we can infer that Steam Total, Time (t), and Feed Water
Temperature are some of the most significant features. The violin plot
also illustrates the variance in feature effects, indicating that while certain
features have a consistent influence, others, such as Blowdown TDS and Pump
Condensate Temperature display more spread-out effects. However, looking
at global feature importance alone doesn’t fully capture how specific feature
values affect predictions. To gain insights into feature interactions and their
nonlinear effects, we turn to SHAP dependence plots.

SHAP dependence plots can investigate how individual feature values affect
model predictions while also uncovering interactions with other variables. Each
scatter plot in the series depicts the relationship between a feature’s actual
value (x-axis) and its SHAP value (y-axis).

The dependence plots in Figure 6.4 below indicates that Steam Flow Rate,
Steam Total, and Time have a strong linear effect on CRF, reinforcing
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Figure 6.4: SHAP Dependence Plots of features impact on CRF

(Each scatter plot demonstrates how individual features relate to their SHAP values in relation to CRF,
emphasizing the key contributors.)

their primary importance. Feed Water Temperature shows a nearly
linear relationship, with slight variations suggesting interactions with other
parameters.

The inverse relationship between Pump 1 and Pump 2 Condensate Recovery
points to operational trade-offs. In contrast, Pump 1 and Pump 2 Condensate
Temperatures positively influence CRF, emphasizing their role in heat
retention. Blowdown TDS and its total have minor but structured effects,
with higher values showing a slight impact on CRF.
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The Boiler ON status introduces variability, indicating transient startup effects
and delays in condensate recovery.

The next set of dependence plots in Figure 6.5 below explores how different
features interact with each other and their combined effect on CRF.
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Figure 6.5: Feature interactions captured through SHAP dependence plots
(Each scatter plots demonstrate the connections between essential process parameters and their effects on
the CRF, providing valuable insights into how each feature influences the model’s predictions, crucial for

understanding system dynamics.)

The interactions between features show a strong correlation between Steam
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Flow Rate and Steam Total, as well as between Blowdown TDS and
its total, confirming their interdependence. The Feedwater temperature
impact on steam generation and condensate temperature tends to underline
its significance in process efficiency. The reverse relationship of Pump 1
with Pump 2 Condensate Recovery highlights the importance of balancing
their loading equilibrium. The farther-out pattern seen between Boiler ON
status and Steam Flow Rate emphasizes the influence of transient steam
behavior during startup on these interactions, which makes CRF optimization
particularly intricate due to pump coordination, steam utilization, and
transient states.

These dependence plots give a better indication of how key process parameters
relates with the CRF, for future decision-making reference. The effect of
change in parameters such as steam flow rate, feed water temperature,
and condensate recovery has been illustrated for operational optimization,
troubleshooting, and efficiency improvement. With the knowledge of these
dependencies, better control strategies can further enhance the performance
and sustainability of the plant.

6.4 Feature Sensitivity Analysis: Direct Model
Response to Perturbations

Together with the model interpretability techniques i.e SHAP and LIME, an
analysis of perturbation was also done to see how changes in key input variables
influenced the output, Condensate Recovery Factor (CRF). The perturbation
explored changes in the individual features by 20% either way while keeping
all other features constant to observe model response. The inference is based
on assessing the influence of this direct change of key input variables on the
predicted CRF, in the below-shown Figure 6.6.

The results indicates:

e Steam Flow Rate and Feed Water Temperature show a strong positive
correlation with CRF, implying that increasing these parameters
enhances condensate recovery.

e Pump 1 and Pump 2 Condensate Temperatures also influence CRF but
with different sensitivity levels.
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Figure 6.6: Impact of Feature Perturbations on CRF Predictions
(This analysis helps to understand how direct modifications to important input variables impact the
predicted CRF. The observed trends suggest possible optimization strategies for enhancing condensate
recovery.)

e Blowdown TDS, conversely, shows a negative correlation with CRF.
An increase in this corresponds to a decrease in condensate recovery,
underlining the importance of water quality for steam system efficiency.

The near-linear trends of all the features confirm that the model is
behaving predictably, revealing the importance of these variables in plant
improvement. Unlike SHAP, which inspects the model’s global interpretability
perspective, this perturbation analysis directly explores the model’s predictive
response, presenting insights to facilitate real-world adjustments towards the
improvement of CRF.

6.5 Unified Framework for CRF Optimization

The integration of Fourier Neural Networks along with SHAP and LIME
in CRF prediction creates an effective link between Al-driven modeling and
practical applications in industry. The Fourier decomposition forms the basis
interpretability by building trust in the periodic behaviours learned by the
model. SHAP goes one step further by attributing more importance to
individual parameters of the process, while LIME provides actionable real-time
insights. Feature perturbation analysis also closely examines the model’s
sensitivity to variations in the key input parameters and provides review
on the different ways process condition variations lead to the changes in
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CRF predictions. This entire multi-layered approach helps pacify skepticism,
by providing actionable insights for engineers and enhancing their trust in
Al-based CRF optimization.
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7 Conclusion and Future Works

7.1 Summary

This thesis aimed to enhance the prediction and optimization of the
Condensate Recovery Factor (CRF) in industrial steam systems. Since the
recovery factor is a measure of the overall energy efficiency of a system, and
many existing methods either tend to take the route of overly simple heuristic
approaches or use highly complex black box machine learning models, which
can limit their effectiveness in dynamic industrial contexts. Thereby, we
suggested a new methodology that merges Fourier-inspired neural networks
(FNN) and genetic algorithms (GA) with minutely IoT data from steam and
condensate recovery systems.

In the model design, we gave due consideration to domain knowledge
and industry-specific practices pertaining to condensate recovery so as to
logically interpret and physically embed our approach. The FNN architecture
effectively decomposed temporal patterns into spectral components, such
as sinusoidal terms that capture daily steam cycles, thus ensuring that
predictions were consistent with real-world system behavior. Additionally,
SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
Model-Agnostic Explanations) were also used to allow domain experts to assess
feature importance and verify the model’s predictions.

To ensure practical relevance, continuous feedback was integrated from
steam system specialists, confirming that the model’s outputs, such as spectral
frequencies linked to boiler cycles, were consistent with empirical observations.

Ultimately this work demonstrates that physics-informed AI, when grounded
in industrial telemetry and expert collaboration, can deliver both accurate
predictions and actionable insights. By making spectral analysis and
evolutionary optimization accessible to plant operators, this work reduces
reliance on black-box tools, fostering data-driven, trust-based decision-making
in energy-intensive industries.
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7.2 Research Questions

The thesis was based on the following research questions and sub-questions,
which we were able to answer after finishing the whole process, starting
from researching existing approaches to developing and evaluating our own
approach.

RQ: How can a data-driven approach optimize the Condensate Recovery
Factor (CRF) in industrial plants while ensuring model interpretability and
actionable insights for both Al experts and domain engineers?

To answer this question, this thesis establishes a novel framework that
integrates physics-informed machine learning with industrial IoT data,
enhancing both prediction accuracy and practical usability. By leveraging a
Fourier-inspired neural network (FNN) to extract temporal patterns and a
genetic algorithm (GA) for optimization, the model adapts dynamically to
fluctuating plant conditions. SHAP and LIME further ensure transparency by
highlighting influential parameters, allowing engineers to validate and refine
operational strategies. The approach bridges the gap between data-driven
insights and industry constraints, enabling more efficient, sustainable, and
trust-driven decision-making in condensate recovery.

SQ1: How can a neural network model be designed for predicting CRF while
ensuring its interpretability and transparency for non-expert stakeholders?

To enhance interpretability, the FNN architecture breaks down CRF
fluctuations into distinct frequency components, mirroring real-world steam
cycles. Unlike traditional black-box models, this design allows engineers
to trace patterns to physical processes, making outputs more intuitive.
Meanwhile, SHAP and LIME quantify the contribution of each input
feature, ensuring that plant operators can confidently act on the model’s
recommendations. This ensures that the predictions remain aligned with
industry expectations and operational realities.

SQ2: What key features and operational parameters significantly impact CRF,
as identified through interpretable methods, ensuring alignment with industrial

best practices and sustainability goals?

Through interpretable machine learning, the study pinpointed steam flow
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rate, boiler status, feed water temperature, and condensate recovery trends
as dominant CRF drivers. SHAP and LIME confirmed their influence by
exposing cause-and-effect relationships—steam fluctuations and boiler cycles
directly impact recovery efficiency. These insights reinforce best practices
by guiding efforts to reduce energy losses, optimize steam distribution, and
maintain stable operations, aligning with broader sustainability and efficiency
objectives.

SQ3: How can the insights from interpretable machine learning be leveraged to
improve decision-making in condensate recovery and steam system efficiency?

The model explainability tools convert complex predictions into actionable
insights, giving plant operators the data-driven support they need for decision
making. By consistently analyzing CRF trends, stakeholders can predict
inefficiencies, adjust boiler operation schedules, and carry out predictive
maintenance while preventing losses before they arise.  This strategy
reduces the need for trial-and-error methods, ensuring that optimizations
are based on real-time system behavior rather than static heuristics. As
a result, steam system management becomes more proactive, flexible, and
performance-oriented.

7.3 Future works

While this thesis has successfully illustrated a data-driven approach to
optimizing the Condensate Recovery Factor (CRF), yet there are still several
areas that could benefit from further investigation to enhance predictive
accuracy, computational efficiency, and practical implementation in industrial
settings.

One of the promising avenues is the application of digital twin technology,
which could develop a virtual replica of the condensate recovery system.
Synchronized in real time with data from the IoT sensors, the digital twin
would enable operators to simulate situations, experiment with optimization
strategies, and pre-emptively tune system parameters even before changes
become concrete in the physical plant. This would significantly improve
decision-making, fault detection, and predictive maintenance.

Another region of improvement is the embedding of real-time IoT data
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into adaptive predictive models. While this work used minute-scale IoT
data, having an automated data pipeline with real-time streaming and
anomaly detection would significantly enhance responsiveness to evolving plant
conditions. With online learning methods, such as incremental training or
reinforcement learning, the model would adapt online, refining predictions as
new data arrive without the necessity for full retraining.

From a technical viewpoint, there is still room for improvements in both
the neural network and genetic algorithm (GA). Upcoming developments can
involve:

e Enhanced Genetic Algorithm Optimization: Instead of
re-initializing model weights for every generation, GA can be modified
to inherit learned weights from previous generations, allowing for more
efficient convergence.

e Multi-Objective Optimization: Extending GA to simultaneously
optimize multiple conflicting objectives, such as maximizing CRF while
minimizing energy consumption and system wear.

e Hybrid Architectures: Exploring attention mechanisms or
transformer-based time series models could help capture long-term
dependencies in condensate recovery patterns.

Additionally, enhancing the feature set to incorporate external factors like
weather conditions, production schedules, and variations in steam load could
significantly boost the model’s robustness. This would allow the framework
to consider outside influences that impact the CRF, making predictions more
aligned with the complexities of the real world.

From an industrial standpoint, scaling up deployment remains a key challenge.
Future efforts should investigate cloud-based and edge computing solutions to
implement models within industrial facilities while maintaining low-latency
inference and security. Additionally, integrating automated explainability
dashboards could help connect Al-driven insights with domain expertise,
making predictive analytics more practical for plant operators.

By advancing these areas, future studies can extend Al-driven solutions
beyond condensate recovery to include aspects like boiler efficiency, pressure
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control, predictive maintenance, and waste heat recovery, contributing to a
fully optimized, self-regulating steam system that ensures sustainability, cost
savings, and operational excellence in industrial steam plants.
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