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Abstract

John Tate in his doctoral dissertation, “Fourier Analysis on Number Fields and Hecke’s Zeta
Function”, established the meromorphic continuation and functional equation of Hecke’s
Zeta Function over a number field using methods of harmonic analysis on the adele ring
of the number field. The theory in Tate’s thesis can be extended to L-functions that are
attached to Hecke characters - which are idele class group characters. In this thesis, we
study the necessary background and explore the key concepts to provide a comprehensive
exposition of Tate’s work. Further, we continue to study Hecke characters - the associated

L-functions along with the arithmetic aspects of these L-functions.
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Introduction

It is well known that the Riemann Zeta function, {(s), is defined as the absolutely convergent

sum,

for s € C and Re(s) > 1. This function however, admits a meromorphic continuation to
the whole complex plane, except for a simple pole at s = 1 and also satisfies a functional
equation which can be proved using the Mellin transform(5.1). For a detailed theory on the
Riemann Zeta function and other Zeta functions, the reader is advised to refer to [3]. The
most famous conjecture which states the existence of all non-trivial zeroes of the Riemann
Zeta function within a strip around complex numbers with Re(s) = 1/2 on the complex

plane is still unsolved and is an open question.

Over the years, several mathematicians have tried to prove it. A common approach is
to look into the generalizations of the Zeta function using Dirichlet series. Two important
forms of a Dirichlet series are - (1) L(s) = >, -, x(n)n™*; where x is Dirichlet character and
(2) L(s) = 2,51 x(m)(Mm)~*; where m are the non-zero ideals and x is the character of the

ideal class group of the number field.

Hecke proved the analytic continuation and functional equation for L(s, x) for an idele
class character, x. However, John Tate made use of the concepts of Fourier analysis on the
adele group to re-prove the same. For a detailed theory on the adele theoretic concepts, the

reader is advised to refer to 3], [1].

The idea behind Tate’s work was to choose an appropriate topological ring such as

R,Q, or Ap for a number field F' and along with it consider integrals of the form Z(s) =
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f X(8)f(x)dz, where x is a character of the multiplicative group of the topological ring and

f(z) is a nice function on the topological group [1]. The functional equation gives us the
duality between (x, f) and (xV, f ) where f is the Fourier transform of f and YV represents
the shifted dual(3.3). These methods can be studied thoroughly and can be used to derive
the functional equation for any L-function.(see Chapter 5 for the exposition of Tate’s proof

for the analytic continuation and functional equation)

André Weil introduced a special type of characters on the idele class group of a number
field [9]. In one of the articles [5], A. Raghuram studied these various notions of Weil’s
characters, Groflencharakter of Hecke characters, cohomological automorphic representation
of GL(1) and connected all of them under the theory of Algebraic Hecke Characters. The
article mainly studies the arithmetic aspects of the L-functions associated to these characters.
This thesis includes the discussion of Hecke characters in the adele theoretic language along
with defining the associated GroBencharakter(see Chapter 6). The following section of the
thesis includes special values of the Hecke L-functions and mentions Harder’s result on the
ratio of the critical L-values of such functions [2]. Finally the last part of the thesis discusses
how the reciprocity law mentioned by Harder is incorrect for a totally imaginary field and
Raghuram’s rectification of the reciprocity law by introducing a signature term in it(see
Chapter 8).



Chapter 1
Locally Compact Abelian Groups

This chapter includes sections focusing on different concepts. The first section introduces
the category of topological groups and its properties. The second section focus on locally
compact abelian groups and the third section includes a feature of such groups - the concept

of Haar measure.

1.1 Topological Group

Definition 1.1.1. A group G having a topology is called the topological group if the

following properties are satisfied:

e The group operation G x G — G which maps (g, h) — gh is continuous in the product
topology.

e The inversion map G — G which maps g — ¢! is likewise continuous.
Examples: Here are some examples of topological groups:

1. R is a topological group with respect to addition.
2. R*, C* are topological groups with respect to multiplication.
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3. Any group G with respect to discrete topology is a topological group.

The category of topological groups consists of classes of topological groups having con-

tinuous homomorphisms between them and the topology is translation invariant.

Proposition 1.1. (Proposition 1-1, Section 1.1, [1]) Let us denote a topological group as
G. Then the following assertions hold:

1. Every neighborhood of the identity, W, contains another neighborhood of the identity,
V', such that V'V < W. Moreover, every neighborhood of the identity, W, will contain
a symmetric neighborhood of the identity, given by V.

2. If H is a subgroup of GG, then its closure is also a subgroup. Also, every open subgroup

of GG is also closed.

3. If Ky and K5 are compact subsets of G, then K7 K5 is also compact.

Proof. The following points provide the proof of the assertions as mentioned in the propo-
sition. This proposition provides very important properties of topological group, regarding

its subgroups which can be used further in proofs of other theorems.

1. Let us first prove the first statement of the assertion: We assume that W is open. Then
the group operation ¢ : W x W — G is a continuous map. Therefore ¢—!(T¥) is open
in W x W containing the point (e, e) where e is the identity of G. Due to the product
topology on W x W we have the neighborhoods V;, V5 such that (e,e) € V} x V5 <
W x W. Let V.=V nV5, then V is a neighborhood of e in W such that VV < W.

Now we will prove the second statement of the assertion: Let g € W for a g € G. Since
e e U then gg—' € W and hence g,¢g~! € U. Therefore, g € W n W=, This shows that
g, gteW —= geW WL

Similarly, let g € W n W~!. Then ¢g,g7! € W and gg~' € W. This implies that
geWnW=t = g,g7t e W. Therefore, g, g7t e W <= geW WL

Hence, V = W n W1 is the required symmetric neighborhood of e.

2. Let two convergent nets {g,} and {h,} in H have their limits g and h respectively in
H. Thus the limit of {g,h,} in H will have their limit gh in H. Moreover, {g-'} and
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{h-'} in H will have their limits ¢g~' and h~! respectively in H. Therefore, we have

that H is also a subgroup of G.

H being a subgroup of G, the group G is given by a disjoint union of cosets of H.
Moreoever, H is also the complement of union of these cosets. If H is open then that
implies these translates are open. However since H is also the complement of the union

of these open translates, it is closed.

3. K, K5 are compact subsets of G. Therefore, K| K5 is the image under the continuous
map from compact set K x Ky, (kq, ko) — kiko. Thus image of a compact set under

the continuous map is compact and hence K K5 is compact.

1.2 Locally Compact Abelian Group

Definition 1.2.1. A abelian topological group G that is both locally compact and Hausdorff

is called a locally compact abelian group.
Examples: Here are some examples of locally compact abelian groups:

1. R, C are locally compact abelian groups with respect to addition.

2. The field of p-adic numbers, @Q,, is a locally compact abelian group with respect to
addition.

3. The adele ring of a number field F', Ar is a locally compact abelian group with respect

to addition.

Proposition 1.2. (Proposition 1-6, Section 1.1, [1]) Let G be a topological group which
is also Hausdorff. Then a locally compact subgroup H of G is closed. In particular, every

discrete subgroup of G is closed.

Proof. This proposition states a important property about the subgroups of a locally compact

topological group. The proof goes about by considering a compact neighborhood of identity
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inside the subgroup mentioned in the proposition and then using the Hausdorff property of

the group along with some assertions proved in Proposition 1.1.

Let U be a compact neighborhood of e in the subgroup H. Since H is Hausdorff and
U is closed in H, then there exists a neighborhood of the identity W which is closed in G
such that U = W n H. Since W n H is compact in H, therefore is compact in G and hence

closed.

By Proposition 1.1, part (1), we have a neighborhood V' of e in G such that VV < W.
Also, H is a subgroup of G by Proposition 1.1, part (3). Hence, for x € H, every neighborhood

of 7! must intersect with H. This implies that there exists some y € Va=! n H.

We claim that yz € W n H. Let K be a neighborhood of yz which meets W n H. Now,
y 'K is a neighborhood of x which implies that y='K n 2V is a neighborhood of z. Also,
x € H hence, there exists some z € y 'K naV n H. This gives us that yz€ KnH. ye Vo'

and z € xV are given by construction.

Hence, yz € Va2V == yz € VV < W. Thus the intersection K n (W n H) is

non-empty. This proves the claim and completes the proof. O

1.3 Haar Measure

A collection . of a set X is called o-algebra if the following conditions hold:

1. Xen

2. if Ae # then the complement A° e .

3. Let A=J"_| A, for A, € # forn>1. Then Ae . /.

A set X together with a o-algebra .# is called a measurable space. In case of a

topological space X the smallest o-algebra, B, is the collection of all open subsets of X.
These sets are called the Borel subsets of X.

A positive measure p on a measurable space (X, .#) is a function pu : # — R, U {00}
that is countably additive, that is p(lJ_; A.) = Do, u(A,) for any family of disjoint sets

6



{A,} in A . A positive measure defined on the Borel subsets of a locally compact Hausdorff

space X is called the Borel measure.

For a Borel measure p and a Borel subset E we have the following the properties:

e 1 is called outer regular on F if u(F) = inf{u(U) : U 2 E,U open}

e 1 is called inner regular on E if u(F) = sup{u(K) : K < E, K compact}

We define a Radon measure on X to be a Borel measure that is finite on compact sets,

outer regular property on all Borel sets, and inner regular property on all open sets.

Definition 1.3.1. Let G be a locally compact topological group with u a Borel measure on
G. We say that p is left translation invariant(similarly right) if for all Borel subsets E of G,
w(sE) = p(F) for all s € G. Then a left or right Haar measure on G is a Radon measure

p1on G that is left or right translation invariant.

A locally compact abelian group G admits a left(hence right) Haar measure on it which
is unique upto scalar multiplication. To see the proof of this we can refer to Theorem 1-8,
Sectionl.2, [1].

Examples: Here are some examples of Haar measure:

1. The Haar measure u on the unit circle, S1, is given by a function f : [0,27] — S!
given by f(t) = (cos(t),sin(t)) and u(S) = (1/2m)m(f~*(S)) where m is the Lebesgue

measure on [0, 27].
2. For a discrete group G, the Haar measure on G is the counting measure.

3. For the group of non-zero reals with multiplication operation, G, the Haar measure for

1
a Borel subset S of non-zero reals is given by p(S) = f ﬂda:.
S |T



Chapter 2

Fourier Analysis and Pontryagin

Duality

For a locally compact abelian group G, the group of characters is denoted by G. In this
chapter we focus on the characters of GG, the structure of the character group G and the final

section provides the details of the main result called the Pontryagin Duality.

Isomorphism between topological groups preserve both the algebraic as well as the topo-
logical structure of the groups. Thus for an isomorphism between two topological groups,

the map needs to be bi-continuous.

2.1 Pontryagin Dual

Definition 2.1.1. The continuous homomorphisms from a locally compact group G to the
multiplicative group C* are called the characters of G. If we restrict the co-domain of the
map to S! then the continuous homomorphisms are called the unitary characters of the

group G.

Definition 2.1.2. The unitary characters of a locally compact group G make a group under

multiplication called the Pontryagin Dual G of the group G.

Examples: Here are some examples of Pontryagin Dual of a locally compact group G:
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1. R, Q, - the field of p-adic numbers, the adele ring of a number field F', Ag, - all these

are Pontryagin duals of themselves.

2. The Pontryagin dual of Z is R/Z.

The topology on G is given by the sets of the form W (K, V) := {x e G : x(K) < V} for
a compact subset K < G and an open subset of V < S'. This forms the subbase for the

topology, named as the compact-open topology.

Let us consider the map ¢ : R — S! given by = — €2™@. For a real number x contained
in (0,1], we define N(z) = (—z/3,2/3) € S as the image under the map ¢.

Theorem 2.1. (Proposition 3-2, Section 3.1, [1]) Let G be a topological group(abelian).

Then the following properties are satisfied:

1. G is discrete implies that G is compact.

2. (G is compact implies that G is discrete.

Proof. This theorem provides a very important result regarding the relation between topo-

logical groups and their character groups.

1. Since G is discrete hence the the maps from G to S! are continuous and hence a
unitary character and we have G = Hom(G,S"). The compact sets in G are finite
sets. Therefore, the compact-open topology on G becomes the topology of pointwise
convergence. Now, Hom(G,S!) = G is a closed subset of the space of a compact

space(all the maps from G — S') which makes it compact.

2. Let us consider the non-trivial unitary character, x of G. Now we have that x(G)
is a subgroup of S! which is not contained in any set of the form N(z). Therefore,
W (G, N(1)) is an open in G, given that G is compact and contains the trivial character
only. Thus the singleton set with the trivial character {x} is open in é, proving that

(G is discrete.



2.2 Fourier Transform and Fourier Inversion Formula

Let us consider a function f € L'(G). The Fourier transform, f : G — C, is defined as

ﬂm:ﬁj@W@@ 2.1)

forxe@.

Let VY{(G) = V(G) n L}(G) where V(G) spans functions of positive type. A function of
positive type is defined as f € €.(G) for which there is a function ® : G — C in L (G) such

that JJ@(mly)f(x)d:cf(y)dt > 0. For all such notions we consider G to a locally compact
topological group.

There exists a Haar measure dy for G such that for a function f € V'(G) the Fourier

inversion formula is given by

ﬂm=Lﬂmnwu (2.2)

The measure dy on G is the dual measure to dy of G.

2.3 Pontryagin Duality

Theorem 2.2. (T}}eorem 3-20, Section 3.4, [1]) The groups G and G are mutually dual with

the map ¥ : G — G as an isomorphism of topological groups.

Proof. We provide an outline of the proof here. Firstly we show that the map W is injective.
Next we prove that it is a homeomorphism and lastly that the image of ¥ is dense in G.
This will prove the isomorphism as stated in the theorem. The Pontryagin duality theorem
establishes a duality between locally compact groups which helps in generalizing the Fourier
transform formula for all such locally compact groups. The Fourier inversion theorem is a

special case of this theorem.

To show that the map W is injective, it is enough to show that for y # e,y € G there

exists a unitary character x such that x(y) # 1. Suppose such character does not exist.
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Define L, f(z) := f(yz). Then f- I:yfo € L'(G). We have that f = L,fVf € B(G)
using the inversion formula. We have an open neighborhood U of identity such that UnyU =
@ and a non-zero function of positive type with the support in U. Since U n yU = (¥, it is
not possible to find a function f such that f = L, f. This shows that there is such a unitary

character and the map WV is injective.

Let us consider a compact subset KcG K is a neighborhood of identity and an open
subset V' = S'. Now the sets W(K,V) ={aeG: alK) < V} forms the subbase for the
topology on G.

Let the set of elements of W (K, V) which arise from G through ¥ be given by W (K, V)n
U(G). Let Wg(K,V) = {z€ G : ¥(z)y € V,x € K} be a subset of G. This gives us the
identity as U(Wg(K,V)) = W(K,V) A U(G). Therefore, ¥ is a homeomorphism.

Now ¥(G) is locally compact being the homeomorphic image of locally compact G. ¥(G)
is an open subgroup in the closure of G. Since it is an open subgroup of a topological group,

hence it is equal to the closure.

We need to show that W(G) is dense in the double dual. Consider a function ¢ e LMG)
such that ¢ is non-zero and vanishes on ¥(G). Let xo € G. Then,

000 = [ 600 in
Since ¢ vanishes on ¥(G) we have that
| eboxtzax =0

for all z € GG. Using Plancherel’s theorem we have that ¢ = 0 almost everywhere hence quS =

0
which contradicts our assumption. This completes the proof. O
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Chapter 3

Local Fields

This chapter will mainly focus on the characterization of the underlying additive and mul-
tiplicative groups of a local field and how the measure is defined on these groups. We start
with a brief introduction to the notion of local fields. In the last section we study about the

L-factors associated to local fields.

A field is called local field if it is complete with respect to a metric induced by a discrete
valuation and its residue field is finite. If F,, is a field with respect to an absolute value | . |,

with Op is the valuation ring and 7 is the uniformizer with the residue field as Op/TrOp.

A local field is a locally compact topological field with respect to the non discrete topology.
These local fields arise as completions of global fields - if /" is a global field then the completion

F, with respect to the absolute value | . |, is a local field.

Theorem 3.1. (Theorem 9.9, [6]) Let F, be a local field. If F, is Archimedean then it is

isomorphic to R or C; otherwise, F, is isomorphic to a finite extension of Q, or F,((t)).

Proof. Let F, be a local field with respect to a non-trivial absolute value say || and it is
complete with respect to that absolute value. If F, has characteristic zero then the prime
field is Q and F, will contain the completion of Q from the restriction of ||. By Ostrowski’s
theorem, the restriction can be equivalent to the standard archimedean absolute value where

the completion is R or the restriction can be p-adic absolute value where the completion is

Q.
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If F, has positive characteristic p, then the prime field is F, and F, contains a transcen-
dental element, t'. This gives us that F, contains [F,(#') and also the completion of F,(#')
with respect to ||. Every completion of F,(¢') is isomorphic to Fy((¢)) for some q a power of

p and ¢ transcendental over ;. Thus F, contains a subfield isomorphic to IF4((2)). O

3.1 Characters and Measure on the Additive Group

3.1.1 Characters on the Additive Group of a Local Field

The additive group of F, is denoted by F, . Let the non-trivial unitary character of F, be

X- Then for any general element x of F," the left translate of x is given by

Ly(x(x)) = x(yx) for y € .

Theorem 3.2. (Lemma 2.2.1, Section 2.2, [7]) The character x and its left translates con-

stitute the unitary characters of F.7. Moreover, the map
U Ff — F+
is an isomorphism of topological groups.

Proof. The proof of this theorem is given in a step-by-step manner. Firstly we prove that U is
a homomorphism between the additive group and its character group. Next we prove that it
is an injective map. We finally prove the isomorphism after showing that ¥ is bi-continuous

and its image is whole of the character group.

The map L,(x(z)) is given by L,(x(z)) : * — yx — x(yx) which is composition of a
multiplication map and the unitary character. Both of which are continuous which makes

the composition L,(x(z)) is continuous.

Now, W(Ly, 1y, (x(2))) = x((1 + y2)2) = x(yix)x(yer) = Y(Ly, (x(2)))¥(Ly, (x(2)))-
Therefore, the map ¥ is a homomorphism from Ff to Ft.
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Let us consider that y is in the kernel of W. Therefore, x(yx) = 1 for all z € F.\. Since
multiplication by y gives the automorphism on F,f and x is assumed to be the non-trivial
unitary character therefore, therefore y = 0 since it is in the kernel. Therefore, ¥ is a

injective map.

Let B be the compact set of all z € Ff with | x |< M for a large enough M. y is close
to 0 in F,} which implies yB is close to 0 in F, . Therefore, x(yB) is close to the identity
character in F:J Now fix an element g, in F." such that x(yo) # 1 then x(yB) is closer to 1
than y(yo) which implies that yo ¢ yB. Therefore, y is close to 0 in F,f. Thus the map W is

bi-continuous.

We have a locally compact subgroup of F,f which is Im(¥). Hence, Im(¥) is a closed
in szf. If it is a proper subgroup then there exists a non-zero x € F." such that image of

is trivial, that is x(yx) = 1 for all y € F.f. Multiplication by x is an automorphism on F’
hence x is trivial on F,'. This is a contradiction. Thus Im(¥) = B

This proves that the map ¥ is an isomorphism. O]

Let us now focus on constructing a special non-trivial character of F,f. Let p be the

rational prime divisor which p divides, and R be the completion of the rational field at p.

Define a map = — A(z) of R into the reals mod 1 as:
1. pis Archimedean, and therefore R is the real numbers. Then, A(z) = —z (mod 1).
2. pis discrete, R is the field of p-adic numbers then. A(x) is defined as follows:

e \(z) € Q with only p powers in the denominator.

e \(z) — z is a p-adic integer.

We define the map A(z) = A(Trpgr(z)) and hence x — *™A®2) hecomes a non-trivial
character Ff. F} is naturally its own character group if we identify the character z —

2T with y e FiF.
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3.1.2 Measure on the Additive Group of a Local Field

Ff is a locally compact abelian group therefore we have that there exists a Haar measure

on it unique upto scalar multiplication.

Lemma 3.1. (Lemma 2.2.4, Section 2.2, [7]) Let a # 0 and M be a measurable set of F.".
Then p'(M) = p(aM) is also a Haar measure on F'.

Proof. The map x — ax for a x € F,\ is an algebraic as well as a topological automorphism
of Ff. If M is compact in F,f then the image awM is also compact and finiteness of p(aM)
gives finiteness of p/'(M).

For an open measurable subset M of F,}, we have that a.M is also open measurable. For
a compact subset K < M, we have a compact subset a X' = aM. Conversely, for a compact
subset K’ € aM, a™'K' is a compact subset of M. Thus u(aM) = sup{u(aK) : K = M}
for K compact. This proves the inner regularity. Same argument works for proving the outer
regularity. Now p/(M + z) = u(aM + azx) = p(aM) = y/(M) for x € F.f. This proves the

translation invariance. O

Now we have that p/ and p both are Haar measures on F.S | then /' must be a scalar
multiple of p by uniqueness. This scalar is given by p/(M) = p(aM) =| a | u(M). In case of
integration we can use du(ax) =| a | dr. Let us fix a Haar measure dz for F7. Then from
our result we can choose a Haar measure which is its own dual when the character group of

F}is F} itself. This measure is given as follows:
e if [, = R then dx is the Lebesgue measure.
e if F, = C then dz is twice the Lebesgue measure.
e if F, is non-archimedean then dx is the measure for which O, gets the measure

(N'D)~Y2 where D is the different of F.

A character of F} is of the form x — e?™A®®)and identified with y € Ff. If the self dual
measure is du(z) written as dz the the Fourier transform and the Fourier inversion formula
is given by:

flo) = | fa)e s (3.)
1
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flz) = f fy)e vy = f fly)e v dy = f(—u). (3.2)

3.2 Characters and Measure on the Multiplicative Group

3.2.1 Characters on the Multiplicative Group of a Local Field

Let F be the multiplicative group of F, and let x be the general element of this group. Let
X be a character of F* which is trivial on O%. The value of x(x) depends on the absolute

value of x. Let us look into the unramified characters of F first.

Lemma 3.2. (Lemma 2.3.1, Section 2.3, [7]) The unramified characters of F* looks like
x(z) =| z |* for some s € C. For an archimedean place, s is determined by y, otherwise it is
determined by 27i/log(Nv).

Proof. Let x be an unramified character of F* the value of which depends on the absolute
value of an element x in the group. The set of the absolute values of all elements form the

value group of FF.

Define the map (| x |) = x(z) where ¢ is a homomorphism with respect to multiplication
and it is continuous. hence 1) is a character given by (R, .) in case of archimedean place and

(Nv%).) in case of non-archimedean places.

For archimedean places, 9 has the form | z |—| z |* for any s € C. Two different s, s9

gives two different characters and hence s is determined by Y.

For a non-archimedean place, we can find an isomorphism given by ¢ : (NvZ,.) — (Z, +)
that maps Nv™ — m. The characters of Z are of the form 2™ where z € C. z can be
written as re? where r and e can written as Nv® and ANv® for some a,b € R. Then we have
z = re? = NviNv® = Nvs;s = a +ib € C. The characters of (NvZ,.) corresponding to
m — 2™ are given by Nv™ — (Nv™)%. If sy, s, gives the same character then N¥17%2 = 1
and hence e(1752)09Nv — 1 Thus (s; — s9)logNv = 0 giving s; = s, (mod 27iNv) and
hence s is determined by 27i/log(Nv). O

For an archimedean place, an element x of F* can be written uniquely as x’u where
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' € Of and v € R. The map x — 2’ is given by z — /| z | and is a homomorphism. For
a non-archimedean place, an element x of F* can be written uniquely as x’u where ' € O%
and u is power of the uniformizer 7. The map = — 2’ is given by x — 27 **®) where
vy(z) is the valuation of x and is a homomorphism. The characters of F* take the form of
x(z) — x'(2') | « |* where x’ is an unitary character of O} and s is determined as in the

previous lemma 3.2.

3.2.2 Measure on the Multiplicative Group of a Local Field

We can choose a Haar measure da on F* by relating it to the measure dz on F)f. If we have
f(a) e LY(F*) then f(x)|z|™* € LY(F,} — 0). We define the functional on L'(F}),

B(f) = Ltof(x)\x!ldx (3.3)

Now if g(a) = f(Ba) then
OB IICEIERTEE (3.4)

by substituting by 87 'z. Thus ® is translation invariant and must come from a Haar

measure on F}*. Let this measure be d'a and hence
| rxta=[ - faal i (3.5)
Ff -0

This gives us a 1-1 correspondence between L'(F¥*) and L'(F, — 0) as f(a) — f(z)|z|™"
Therefore, we choose our standard Haar measure to be da = d'a = da/|a for v archimedean
and da = Nv/(Nv — 1)da = Nv/(Nv — 1)da/|a| for v non-archimedean. In the non-

archimedean case we have,

J da — (M)~ (3.6)
(@]

*
F
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3.3 L-factors for a Local Field

Let us consider the local field, F),, with absolute value | . | and Haar measure dz. We define
d*x = c.ﬁc—“"”' for a real number ¢ > 0 to be the Haar measure on F;f. For an Archimedean
field F,, the scalar is normalized as ¢ = 1. For a non-Archimedean field, F, let us define
the following: OF the ring of integers, pp the maximal ideal, 7 the uniformizer and Fj the
residue field, where g = #Np.

F} is the direct product Ur x Vg, where Up is the unit group and Vg is the valuation

group. For Archimedean fields, Vi is R* whereas for non-Archimedean fields it is N'p%.

Let X(F,) = Hom(F},C*) be the space of continuous group homomorphisms from F
to C*. The elements y € X(F,) are called the quasi-characters of F*. Characters in the

co-domain S! are called unitary characters.

Every x factors into

| S

X=ul.

for some s € C. p is the restriction of x on Up € F and characters of Vg are of the form
t—t° for seC

We define the real part of s that is ¢ = Re(s) as the exponent of .

Consider an arbitrary character x of F;. We will study the local L-factors for the

following cases.

We call the character to unramified if x|y, = 1. In case of non-Archimedean F,, we
define the local L-factor to be

(1—x(7p))™" unramified
L(x) = _ (3.7)
1 otherwise

In case of F}, = C we have Ur = S* and hence x takes the form,

0

Xom : 7€ > poein?
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for some s € C and n € Z. Every character takes the form y = p|.|* for some s € C and
w is the unitary character(restriction on Up) and character of Vi are of the form ¢ — ¢°.
The polar form of the complex number re includes the absolute value 7(radial component)
and the argument of the complex number f(angular component). Under the map X,
we get the image of 7 as r*e™®. The argument of the complex number gives us that
e = cos(#) + isin(f) and these points define a unit circle on the complex pane. Since both
cos(#) and sin(f) are periodic functions(with period 2k7) hence the complex numbers e
will again lie on the unit circle and hence belongs to Upr. The radial component, r, gets
magnified to r* and hence belongs to Vg. Therefore, x,, also factors into an element of Up

and Vp.

Then the local L-factor is defined as,
L) = Te(s + ) = 2m) ¢+ 5T(s + )

where

I'(z) = Tsxlesds (3.8)

and ¢(s) = 2(2m)~°T'(s).

In case of F,, = R we have Ur = {£1}. Let the sign character, sgn, be given by x — W
The local L-factor is then defined as,

L(x) =

Since x is a character of F}* then x | . |® is also a character of I} and hence L(s, x) for

Lix |- 1)

The shifted dual of y is given by y¥ = x| . | so that L(m) =L(1—s,x1). The
calculation goes like this: since x = p | . [* and x™' = g~ | . |75, then x | . [*= p | . [*
and [ [+ = gt | B ] Thus LT ) = Lt ) =

L(]' —5X 1)’
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Chapter 4

Global Fields

For performing harmonic analysis on a global field F', we introduce two locally compact
abelian groups - Ar , the adele group, and Iy the idele group. The adele group is moreover
is a topological ring defined as the restricted direct product of the additive groups of all
the completions F,. The notion of restricted direct product is also used when the adele ring
is replaced by the multiplicative group, I, the idele group. In this chapter we mostly focus
on the concepts of restricted direct products - with the adele ring and the idele group as its

example and their properties. We first start with a brief introduction of global fields.

Global fields are of two types - finite extension of Q called the number field and finite
extensions of F,(t) for some prime ¢ called the function field. This whole study focuses only

on the number field case.

Let us denote a number field by F. The completion of F' at a valuation v, is given by F,

which is a local field. The valuation ring of F), is given by Op.

4.1 Restricted Direct Product

Let us fixed a set of indices J = {v} and let J,, be a fixed subset of it. For each v we define
a locally compact group G, and for all v ¢ J,, we define compact and open subgroup H, of

G,. The restricted direct product G of G, with respect to H, is given by
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G:= H;ej G, ={(x,): x, € G, with z, € H, for all but finitely many v}

To define a topology on G we define a subbase which is a neighborhood around identity
in the form of [ [, NV, where N, is an open neighborhood around 1 in G, with N, = H, for
all but finitely many v. Let S be a set of finite indices for which H, is not defined. Let
G be a subgroup of G such that it contains all x € G such that x, € H,. It is given by
Gs = [L,egGo X st H,. Then Gg is a locally compact group with respect to product
topology. Every element of GG is contained in some set of G'g for some S. Thus the topology

on (G is defined as a system of neighborhoods of 1 in Gg and neighborhoods of 1 in G.

4.1.1 Characters on G

Theorem 4.1. (Lemma 5-2,5-3, Section 5.1, [1]) Let y € G, trivial on all but finitely many
H,. Then we can write x as x(y) = [ [ xo(v») where x, = x|g,. Conversely, given x, € G,
with x|y, = 1 for all but finitely many v, we get a character x(y) =[] xv(v») in G.

Proof. Choose an open neighborhood U of 1 in the multiplicative group C* such that U only
the trivial subgroup. x~*(U) is open as x is continuous. Thus we have an open neighborhood
N =[N, of the identity such that x(N) € U with N, = H, for all v outside the finite set
S. For a v ¢ S, consider the subgroup N as H, = {(-- -, 1,z,1,--+) : x € H,}. x(H,) is a
subgroup of U and hence trivial. This is true for any H,;v ¢ S and thus y is trivial on all

but finitely many H,.

To prove the converse statement, consider the finite set of indices S such that x,|g, =1
for v ¢ S. Since C* is a topological group, we can find an open neighborhood V' such that
V(™) < U. For each v, we have an open neighborhood N, of identity in each G, such that
Xo(Ny) V. Then the set [, Ny x [ ], Ho is an open neighborhood of identity in G.
This proves the continuity. O]
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4.1.2 Measure on G

Theorem 4.2. (Proposition 5-5, Section 5.1, [1]) Let us consider G and dg, be the Haar

measure on (G, such that they are normalized on H, for all but finitely many v,

J dg, =1

. There exists a unique Haar measure dg on G such that for every finite set of indices S

containing J., the restriction dgg of dg to Gg = [ [,cq G X st H, is the product measure.

Proof. Let S be a finite set of indices containing J,. The measure dgg is the product of the
measures dg,. It is a product measure on Gg and it is a Haar measure on it. The measures
dg, are normalized on H, for all but finitely many v. By construction of dgs on Gg, we
can define a unique measure on the group GG. We have that G is locally compact and hence
has a Haar measure, which is the restriction to the Haar measure on Gg. Accordingly, fix
any finite set of indices S containing J,,, and define a Haar measure dg on G such that it

restricts to dgs. This measure is independent of the set S and is unique. O

Lemma 4.1. (Proposition 5-6(iii), Section 5.1, [1]) Let us consider a continuous function
f, € LY(G,) for all places such that f,(g,) = 1 on H, for all but finitely many v and
f(g) =11, fo(gy). Then we have that f(g) is continuous on G. Let S is a finite set of indices

such that f, is trivial on H,, f dg, = 1 then J f(g)dg = f fo(gv)dgy]-
H, Gs vES

Proof. The restriction of f to Gg is given f|a, = [ [, f(9y). This is a finite product of
continuous functions and hence f is continuous on Gg. This is true for any finite set of
indices S. Let g € G and an open U < C such that it contains the image f(g). As g is in
one of the Gg there is an open neighborhood of g, N such that f(N) € U. N is an open

neighborhood of g € G and contained in f~!(U). Therefore, f is continuous.

Note that: f(g)dg = f )dgs = H f(gv)dg, H f 9v)dgo-
Gs veS Y G vgsS
This equals to | [,. SJ f(gv)dg,. This proves the second part. ]
Gy
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4.2 Adele Ring and Idele Group

Let F' be a number field and F, be its completion at place v.

Definition 4.2.1. The adele ring A of F' is a topological ring with underlying topological
space as the restricted product of the completions F, with respect to the valuation rings O,,.

The addition and multiplication is defined componentwise.

The adele ring of a global field F' is given by Ap := [ [, (F,, Op) consisting of the tuples
(a,) where a, € O, for all but finitely many places v. The adele ring Ar of a global field F

is locally compact and Hausdorff.

Definition 4.2.2. The idéle group Iy of F' is the group of invertible elements of Ag. It is
a topological group under the operation of multiplication defined componentwise. It is given
as the restricted product of K with respect to O} or Ir := [[ (K}, O}) with restricted
product topology rather than subspace topology of Ap.

Theorem 4.3. The adele ring of F'; Ap, is its own character group.

Proof. Let Ap be the character group of the adele ring, Ar of F. A character of Ap looks
like a tuple with local character at each component &, — e2™A&m) A p is a restricted direct
product of F; with respect to Oy Ap is identified using &, — e*™A&m) s . Therefore
a typical element of Ap looks like n = (- -, my,- - -) and Ap is a restricted direct product
of F," with respect to D . However, we have ®, = O, for all but finitely many p since
finitely many primes get ramified. Thus Ap = Ap with an element like n = (--- ,7m,,--+)
being identified with z = (-- -, zy,---) = [], &), O

Lemma 4.2. (Lemma 4.1.1, Section 4.1, [7]) The map ¢ : # — az is an automorphism of
the adele group if and only if a € Ap and satisfies the conditions that a, # 1 for all v and

| a, |,= 1 for all finitely many wv.

Proof. On each place v, the homomorphism is given by x, — a,x, and this map is continuous
since F, is topological field. Assume the map to be an automorphism and hence, it is
surjective. Then there exists a b € Ap such that ¢,(b) = 1 which means a,b, = 1 for all
~1 ¢ O, for all but

places v. Since (--+ ,by,--+) = (- ,a;',-+) is an element of Ar, a

v

finitely many v giving | a, |,= 1.
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Conversely, taking b = (--- ,a,',--), we find that the map ¢ is the inverse of ¢, and

VAt V)

has the same form. Therefore, ¢, is an automorphism. n

The previous lemma gives us that the map = — ax is an automorphism if and only if a

is an idele. For an idele a, d(ax) =| a | dz, where | a |= ], | ay |v, a finite product.

4.3 Idele Class Group

An idele-class character or Hecke character is a continuous homomorphism x : Ir — C* such
that x|p+ = 1. The idele-class characters are identified with idéle class group which is
Ip

given by Cp := T

Let | . |, denote the normalized absolute value on the completion F,. Then the absolute

value | . |op: Ip — R* is given by | @ [a,= [], | @v |o where z = (z,). Let I}, = Ker(] . [a,).
1

Then the norm one idéle class group is given by C} := F—i
The relation between the idele class group C'r and the ideal class group Clr is described as
follows: There is a surjection ¢ : [ — Jr, where Jr is the group fractional ideals of F' which

maps = — (z) = [ [, p» @) The kernel of this map is given by I5* = [ Lojoo £ % 1 Lo Us-
Thus there is a surjective homomorphism from Cr — Clp with kernel being ]I%OF */F*.

A basic system of neighborhoods of 1 € I is given by [ [ . Wy x [ [ 5 Uy for a finite set
of places S which include p[co and W, € Ff is a system of neighborhood of 1. The group
[ 1,45 Us is compact and if [ ] g W, are bounded then [ [,_g W, x [ ],.5 Uy is a neighborhood

whose closure is compact. Thus I is a locally compact topological group.

pes
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Chapter 5
Theory of Zeta Functions

An amazing phenomenon in number theory is the a lot of arithmetic properties of a number
field is hidden in an analytic function called the zeta function. A fundamental prototype
of a zeta function is the most celebrated Riemann Zeta function. This chapter talks about
the Riemann Zeta function, about its functional equation and analytic continuation on the
whole complex plane except for a simple pole at s = 1 in the first section. In the following
section we talk about the functional equation of the local zeta function for a Schwartz-Bruhat
function on a local field. The last section gives us the proof of the meromorphic continuation

and the functional equation for the global zeta function.

5.1 Riemann Zeta Function

The Riemann Zeta function, ((s), is a function in a complex variable s = o + i7 € C. For

Re(s) = 0 > 1 we have ((s) as a converging sum given by
!
()=, — (5.1)
n=1

. The series is absolutely and uniformly convergent for Re(s) > 1 and hence gives an analytic

function in the half-plane Re(s) > 1. Euler’s identity is given by
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where p runs through the prime numbers. This identity helps us to study more properties.

The Riemann Zeta function is given on the half plane and it admits an analytic contin-
uation to the whole plane with s = 1 removed and satisfies the functional equation which
relates the argument s to the argument 1 — s. The integral formula for {(s) is attached to

the Gamma function which is given by a convergent integral for Re(s) > 0,

[(s) = f:o e “x" dx (5.2)

The Gamma function satisfies a number of properties:

1. The Gamma function is analytic and gives a meromorphic continuation to whole com-

plex plane.
2. The Gamma function is nowhere zero and has simple poles at s = {0, —1,—2,---}.
3. The Gamma function satisfies the functional equations:

o ['(s+1) =sI(s)

e I'(s)I'(1—3s) = T

sinws

o T(s)T(s + %) _ 22\2/Ef(23)

4. T(1)2) = @, T(1) = 1, T(k + 1) = (K); k = 0,1,2, - --

The theta series is given by 0(2) = 3 €™ = 1+ 237 ™% Then define
g(x) = (1/2)(8(ix) — 1). The function,

Z(s) =7 *T(s/2)¢(s) (5.3)
is the completed zeta function. The integral formula for Z(s) is given as,

Z(s) = 1 J " 0liz) — D)2 (5.4)



Theorem 5.1. (Theorem 1.6, VII, [3]) The completed zeta function Z(s) = 7~%2T(5/2)((s)
admits analytic continuation on C — {0,1} and has simple poles at s = 0 and s = 1 with

residues —1 and 1 respectively. It also satisfies the functional equation

Z(s)=2Z(1—ys) (5.5)

Proof. We have that,

o]

Z(2s) = —J (0(iz) — 1) dx

0

For a continuous function f : R* — C we define the Mellin transform as L(f,s) =

Joo(f(m) — f(0))z* 'dx where f(o0) = lim, . f(z).

0

Now we have that Z(2s) = L(f,s) for f(x) = (1/2)0(ix). Since 0(ix) = 1 + 2e ™ (1 +
ZZO:Q e*”(”zfl)x), we get the transformation formula f(1/z) = (1/2)0(—1/ix) = xl/Qf(x).

L(f, s) has an analytic continuation to C — {0, 1/2} and has simple poles at s = 0,1/2 with
residues —1/2 and 1/2 respectively and satisfies L(f,s) = L(f,1/2 — s).

Z(s) = L(f,s/2) has an analytic continuation to C — {0,1} and has simple poles at

s = 0,1 with residues at —1 and 1 respectively. It satisfies the functional equation,

Z(s)=L(f,s/2) = L(f,1/2 —s/2) = Z(1 — s) (5.6)
Hence proved. O

Corollary 5.1. (Corollary 1.7, VII, [3]) The Riemann Zeta function admits an analytic
continuation to C — {1} and has simple pole at s = 1 with residue 1. ((s) satisfies the

functional equation
s

(1= ) = 2027)*T(s)eos( S (5) (5.7)

Proof. Z(s) = 7=*/?I'(s/2)((s) and T'(s/2) has a simple pole at s = 0. Hence ((s) has no
pole. Z(s) = 7=/?I'(s/2)((s) has simple pole at s = 1 and I'(1/2) = /7. Hence ((s) has a
pole at s = 1. The residue turns out to be Res,—;((s) = 7/2T(1/2)'Res,_; Z(s) = 1.
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The equation Z(s) = Z(1 — s) becomes,

s) = Y2 I'(s/2)

<= (- 5)/2)

¢(s) (5.8)

1
Replacing (1 — s)/2 and s/2 into the formulae I'(s)I'(1 — s) = T and L(s)'(s+ =) =

5 sinmws 2
VT
225

(2s) respectively,

L(s/2)T((1 +5)/2) = 2ﬁI‘(25)

92s
(1 - 8)/2)T((1 +5)/2) =
Then we have, (5/2)
I'(s/2 2 s
= 5% = 25\/%00871“(5) (5.9)

Substituting the value of (5.9) in (5.8) we get,

(1 = s) = 2(2m) " T'(s)cos(5)¢(s)

Hence proved. O

5.2 Local Zeta Functions

Let us consider a local field, F,, with absolute value | . | and Haar measure dz. We define

d*x = c.r;—x' for a real number ¢ > 0 to be the Haar measure on the multiplicative group F}.

A complex valued function f is called smooth on F, if it is € for archimedean field F
and a locally constant function with compact support for a non-archimdean field. For an
archimedean field, a Schwartz function is a smooth function and that satisfies the property
that p(z)f(x) — 0 as x — oo for all polynomials p(z). A function f : F, — C is called

a Schwartz-Bruhat function if it is a Schwartz function for an archimedean field or a
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locally constant function with a compact support for a non-archimedean field. We denote
the class of Schwartz-Bruhat functions as S(F}).

For a Schwartz-Bruhat function f € S(F,) and a character x we define the the local
zeta function as

Z(f,x) = | [fle)x(z)d'z (5.10)
Ef
Theorem 5.2. (Theorem 7-2, Section 7.1, [1]) Let f e S(F,) and x = | . |*, where s € C,
and p is unitary with exponent o = Re(s). Then the following statements hold:
1. Z(f,x) is absolutely convergent if ¢ is positive.

2. If 0 € (0,1), there is a functional equation

~

Z(f,xY) =v(x, 1, dx) Z(f, x)

for some 7(x, 1, dx) independent of f, which in fact is meromorphic as a function of s.

3. There exists a factor €(x, 1, dx) that lies in C* for all s and satisfies the relation

L
Y(x, ¥, dz) = €(x, ¢, dv) X

L(x)
Proof. We would give an outline of the proof here.
1. Now consider the integral
Ifo)=c | i@ al da (5.11)
F,—{0}

which takes finite value for o > 0 in case of Archimedean local field since f is a Schwartz

function.

For Non-Archimedean local fields the functions are locally constant with compact sup-
port and takes up value of characteristic function of ideals of the form W%OF the
Np~i°

— where pp being the maximal ideal

integral takes finite value of Vol(O3, d*x)w

of OF

2. Let us choose an auxillary function g € S(F,). We first prove a lemma from which the

proof of (2) will follow.
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Lemma 5.1. For all xy with exponent o € (0,1) we have that Z(f,x)Z(g,x") =

Z(9,)2(f x")
Proof. We have that

250260 = [ | @0 et aay (512)

d*zd*y is product Haar measure on F* x F* and hence invariant under (z,y) — (z, xy)

then the integral becomes

j f (v)x(zy )d ady = f f Doy )ellyld edy (5.13)
F"‘><F;i< F;“><F*

Since c.dx = |z|d*z we have that

f F@)ay)leld e - CJL% Yob(wy2)d=dz — cf o) f(y2)dz  (5.14)

v

Therefore, equation (15) becomes

JJF* F* () f(xy)x(y~)|]|y|d*zd*y (5.15)

and hence our claim is proved. O

Let fo € S(F,) and hence, v(x) = 7(x, ¥, dzr) = Z((; XX>)
(f.%)-

the function fy and we get Z(f, x") = v(x, %, dx)Z

Now, v is independent of

. Computations are done for a standard measure dz which is self dual with respect to
choice of 1) and for some special functions in each of the three cases.

2

For F, = R, dx is the Lebesgue measure with ¢(z) = ¢ 2™ y =| . |* and f =™ €
S(R). Then,

Q0
Z(f,x) = J 6_”2|x|5d*x = ZJ 6_”2|:13|S_1d$ (5.16)
R* 0
Substitute u = 72 then we get,
a0
Z(f,x) = 72 f e~ 21 gy — 752D (5/2) (5.17)
0
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Now from the definition of L(x) we have that Z(f,x) = L(x) for all characters .

Now,
Flo) = | e e = o) (5.15)
Then we have,

Z(f.x") = . f(@)x" (z)d*z = L(x") (5.19)

So for x = |.|* we have from equations (6.8) and (6.10) that v(x) = L(x")/L(x) and
we can put €(x) = 1.

For x = sgn | . |¥ we have f = ze™". Since sgn(z) = z/|z| we have,
Z(f,x) = J ze™™ z/|z| |z d*z = f e |z d = 7 VP ((s+1)/2) (5.20)
R* R*

Thus we have Z(f,x) = L(x). We have f(y) = iye~™". Then,

~

Z(f,xY) = zf ze”™ zf|z|. o) d = iL(x"). (5.21)
R*

Thus we have from equations (6.11) and (6.12) that e(y) = ¢. This completes the proof

for the real case.

For F, = C, dz is twice the ordinary Lebesgue measure with (z) = e 2742

re? s reem? and

Then we have the Fourier transform as f,(z) = (2r) %"l f_, (2) for all n. Note that

d*z = (2/r)drdf. For n positive or zero we compute that,

Z(frns Xom) = o [n(2)xsn(2)d*z = (1/2m) L* e (17)5e M) g o (5.22)

Thus we have,

0
Z(fas Xsm) = (27r)_(5+"/2)f e~ (2mr?) 2 g dy (5.23)
0

Substituting ¢t = 27r? we have,
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Z(frs Xsm) = (2m) 72D (s + n/2) = L(xsn)

Having same computation for negative n, we have,
Z(fas Xsn) = 2m) TP (s + |n|/2) = LX) (5.24)

From the Fourier transform formula we have that,
Z(fuix2) = i1(2m) " 0HNOD A — s 4 nlj2) = L) (5.25)

L(xJ,)

and we get
L(Xs,n)

Then we have from equations (6.15) and (6.16), v(xsn) = i
e(x) = i"l. This completes the proof for the complex case.

For Non-Archimedean fields with characteristic zero, we define the character as ¥, (z) =
Yy(tr(z)) for x € F,. We fix a non-trivial character ¢ and a self dual measure. Then
we define m = inf{r € Z : ¢|;» = 1} for unique prime p € F,. The conductor of ¢
is defined to be as p™ and p” to be Op. Let x be the multiplicative character with
conductor p™ and x,, : * — w(z/ | x |) for a unitary character w with conductor p™.
The function f is defined as

Y(x) xepm™

0 otherwise

fz) =

The proof will follow from the computation of Z(f, xs,) for n = 0 and n positive.

Let us focus on the case where n = 0. We know that 1 is trivial p™, w is trivial
everywhere and p™ — {0} is disjoint union of sets 75O% for k = m. Then we compute
that,

s A
Z(fyXsm) = f(@)xsn(x)de = |z|*dx = Vol(O, d*r)————  (5.26)
¥ pm—{0} 1-— NP_S

This gives us that
Z(f, Xsn) = Np "™ Vol(O%, d*x) L(xs,0) (5.27)

Let us focus on the case where n > 0. We then have that,
Z(f: Xsm) = ThzmnNp ™™ | d(r u)w(u)d u (5.28)
O%
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For a multiplicative character w : O — S I and an additive character ¥ : Op — S!

we define the Gauss Sum to

g, ) L* o (1) W (1) (5.29)

F

Then,
Z(f, Xs,n) = Ek}m—an_ksg(wa ¢Wk) (530)

We use a result on Gauss Sum which states that if w and ¥ have conductors p™ and
p" respectively then

(a) if r < n, then g(w,¥) =0

(b) if r = n, then g(w, ¥) = ¢.Vol(Op, dz)Vol(U,,, d*x)

(c) if r > n, then g(w, ¥) = ¢.Vol(OF, dx)[Vol(U,,, d*z) — Np~'Vol(U,_, d*x)]
where U,, = 1 + p”. Now resuming the computation we have that

Z(fa Xs,n) = Np—(m—n)sg(w7 2bﬁ’"*") (531)

For computing the Fourier transform of the function f we use another result which
states that for n = 0 the Fourier transform of f is given by Vol(p” " dx) times the
characteristic function of Op and for n > 0 the Fourier transform of f is given by

Vol(p™ ", dx) times the characteristic function of p” — 1.

Let us focus on the calculation of Z(f, Xio) for n = 0.

. 1
Z(f,x30) = Vol(p™, dz) Xso()d*y = Vol(p™, dz)Vol(OF, d*z) -——=—7—5
’ or—{0) L= Np=t=)
(5.32)
Thus we have,
Z(f,x30) = Vol(P™, dx)Vol(OF, d*z) L(x3o) (5.33)
Therefore, we have from equations (6.18) and (6.24) that,
L(xs)
s0) = Np"*Vol(P™, dx 2 5.34
V(X ,O) p ( )L<Xs,0) ( )
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and

€(xs0) = Np™Vol(p™, dx) (5.35)

Let us focus on the calculation of Z(f, Xsp) for n > 0.

Z(f.x2) = Vol(p", da) J S(u)d*u = Vol(p™ . dz)Vol(1 + p", d*a)w(—1)
pr—1
(5.36)

since conductor of w and its conjugate are same. Therefore, from computation we find
from equations (6.22) and (6.27) that,

Nptm=msVol(p =, dz)Vol(1 + p", d*z)w(~1)
g(% Tﬂwm*”)

€(Xsn) = Y(Xsm) = (5.37)

Now since the conductor of 1 m-» is n then we have
g(w, Ypm-n) = c.Vol(Op, dx)Vol(U,, d*x).

Substituting g(w, ¥xm-n) = W(=1)g(@, Ygm-n), 1+p™ = U, and Vol(p™ ™) = Np~™=Vol(Op)
we get that,
(X ¥, dz) = (/NP (@, Prmar) (5.38)

This proves the non-archimedean case.

We now see that the poles of Z(f,x) are now zeroes of the meromorphic function
(X, 1, dx) which is given by €(x, ¥, dx)(L(x")/L(x)) since the region of absolute con-
vergence of Z(f,x) is Re(s) > 0 and that of Z(f,x") is Re(s) < 1. Moreover the
zeroes of y(y) coincide with the poles of L(x).

5.3 Global Zeta Functions

Let F be a global field. We define S(Arp) = ®'S(F,) be the restricted tensor product of
Schwartz-Bruhat spaces which contains elements of the form f = ®Q'f, : f, € S(F,), folo, =1
for almost all v. The adélic Schwartz-Bruhat function is given by f(z) =[], fu(z,) for all
x = (z,) € Ap.

34



At each place v of F, let v, be the standard character and dz, be the self dual measure.
Then ¢p(x) = [, ¥u(z,) for all adeles z = (x,) € Ap.

The Haar measure on Ap is given by the product measure dz = [], dz,. Moreover dz
satisfies the relation d(ax) =| a | dx for all ideles a € Ip. Then d*z = [, d*z, on [], F}

and

dzy
d*x — |zv "u
v

(L=Np ) ole

|$v|v

f d*z, =1
0)

*
F

v|oo

Then

for almost all v. Let x be any C*-valued character of Ir that is trivial on F™.

The adélic Fourier transform for f € S(Ar) for a unitary character ¢ with ¢|p = 1 is

given by,
fly) = | f@)dlay)da (5.39)

We will now look for functions on Az which are invariant under translation by elements
of the field. One such function will be the unitary characters ). The other functions can be
found by taking average over all elements of F - which is ®(z) = Seer®(a+z) for ® € S(Ap).
When this function is convergent, for all § € F we have ®(0 + ) = Saep®(a + 6 + ) =
Swer®(al +x) = ®(z);0/ = a + 6. Thus &(5 + ) = d(x).

A complex-valued function f on Ag) is called admissible if f and f are both absolutely

and uniformly convergent. Every f € S(Ap) is admissible.

5.3.1 Poisson Summation Formula

We begin by proving two lemmas which will be needed for the proof of the theorem for

Poisson-Summation formula.
Lemma 5.2. (Lemma 7-8, Section 7.2, [1]) For every f € S(Ar) we have f|r = f|p-.
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Proof. Let us fix y € F'. Then,
f) = | Pl = | (Sacschla+ 0)iley)dz (5.40)
Ap/F Ap/F

where dz is the quotient measure on Ap/F induced by dz on Ar. Now for unitary characters
we have ¥ (xy) = ¥ ((a + x)y) for all « € F. Therefore, we have that,

~
~

Fly) = f ecr St aillos )T = | f@ie = flo). 41

Ap

Thus the proof is completed. O

Lemma 5.3. (Lemma 7-9, Section 7.2, [1]) Let f € S(Ag). Then for every x € F' we have

~

f(x) = Sacrf(a) (o).

Proof. We have that f P = ]?| r from the previous lemma which implies that >, FjN’(oz)@E (o)
is both uniformly and absolutely convergent. We have that Sacr|f(a)| < o and hence the
Fourier inversion formula can also be applied. Since the Pontryagin dual of Ag/F is itself

under discrete topology, the summations correspond to appropriate integrals. O

Theorem 5.3 (Poisson-Summation Formula). (Theorem 7-7, Section 7.2, [1]) Let f €

S(Ap). Then f = f.
Proof. For all y € F' we have that
b) = | a@)ilen)in (5.42)
AF/F

for a translation invariant ® on Ay and dz is the quotient measure on Ap /F induced by dz

on Ap. Then dx is characterized by

[ Joi=] Gternm=| jou e

Ap/F

for all continuous function f on Ap. Putting z = 0 in the result of the second lemma and
then apply the first one we get, ]?(O) = Eaepf(a) = Zaepf(oz). By definition we have that
F(0) = Soep f(). Thus we have that Socp f(ar) = Saer f (o) which is same as writing f = f.

This completes the proof. O
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5.3.2 Riemann-Roch Theorem

We use this theorem to understand the average Y.cr f(cux) for an idele x.

Theorem 5.4. (Theorem 7-10, Section 7.2, [1]) [Riemann-Roch Theorem| Let x be an
1 R

idele of F' and let f € S(Ap). Then Ycp f(az) = ﬂEaepf(axfl).
x

Proof. For a fixed x € A and arbitrary y € Ap, we define g(y) = f(yz) such that g € S(Ap).

By Poisson-Summation formula we have, ¥,cpg(a) = Lacrpg(a). However we have,

. 1 _ Lo
b0 = [ fumpwlondy =2 [ faystopa)dy = £ faa ). (5.44)
N o1 ), o
1 .
Therefore we have, Y,crg(a) = Yperf(ax) = ﬂZaeFf(ax_l). Hence proved. O
x

5.3.3 Global Functional Equation

For any Schwartz class function f € S(Ar), we define the the global zeta function
Z(f,x) = | [fle)x(z)d's (5.45)
Ip
Theorem 5.5 (Meromorphic Continuation and Functional Equation). (Theorem

7-16, Section 7.3, [1]) Z(f,x) extends to a meromorphic function of s and satisfies the

functional equation

Z(f.x) = Z(f,.x")
The extended function Z(f,x) is in fact holomorphic everywhere except when pu =| . |77,
7 € R, in which case it has simple poles at s = ¢7 and s = 1+ 7 with corresponding residues
given by
—Vol(CL) £(0) and Vol(CL)f(0)
respectively.(C+ denotes IL/F* which is the compact part of the class group Ip/F*)
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Proof. Our focus will be on a number field. Let F' be a number field and y be a character
with ¢ > 1. We define o .
200 = | Zlroog d (5.46)

0

where

20 = | St (5.47)

1
]IF

We move on to prove the following,

Lemma 5.4. The function Z;(f, x) satisfies

Zi(f.x) = Zea (f,x7) + £(0) J X" (z/t)d*x — f(0) f Xx(tr) d*x (5.48)
Ck Clp
Proof. Since Ct = IL/F*, we can write,
Zi(f.x) = Ll (S f (ata)x(t2)d s — Ll () A 2 (Sacre flatz))  (5.49)

using the fact that x = 1 on F*. Consider the expression,

Zi(fix) + f(0) J x(tx)d*z.

Ck

This is equal to J X(tz)d*x(Eoer= f(atz)). Applying Riemann-Roch theorem we have that,

CF
* X(tl‘) * Froa—1, —1
Zi(f,x) + F0) | x(tx)d*z = d*2(Seep fat™ z7")) (5.50)
cl cn ltz|
F F
This equals to by substituting x by 271,
200+ FO) | Mo = | () el s Crfat ). (550)
O Ck
We can write equation (7.13) as,
£(0) J x(tz )t a|d* + J x(tz )|t 2| d* 2 (Saer= f(at ') (5.52)
Ok CF
and since Y¥ = x 7! | . |, this equals to
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A~ A

Zeslhox) + JO) | e

F

This completes the proof of the lemma. O

We can write )

200 = | 2+ | zioo (5:53)
We have that LOC Z(f, x)(1/t)dt = f _ f(z)x(x)d*x which converges for all 0. We

1 1

Zu(f.x)(1/t)dt = f Zor(Fx*)(1/8)dt + n where

again have that J
0

0

X (@)d*z — f(0)x(¢) J x(x)d*z](1/t)dt.

O

0= o [,

is the correction term. Substituting t=! by t we get,

1
F

[ Zescrama= | 2t

0 1
which is convergent for all o.

When x is non-trivial on C}. we have that both f X" (z)d*z and J x(z)d*x are zero
O Ck

and hence n = 0 likewise. When x = | . |* trivial on C}, we have y =| . |*7 for 7 € R.

Then we have, )

) [

—(r+1) s-— z'T] (5.54)

1= Vol(Chl-

This gives us that 7 is a rational function and thus we get the meromorphic continuation
of Z(f,x) to the whole plane. We have also shown that Z(f,x) is in fact holomorphic

everywhere except when p =| . |77, 7 € R, whence we get simple poles at s = i and

s = 1+i7 with corresponding residues given by —Vol(CL) f(0) and Vol(CL) f(0) respectively.
The global zeta function looks like,
0¢]

Z(f,x) = f " 20t + f Z(F X))t + n(f.x) (5.55)

1
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which equals to
J ftx)x(te)d*z(1/t)dt +J f (tz)x" (tx)d*x(1/t)dt + n(f, x)
I[l

Since we have f(x) — f(—z) and x¥ = , on the other hand we have,

. © . © A .
2 = | ZdF) e+ | Zdd0a/0de+nf)
1

1

which equals to

f . F(—tz)y(te)d z(1/t) dt+f ftx V(tz)d* z(1/t)dt + n(f, x")

(5.56)

(5.57)

(5.58)

7 is invariant under the transformation (f, x) — ( 1, x") and x being an idele class character

is indifferent to sign change and hence x(tx) = x(—tz). Therefore, we obtain that Z(f, x) =

Z(f,x"). Hence proved.
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Chapter 6

Hecke Characters

This chapter introduces the notion of Hecke characters which are characters of the idele
class group. We begin by discussing some properties of class groups, and then define Hecke
characters. The following sections introduce Dirichlet characters - which are Hecke characters
of finite order and also the character at infinity. The final section in this chapter introduces

the Groflencharaktere and discusses about its correspondence with Hecke characters.

For the remaining part of our study we will consider the following set of notations:

1. Q: field of rational numbers.

2. Q: closure of rational numbers inside C.
3. F: a number field.

4. dp = [F : Q).

5. Op: the ring of integers of F.

6. Up = OF: is the group of units of Op.

7. p: finite prime of OF or an infinite place.
8. Fy,: the completion of F at p.

9. O,: the ring of the integers of F, at p.
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10. my: uniformizer at p; pO, = m,O,.
11. U, = Oy = O, — 1,0, is the group of units of 0.
12. ¥ = Hom(F,C) - all embeddings of F' into C; Hom(F,C) = Hom(F, Q).

13. Sy: set of all Archimedean places of F'; Let 1 = #5,., ro = #S. and dp = r1 + 2rs.

6.1 Properties of Class Groups

Let Jr be the group of fractional ideals of F' and Pr be the group of principal fractional ideals
of F. x >> 0 implies that x € F' is totally positive and that p(x) > 0 for all p eHom(F,R).
Let Pf = {(z) € Pp : © >> 0}; Cly = Jr/Pp is the class group of F'; Cl} = Jp/P} is the
narrow class group of F.

The narrow class group surjects onto the class group of F' and thus we have the exact

sequence
O ]P)_F \ JF \ JF \ 0
Py, " P} " Pr ' (6.1)
Now we have that
Pr  F*/Up _ F*®
PL T FX/UL ~ FiUp
where [* = {z € F* : x >> 0} and Uf = Up n F*.
We have another exact sequence
Ur F* £
0 > = = > 0
Ur Fr FiUp (6.2)
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Ur F*
" U F*

Our focus will be on discussing the same properties in terms of the idele class group for

which we will follow the following set of notations:

Ap is the adele ring of F; I is the idele group of F; Cr = Ip/F* is the idéle class
group of F'; U, = Oy for finite p, U, = R} for p € 5,, and U, = C7 for p € S;;

FOO _F®R Hves F x HwES w :HWGSTRX HWESCC
Fl ={x=(x)) e Fy:z, >0}

Then we have the following:

Ir JF
=l 6.4
F(Fs Ly Up) ~Pp % (6.4)

Consider the canonical map ¢ : Ip — Jp such that for @ = (x,) € Ip, ¢(x) =
HWSOO p % (@) The kernel of ¢ will contain all such = € I such that ¢(z) = 1 or those
for which ordy(z,) = 0. Therefore, Ker(¢) = F*(Ff ], Up). Now for an element z €
F*(F5 11,45, Up) it is clear that with respect to a finite prime p, ord,(z) = 0, which implies

that = € Ker(¢). Therefore, F*(Fj [] 45, Up) S Ker(¢). Thus Ker(¢) = F*(F5 [ 45, Up)-

Similarly, for the narrow class group we get:

I _Jdr

_ +
FE LTy = 5~ O (6.5)

The weak approximation theorem gives us that /'* is dense in F}; therefore, F}F} =
FH D)™
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Hence,
Ip Jr

~ — = (Cl} (6.6)

F*((Foe)* [ Tpgs, Up) P g

Now combining (4), (6) and (3) and from the weak approximation theorem we can see
that the diagonal inclusion F* — F7} induces the canonical map F*/F} — F¥ /(F})*. Thus

we get the exact sequence:

. S Ir Ir

— > > > > 0
op (F5)* F*((F£)* [ Lgs,, Up) F*(F5 T oes, Up)

(6.7)

6.2 Introduction to Hecke Characters

A Hecke character is a continuous homomorphism from the idele class group to the mul-

tiplicative group of complex numbers:
X :Ip/F* — C*

Note that we do not require x to be unitary.

The norm of an idele x € I given by the formula [|z[| := [], | |, ; where p represents all
the valuations of F', each of them is normalized. Thus the map ||| : Ir — R¥ is surjective.
Let 1% be the kernel of the map.

Now we have that ||a|| = 1 if @ € F* which implies that F* < I%. Therefore we have the

split exact sequence

0 y I , Ir . R* . 0
F* " P F o ' (6.8)
which gives us
Ip/F* = 1%/F* x R% (6.9)
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Since 1% /F* is compact, hence a continuous map from the compact space to C* has a
compact image, S and a homomorphism from R* — C* is of the form z —| x |* where

s = (0 + i¢) € C. Therefore any Hecke character y can be factored into
x=x"®|° (6.10)

for a unitary Hecke character x° : I%/F* — S' and o € R.

6.3 Dirichlet Characters

A Hecke character x : Ip/F* — C* with finite image and unramified everywhere gives a

character of D) fﬁ 7 which implies that it is a character of Cl;.. This now requires
o ¢Soo P
introducing some level structure to give a description of Hecke character of finite order in

terms of character of narrow class group with some level structure.

Let us fix some notations: m is an integral ideal such that m = Hp¢ s, P

.
L+p™ péSe,plm
U, ¢ Se,ptm
Up(my) = 1 P ’ &
R% pes,
C* pesS,

Up(m) := l_[p Up(my); Upp(m) 1= Hp¢s@ Up(my).

Cr(m) := Up(m)F*/F* is the congruence subgroup mod m; Cp/Cp(m) := Ip/Up(m)F*

is the idele narrow class group mod m.

Jr(m) is the group of fractional ideals relatively prime to m; Pp(m) be the group of
principal fractional ideals (z) with z = 1 (mod m); Pf(m) is all (z) such that z >> 0;
Clfi(m) = Jp(m)/PL(m) is the narrow class group mod m; Clp(m) = Jr(m)/Pp(m) is the

class group mod m.

Proposition 6.1. (Proposition 1, Section 2.3, [5]) The canonical homomorphism w : Ip —

Jr induces an isomorphism
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!

Proof. Let ]Ign) ={a e lr: a, € U(my),p | moo}. Then Ip = ]Ign)F* since for every
a € Iy there exists an a € F* such that aya = 1 (mod p™) for p | m and aya > 0 for real
p. Therefore, f = (apa) € I[g“) so that a = Ba™! € ]I%m)F*. The elements a € ]I%m) N F*
generate principal ideals in Pj. Therefore the map w defines a surjective homomorphism
Cp =T F*/F* = I /1™ A F* — Clfi(m).

Since () = 1 for o € ]I;l“), the group C}m) is certainly contained in the kernel. Conversely,

if a € ]15;“) is in the kernel then there is an (a) € PR with a € ]IELT) N F* such that (a) = (a).
For the idele 8 = aa™, B, € U, for p  m.co and S, € Uy(m,) for |m.co which implies that
B e ]I%“) and so the classes [« =[] € H%m)F */F*. Hence, CF is the kernel of w. Therefore,

w is an isomorphism. O

Proposition 6.2. (Proposition 2, Section 2.3, [5]) The congruence subgroup Cr(m) for any

integral ideal m, is a subgroup of C'r of finite index. The converse is also true.

Proof. Cp(m) is open in Cp since Up(m) = [ ], Uy(my) is open in Ir. Ur(m) is contained
in F5 [, Up and since ((Ip/F*) 1 (F5 [ [e5, UpE™/F*)) = #Clp = h(say) < ©, we get
that:

Cr + Crlm) = h(F3 T ys, UyF* : Up(m)F*) < A(F3 [Lys, Uy - Ur(m)) = hTTyyu(0)
Up(mp)) [ 100 (Up = Uy(my)) which is finite.

Conversely, let N/ be an arbitrarily closed subgroup of finite index. Then A is also open,
since it is the complement of a finite number of closed cosets. Then the pre-image of N
in I is also open, and contains a subset of the form W = HpeS W, x Hp¢s Uy, where S is
a finite set of places of F' containing the infinite ones, and W, is an open neighborhood of
1l e Ff. If pe S is finite, we have to choose W, = U,(m,) since the groups U,(m,,) form
basic neighborhood of 1 € F*. If p is real we have W, € R%. This will generate the group
R?, and Ff in case of complex place. The subgroup of pre-image generated by W is of the

form Up(m), so N contains the subgroup Cr(m). ]

These show that Hecke characters of finite order are actually the characters of the narrow

ray class group. Consider the map x : Ip/F* — C* which is a continuous homomorphism
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who has finite order image. Then we have an integral ideal m such that:

Ip/F* —X— C*
Cr

The smallest such m is called the conductor of x, denoted as f,.

A Dirichlet character of F' is given by the homomorphism

v Te(m)/Bp(m)* — S

for some integral ideal m. Generally the algebraic Hecke characters are not of finite order.

6.4 Hecke Character: Character at Infinity

6.4.1 Characters of R*

A continuous homomorphism y : R* — C* of the form

X(@) = sgn(@)™ | @ [*= (=)™ |z | (6.11)

|z |

where n, € {0,1} and w € C is a character of R*. This character is unitary if and only if

w = 1¢.
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6.4.2 Characters of C*

For a complex number z = z + iy € C, we define | z |:=| 2 [gi= \/22 + y2. | 2 |c:= 2% + % is

the normalized valuation on C. A continuous homomorphism y : C* — C* of the form

z

X() = ()

z |

2|2 (6.12)

with n. € Z and w € C is a character of C*. This character is unitary if and only if w = i¢.

6.4.3 Character at Infinity of Hecke Character

For a Hecke Character, x, let us denote the character at infinity as x, = X[z where
Ff — Ip. Let Ae Sy, ve S, and F, = R canonically, w € S. and F,, = C non-canonically

and | Zo o= [, | za | for 24 € Fiy.

We can write the character at infinity xo, on x4 € F} as

Xol) = ([ ] <%>m ENiQ

B )l [5 (6.13)
AESw

where n, € {0,1},n, € Z, 5 € R and 0 € R.

6.5 GroBBencharaktere mod m

Let us consider the following set of notations for the next section: Uf(m) :={ue Ur:u=1
(mod m)}; UL(m)* := {u € Ur(m) : u >> 0}; Op(m) := {a € Or : (a,m) = 1}; F(m) :=
{reF:(z,m)=1}; F'(m):={xe F:x=1 (mod m)}.

6.5.1 Introduction to Gro3encharaktere

A GroBencharakter mod m is a homomorphism ¢ : Jp(m) — C* for which there exists a
pair of characters (¢¢,¢s) with ¢f : (Op/m)* — C* and )y, : Ff — C* such that for all
a € Op(m), we have ¢((a)) = ¥s(a mod m)iy(a), (a) is the principal ideal generated by a.
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If we Up = O} is a unit, then ¢((v)) = 1 and so ¥¢(u mod m)y(u) = 1. If € €
Up(m):={ueUp(m):u=1 (mod m)} then ¢y (e) = 1.

The restriction of Gréflencharakter mod m, 1, to the group Pg(m) uniquely determines

1y and 1, satisfying the compatibility conditions.

Conversely if we have homomorphisms Uy : (Op/m)* — C* and U, : F; — C* satistying
compatibility condition that W¢(u (mod m))¥,(u) = 1 for all u € Up then there exists a
GroBencharakter ¢» mod m such that ¢y = Uy and 9y, = We.

6.5.2 Hecke characters and Groflencharaktere correspondence

The following proposition shows the surjection between the domain of a Groflencharakter

and the domain of a Hecke character.

Proposition 6.3. (Proposition 5, Section 3.1, [5]) We have an exact sequence

N F(m) LN * F;) e ]IF N

where

1. 3(a) = ((a)™',a (mod m),a (mod Up(m))) for all a € F(m).
2. 0=a® By, where
e o : Jp(m) — Ip/(F*Ups(m)). This is induced by Jp(m) — Ip which maps a

prime ideal p to the idele m, at the place p and 1 elsewhere.

e 3:(0Op/m)* — Ip/(F*Up,s(m)). This map sends a € Op(m) to the idele con-

taining a at all infinite places, p at p t m places and 1 at all p | m places.

o v: Ff/Ur(m) — 1p/(F*Ugs(m)). This map is induced by the inclusion F} — Ir
and U} (m) maps to F*Ug ;(m).
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Proof. This proposition has immense importance since this clarifies the relation between the

Hecke characters and the Groflencharakter.
For a € F(m) we have that o(»(a)) = a((a))~'B(a)y(a).
The map o : Jp(m) — Ip/(F*Ugs(m)) sends a((a)) = a (mod F*Ugs(m)).
The map 8 (Op/m)* — L/(F*Up,(m)) sends B(a) = aas (mod F*Ug(m)).
The map 7 : F3/Ub(m) — Lp/(F*Ups(m)) sends y(a) = ! (mod F*Up,(m)).

Then o(»(a)) = a taaypay' (mod F*Ug;(m)) = 1 such that g o s = 1. Conversely,
let o((a),a (mod m),b (mod Ugp(m)) = a(a)B(a)y(b) = 1 and let a = [, ,p*. Then
a(a) = v (mod F*Ups(m)) for some ideéle v with components v, — m," for p + m.oo and
Yp = 1 for p | m.co. This gives us yaab ' = x with £ € Ugf(m) and 2 € F*. For p { m.oo
we have (yaaehb™'), = 1 = &z in F,. For p | m we have (yaarb™'), = 1 = &z so that

z € Uy(m,) and v, = vjy(a™'z) = 0 since a is relatively prime to m. Thus a = (az™!).

As z € Uy(m,) then z = 1 (mod m) hence ¢(az™') = ¢(a). For p | oo we find
(vaaxb™'), = aby' = 2 in F, and so b = axz~" and thus ¢(az™") = (b).

So we have that (a,a (mod m),b (mod Up(m))) = ((az™!),az™" (mod m),az™! (mod UL(m)))

and this shows the exactness of the sequence in middle.

Let o (mod F*Up¢(m)) be a class in Ip/(F*Ug ¢(m)). Then by approximation theorem
we can multiply x € F* to the idele « such that ay, € Uy(m,) for p | m.

Let @ = [Tymo ). Then a(a) = v (mod I} F*) where v has 7, = (@) — a6 €
Uy for p f m.oo and v, = 1 for p | m.oo. Thus ya™'ay, € I and if we have b = a_;" then o((a, 1
(mod m),b (mod Up(m)))) = vb~! = «a (mod I} F*). Therefore the map g is a surjective

homomorphism. O

By the previous proposition, the characters of Ip/F*Up ;(m) correspond to the characters
of Jr(m) x (Op/m)* x F /UL(m) that vanish on s(F (m)/Up(m)) and so x, X, X 0f charac-
ters of Jr(m), (Op/m)* and FZ* /UL(m) respectively such that x((a)) 'xs(a (mod m))ye(a
(mod Up(m))) = 1 for a € F(m). Thus x is a Grofencharakter mod m and xy, xo are
uniquely determined by .
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6.5.3 Infinity type of a Groflencharaktere

Given a Groflencharaktere 1 = (1f,1%4) (mod m), the character at infinity is given by a

continuous map v, : Ff — C* of the form
T

Yoolze) = (] ] (m)"A [ox ) 2o |7, (6.14)

)\ESOO

where n, € {0,1},n, € Z, ) € R and o € R.
Let ¢ be a GroBlencharaktere mod m with the character at infinity being ¢,,. Then it as

the following properties:

1. There are no restrictions on ¢, and ny for any \ € Sy,

2. Also for all v € S, and all w € S. we have 2¢, = ¢, = ¢(say).

Therefore, the character at infinity takes the form
Ty

Yoolzen) = ([ ] (m)"*) | oo |57 (6.15)

AESxw
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Chapter 7

Algebraic Hecke Characters and

L-functions

This chapter focuses on algebraic Hecke characters, their properties and the L-functions
attached to them. The first section includes the introduction to algebraic Hecke character.
The next two sections discuss about the L-function of an algebraic Hecke character and the
existence of critical Hecke characters. Lastly we discuss briefly about the algebraic Hecke

characters having coefficients in a finite Galois extension of Q.

7.1 Introduction to Algebraic Hecke Characters

We can get a canonincal map from ¥p — S, with A € S,. Now for A = v € S, we have a
real embedding 7, : FF — R and for A € S, we have a conjugate pair of complex embeddings

{Tw, Tw} knowing that the choice of 7, : F' — C is not canonical.

We have iy = FOR = [ .g, F) = [],eq, R x [ eq, C. Thus for z,, € F,, we can write

Top = (x/\))\ESOC = ((:Uv)vesra (Zw)wESC)-

Let x be a Hecke character of F' and x4 be its character at infinity. Such a character is

an algebraic Hecke character if for every embedding 7 € X, there exists an integer n,
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such that for z,, € F we have

Xoo(Top) = H e 1_[ 2y 2y (7.1)

VESy wWES,

which can be re-written as

xo (@) = ([T (e [Ty =) ([T L 12 [T 2w [0 b)) (72)

wES, | Fw | VES, wES,

Comparing with equation (6.13) we get that for v € S,,w € S. and \ € Sy,
Ny =ny, (mod 2),ny =n,, —nz,,0x = 0,20 =2n,, =n,, +n-,

Let us consider that a Hecke character has modulus m:

Lemma 7.1 (Purity Lemma). (Lemma 7, Section 4.1, [5]) For each 7 € ¥p, suppose we
are given n, € Z. Suppose for some integral ideal m of F we have [ [ .o 7(u)"" =1 for all
u € Ur(m) Then there exists w € Z such that

1. if S, # &, then n, = w for all 7 € 7

2. if S, = &, then nyor + nyor = W for all 7€ Xp and 7 € Gal(Q/Q)
Proof. Let the real embeddings of F' be {vy,vq, - ,v,} and the complex pair of embeddings
be {wy, Wy, wy, Wy, - , W, W.}. Let us denote 7,, = v; and Tw; = w;. Now denote the

hyperplane defined by the sum of co-ordinates to be zero by H < R""¢. The Minkowski map
i:Ur — H is given by i(u) = (log|vi(u)|g, -, log|v.(u)|r, log|wy (u)|c, - - -, log|lwe(u)|c).

We have that Up(m) has finite index in Up. Applying log ||c to [ [y, 7(u)"" = 1 we get
2ny, loglvr (u)|g + - - - + 2ny, log|v,. () |g + 214, log|wy (u)|c + - -+ + 2ny log|lwe(u)|c = 0 (7.3)
for all u € Ur(m).

From Dirichlet’s unit theorem we have I' = i(Up) is a lattice in the hyperplane H.

Therefore, I'L(m) = i(U}(m)) is also a lattice in H. Thus there exists uy, -+ ,u;_1 € Up(m)
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such that {i(u1),- - ,i(us—1)} makes an R-basis if H where t = r+c. Let v; = (a;1, aso,- -+ , a;)
be a vector in R and consider the matrix, A = [a;;], of order (t—1) x t. The rank and nullity
of the same being (t — 1) and 1 respectively. We have that Zj a;; = 0 since each v; € H.
Therefore for X = (x1, 79, - ,7¢41) € RITLif AX = 0 then we have that all the co-ordinates
(1,22, - ,x441) are equal. Applying (18) to ug,--- ,u;—1 will give us a solution to AX =0
from which we have 2n,, = --- = 2n,, = ny, + g, = -+ = Ny, + Ng,. Let this common

value be w.

Now for any v € Gal(Q/Q), applying 7' to [ ]y, 7(u)" = 1 we get [ [, v '7(u)" =
[ s, T(w)™°m = 1. Same argument goes for [ [ .. 7(u)™°" thus giving n,or +ner = Wi T €
e and v € Gal(Q/Q). Since Gal(Q/Q) acts transitively on X for S, # ¢ we get n, equal
to n,, for all 7 then, n,, can be assigned the value w/2. If S, = ¢J then we can take n,, can

be assigned the value w. O

Let x be an algebraic Hecke character of F' mod m with infinity type (n.),ex, which has

purity weight w satisfying the conditions in the previous lemma. Now -

1. for both real and complex embeddings, S, # ¢, then the character x = x°||||" for x°:

a Dirichlet character.

w/2

2. for no real embeddings, S, = &, then the character y = x"|[|[|™" for x*: a unitary

Hecke character.

where the character at infinity of x* looks like x% (zx) = [ |

7.2 Theory of Hecke L-function

7.2.1 Hecke L-function

Let us consider an algebraic Hecke character x. Let ¢ = (¢x,%) be the associated
Groflencharakter and m be the conductor of x, and also of ). The finite part of the Hecke

L-function of y is defined as:
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L. Le(s,x) = D N;/;gl()a)s where a are the integral ideals of Of that are relatively prime

to m. This is in the form of Dirichlet series.

2. Lg(s,x) = [ [,(1 = xp(p) Nrjg(p)~*)~" where p are prime ideals of O that are rela-

tively prime to m. This is in the form of Euler product.

7.2.2 The coefficients of the L-function

Proposition 7.1. (Proposition 9, Section 4.2.2, [5]) Let us consider be an algebraic Hecke
character, x. Consider 1 = (s, 1f) to be the GroBencharakter mod m associated with y.
Then the coefficients of the Dirichlet series that represents the finite part of Ly(s, x) are

contained in a number field.

Proof. For a € Op(m) take the image of the ideal (a), 1((a)), and we see that it takes values
in a finite extension K of Q inside the closure of Q. This is because (Or/m)* is a finite
group and the infinite part of the Groflencharakter, 1)y (a) takes values in the compositum of
all the conjugates of F inside Q since 1), is algebraic. Therefore, the values of ¢ on Pp(m)
lie in K. Since (Jp(m) : Pr(m)) is finite, we can get the values of ¢ in a finite extension £
of K. By the correspondence between the Hecke characters and Groflencharaktere we have

P(p) = xp(my) for all prime ideals p 1 m. =

The smallest subfield of Q which contains all the values of the algebraic Hecke character
X is called the rationality field denoted by Q(x).

7.2.3 The critical values of the L-function

The completed L-function is defined by:

L(87X) = LOO(SaX)Lf(S7X) (74)

where if x has an infinity type (n:)res,, n, € Z, satisfying the purity condition then we
define

Ny +Ng | Ny — N |

Lo(s,x) = [ [ Tr(s +ny+6) [ | Te(s + ot ) (7.5)

VES), weS,
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where I'y = 77%/2T'(5/2), I'c = 2(27)~*T'(s) and ¢, € {0, 1} with ¢, = n, (mod 2).

When y is a non-trivial character, the completed L-function admits an analytic contin-

uation and the functional equation given by -

L(s,x) = e(s,x)L(1 = s,x7") (7.6)

where €(s, x) is an exponential function. The set of all critical integers for L(s, x) is denoted
as Crit(L(s, x)). An integer m is called critical for the Hecke L-function if both L(s, y) and

L(1 —s,x ') are regular at s = m and do not have poles at s = m.

Proposition 7.2. (Proposition 10, Section 4.2.4, [5]) Let us consider an algebraic Hecke
character of I, x, with the infinity type (n;),en,; n, € Z which satisfies the purity condition.
Define the purity weight of y as w. Then the critical set of integers for L(s, x) is given by
the following:

1. when the field is totally real(S. = &) then n, = w for all 7.

e If there exists vy, vy € S, such that €, # €, then Crit(L(s,x)) = &

o If ¢, = 0 for all v € S,, then Crit(L(s, x)) is given by

(w1l -2k, —w—3,-w—1-w+2 w44, —w+ 2k} for
keZ;o.

o If e, =1 for all v e S,, then Crit(L(s,x)) is given by

{,-w=2k-,—w—2-w;—w+1,-w+3,--- ,—w+1+2k, -} for
kEZ>1.

2. F is totally imaginary (S, = ). Let the width of x, a non-negative integer, be
0 =L0(x) = min{| ny, —ng |: we S.}. Then w = ¢ (mod 2) and the Crit(L(s, x)) is
given by

. w L w L
{meZ.1—5—§<m<—5+§}

The critical set is centered at 1_7“’, with cardinality /.
3. F has both real and complex places(S, # & # S.), then Crit(L(s, x)) = &.
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Proof. We have that the completed L-function has the infinity part defined as Ly (s, x) =

[Toes. Ta(s + ny + €) [Tyeq Te(s + et [ > P |y here Ty = 79T (s/2), Te =
2(2m)~*I'(s) and €, € {0, 1} with ¢, = n, (mod 2).
w
The Gamma function given by I'(s) = J:c“’lexds is nowhere zero and has simple

0
poles at {s = 0,—1,—2,---}. Also the functional equation for the L-function is given by
L(Sv X) = 6(57 X)L(l -, X_l)'

Now let us calculate the critical set of integers for the L-function in the following cases:

1. F is totally real(S. = ) then n, = w for all 7:

® €, # €, and n,, =n,, = w.
Now for L(s, x) we have the critical set of integers as follows,
(a) Tr(s4+mny, +€y,) = ['r(s+w+0) and the critical set of integers would be given
by W {0,—1,—2,---} which implies that s € {—w, —2—w,—4—w, - }.
(b) Tr(s + ny, + €,) = I'r(s + w + 1) and the critical set of integers would be
SEWHL (01,2, ...} which implies that s € {—1 — w, -3 —

2
w,—5 —w,--}.

given by

Now for L(1 — s,x~ ') we have the critical set of integers as follows,

(a) T'r(1—s+mny, +€,) =I'r(1—s+w+0) and the critical set of integers would

1—
ST wW {0,—1,—2,---} which implies that s € {1 —w,3 —

be given by 5

w,b—w, -}
(b) I'r(1—54ny, +€,) = [r(1—s+w+1) and the critical set of integers would

5 _
Lostw € {0,—1,—2,---} which implies that s € {2 — w, 4 —

be given by 5

w,6—w,- -}
Now combining all the cases for the critical set s we get no intersection among
them and hence Crit(L(s, x)) = &.
e Here we have ¢, = 0 and n,, = n,, = w.
Now for L(s,y) we have the critical set of integers as follows,

I'r(s+mn, +¢€,) =I'r(s+w-+0) and the critical set of integers would be given by

i —;W €{0,—1,—2,---} which implies that s € {—-w, -2 —w,—4 —w,---}.
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Now for L(1 — s,x ') we have the critical set of integers as follows,

I'r(1—s+n,+€,) = Mr(1—s+w+0) and the critical set of integers would be given

by 1_8% € {0,—1,—2,---} which implies that s € {1 —w,3 —w,5 —w,---}.
Combining all the cases for the critical set s we get no intersection among them
and hence Crit(L(s,x)) ={---,—-w+1-2k,--- ,—-w—3,—-w—1;,—w+2,—w+
4o —w+2k,---} for k € Zxg

e Here we have ¢, = 1 and n,, = n,, = w.

Now for L(s, x) we have the critical set of integers as follows, I'r(s + n, + €,) =
s+w+1

I'r(s + w + 1) and the critical set of integers would be given by 5

{0,—1,—2,---} which implies that s€ {—-1 —w, -3 —w,—5 —w,---}.
Now for L(1—s,x!) we have the critical set of integers as follows, Tr(s+mn,+¢,) =
2—5+wW

Ir(1 — s+ w + 1) and the critical set of integers would be given by 5

{0,—1,—2,---} which implies that s € {2 —w,4 —w,6 —w,--- }.

Combining all the cases for the critical set s we get no intersection among them and
hence Crit(L(s,x)) ={---,—-w—2k,- -+ ,—w—2 —w; —w+1,—w+3,---  —w+
1+ 2k,---} for ke Zs,.

2. We have that F' is totally imaginary (S, = &) and the width of x is £ = £(x) = min({|
Ny —ng |2 w e S} along with w = ¢ (mod 2). We also have that n,, + ngs; = w and let

| Ny — Mg | = Uy

w+ w
Now for L(s,x) we have the critical set of integers as follows, I'c(s + %
w — T gw Ew e .
%) =Tc(s+ % + 7) =T(s+ g + 7) and the critical set of integers would
be given by s+ Witwe {0,—1,—2,---} which implies that s € {—z ——,—1- w_
’ 2 2 2 2 2
=, L
-1 sl . My + N
Now for L(1—s, x ") we have the critical set of integers as follows, I'c(1—s+ B
w — T Ew gw e
M) = TIe(l — s+ i —) =T(1-s+ g —) and the critical set of
2 2 2 ’ 2 2
integers would be given by 1 — s + % + 7‘” € {0,—1,—2,---} which implies that
w w Ly
-y tw o W Wy
sef 5 T 5 5 T 5 }

Since £ = L(x) = min{| ny, — ng |: w € S.}, then £ < ly or —{y/2 < —{/2 and
—(W+ lyw)/2 < —(w + £)/2. Similarly, 1 — (w — ly)/2 > 1 — (w — £)/2. Therefore,
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—(w + K)ZQ < Crit(L(s,x)) < 1 — (w —£)/2 or Crit(L(s,x)) is given by {m € Z :

-~ 2 <m<—— 42},
;g TgSms-otg)

. We have that F' has both real and complex places(S, # & # S.). Therefore, we

calculate the critical set for each of the following cases:

e Whene,, # €, andn,, =n,, = w, we already have from part(1) that Crit(L(s, x)) =
&.

e Given that ¢, = 0, n, = w and n,, + ng; = w. Then L(s,x) = I'rn(s + w)['c(s +
w N KW)
2 27
Now for L(s, x) we have the critical set of integers as follows,

Ir(s+n, +¢€,) = [r(s+w+0) and the critical set of integers would be given by

i ZW €{0,—1,—2,---} which implies that s € {—-w, -2 —w,—4 —w,---}.
Ny +Ng | N — N | W Ly w Ly .
r =T —+—)=T —+— h 1
c(s+ ) 5 ) =Tc(s+ 2€+ 5 ) (s+ 5T ) and the critica
set of integers would be given by s + g + 7‘” € {0,—1,—2,- -} which implies that

e{wﬁwlwﬁw}
iy 2 2 9

Now for L(1 —s,x™') we have the critical set of integers as follows,

Ir(1—s+mn,, +€,) = I'r(1—s+w+0) and the critical set of integers would be given

l—s+
by——%TJKG{Q—L—Q,”}“mmhnmm%tmuse{1_“@3_“@5_wf_}.
Ny + N |nw—nw | W EW W Ew
Fell - =Tc(l-s+—+—)=T(1l-s+—+—
c(l—s+ 5 ) = Tc( 3—1—2—1—2) ( 8+2+2)
and the critical set of integers would be given by 1 — s+ Witwe {0,-1,-2,---}

2 2
ly W N ly |
2’ 2 2’ '
Now combining all the cases for the critical set s we get no intersection among
them and hence Crit(L(s, x)) = .

which implies that s € {1 — % +

e Given that ¢, = 1, n, = wand n, +ng = w. Then L(s, x) = lr(s+w+1)T'c(s+
w N KW)
2 27
Now for L(s,y) we have the critical set of integers as follows,

Ir(s+n, +¢€,) = r(s+w+ 1) and the critical set of integers would be given by

1
% €{0,—1,-2,---} which implies that s € {—1—w,—-3—w,—5—w,--- }.
w T Ny w — T fw gw o
Fc(s+n 2n | n 2n ):FC(3+g+7>:F(5+g+7)andthecr1t1cal
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U e
set of integers would be given by s+ % + > € {0,—1,—2,---} which implies that
lw lw
Se{_y__’_l_z__,...}.
2 2 2 2
Now for L(1 — s, x ') we have the critical set of integers as follows,

Fr(s+n,+€,) =Tr(l—s+w+1) and the critical set of integers would be given

9 _
by#e{0,—1,—27...}Whichimpliesthat86{2—w,4_W76_W7___}'

N + M| P = g | w Ly W Uy
bell - =Tc(l-s+—+—)=T(1l-s+—+—
c(l—s+ 5 + 5 ) c( 3+2+2) ( 3+2+2)

and the critical set of integers would be given by 1 — s+ v—2v + 7‘" e{0,—1,-2,---}
l w /!

No_ L

2’ 2 * 2’ }

Now combining all the cases for the critical set s we get no intersection among
them and hence Crit(L(s, x)) = .

which implies that s € {1 — g +

Therefore, all the cases are proved. O

The previous proposition introduces the term critical algebraic Hecke character
which means the algebraic Hecke character which has Crit(L(s, x)) # &. The existence of a
critical algebraic Hecke character of F' implies that F' is either totally real or totally imagi-
nary. Moreover, when F' is totally real, the parities ¢, of the local archimedean characters are
all equal. Therefore, we will focus on the existence of such critical algebraic Hecke character

with already given infinity type.

7.3 Existence of critical algebraic Hecke character

For a given number field F', with the purity lemma we study the following two conditions
- (i) S» # & and (ii) S, = &, which will deal with the existence of the algebraic Hecke

characters.

7.3.1 When F has a real place

Given that S, # 7. In such case an algebraic Hecke character y necessarily takes the form
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w

x=x"ll

for a character x is of finite order and w € Z.

7.3.2 When F is totally imaginary

Given that S, = ¢J. Consider an infinity type n := (n;).ex,, n, € Z satisfying the purity
condition then 7., + n,.; = w for all 7 € X and v € Gal(Q/Q).

Consider the case when F' is a CM field. Then:

Lemma 7.2. (Lemma 11, Section 4.3, [5]) Let ' be a CM field. Let 7 : F — Q and
v € Gal(Q/Q) and ¢ denotes the complex conjugation in Gal(Q/Q). Then yocor = coyor,

complex conjugation and any automorphism of Q commute on the image of a CM field.

Proof. Let us denote oy = yoco7 and as = coyor7. Now we can say that their restriction
on the totally real field, F'*, are equal. That is ay|r+ = ag|p+. This further means that
either oy = ap or a; = co ap. In the second case we get that, yocor =cocoyor =~vyor.
This gives us that ¢ o 7 = 7 which is not possible. Therefore, yoco7 = co~vo 7. Hence

proved. O

Using this lemma, the purity condition 7., + Ny = W on F' comes down to writing

n, + ny = W since we can write n.,o, = nssr for all 7€ Xp and v € Gal(Q/Q).

Proposition 7.3. (Proposition 12, Section 4.3, [5]) Let F' be a CM field with the infinity
type n := (n,)rex,, N, € Z satisfying the purity condition n, + ny = w for all 7 € ¥p. Then

there exists an algebraic Hecke character with the same infinity type and of some modulus.

Proof. This proposition gives us the existence of an algebraic Hecke character. Such a

character if exists will look like

Lo

Xoo(To0) = (H (i- )(nmin?wm) | Zeo |¥/2
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For some integral ideal m we have that x. is trivial on Up(m). Substituting s,, = n,, — ns,
and z,, = r,e we can construct y* : Ip/F* — S' as x* =[], "% . Hence we get y =
X" |2 Up intersects with the compact part of the roots of unity yp in F*. Thus we have
Ub(m)n (ST, -+ SY) = {1}. Let us then take a unitary character ¢ of F¥ /Uj(m) that maps
Lo to €% and ¢ a character of (Op/m)*. Then we can get a Grofencharaktere, ¢ mod m
and let x" be the corresponding Hecke character that we can get from the Grolencharaktere

as mentioned in Proposition 6.3. O

Let us consider a totally imaginary field F'. Then there exists a maximal CM or totally
real subfield, F7 of F'. Let Fy be the largest totally real subfield of F'. Then Fy can admit
at most one totally imaginary quadratic field inside Fy. If F' has a CM subfield then denote
it as Fi; if not then F} = Fy.

Proposition 7.4. (Proposition 13, Section 4.3, [5]) Let F' be a totally imaginary field.
Consider the infinity type n := (n,)rex,., n, € Z satisfying the purity condition n.or +nqor =
w for all 7 € 5 and v € Gal(Q/Q). Then there exists an infinity type m := (M, )ryenyp, for

F} such that if 7 € X with 7|g, = 71 then n, = m.,.

Proof. A property of a pure infinity type of a totally imaginary field is that it is the base
change of the pure infinity type of the maximal CM or totally real subfield F; of F'. The
proposition mentioned above talks about this property of the infinity type.

Since F' is totally imaginary field so the purity condition 7., + n,; = W becomes
Noyor + Masr = W from 7.3 for all 7 € p and v € Gal(Q/Q). Then we have n,., =
n=s-V7; V7. Let us consider the function n : Gal(Q/Q) x ¥ — Z which maps n(y, ) = nqor.
Therefore for ¢ € Gal(Q/Q) we have that n(y,cr) = n(ye, 7). Substituting 7 by v~ '7 we
get, n(v,cy'7) = n(yey™,7) = n(c,7) and then replacing 7 by ¢t we have n(c,cr) =

n(yey™t, er) which reduces to n(1,7) = n(yey e, 7).

Now for any o € Gal(Q, Q) we get,

1 1 1

,aca 1) = n(aca™

n(ayeytea™, 1) = nlayeyta taca™, 1) = n((at)clar)” c,T) =
1,7).

n(

Thus for all element z € A/, the normal subgroup of Gal(Q,Q) we have that n, = n,.
This normal subgroup is generated by {ycy~'c : v € Gal(Q,Q)}. Lemma 7.1 gives us
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that Gal(Q,Q) acts transitively on Y and hence Gal(Q,Q) acts transitively on Y, via
Gal(Q,Q)/N. Now if we have 7,7 € Yp with 7i|r, = T»|r, = 7 and for x € N we have

xT = To then ny,, = n,, = n, and this common value is m.,. O

Proposition 7.5. (Proposition 14, Section 4.3, [5]) Let F' be a totally imaginary field.

Consider the infinity type n := (n;),ex,., n, € Z satistying the purity condition n,o, +nqor =

w for all 7 € ¥ and v € Gal(Q/Q). Then there exists an algebraic Hecke character of infinity
type n.

1. If F' = F}, then there exists n € Z such that n, = nVr € Xp. Any algebraic Hecke
character of infinity type n looks like y = x° ||| for a Dirichlet character x° of F.

2. If Fy is a CM field, then the infinity type n is the base change from an infinity type m of
F and then any algebraic Hecke character of infinity type n looks like x = x10Npr ®x°
for some algebraic Hecke character of infinity type m of F} and some Dirichlet character

0
x" of F.

Proof. The above proposition discusses about the existence of algebraic Hecke characters
which have pure infinity type from the base change of another infinity type from a totally
real subfield and from a maxiaml CM subfield. In both the cases we have the infinity type
m of F} which has base change n of F.

1. For Fy = F{ the subfield is totally real and hence all m,, are equal and hence all n,
are equal and let their value be equal to n. We can take a character of finite order
say x° of F and then put in the formula y = x°||||". If we have y then x ||| " is the

character of finite order.

2. There exists an algebraic Hecke character y; with the infinity type m. Then considering
a finite order character x° of F' we can get x = x1 © Npjr, @ X°. If we have such Y,

then xx; ', where x2 = x1 © Npp, gives the character of finite order.

O

Let us look into an example: Consider the field F' = Q(2'3,w) where 2'/3 is the cube
root of 2 and w is the cube root of unity. We have that ¥r = Gal(F|Q) = S3 which is the
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permutation group taken to be {2'/3,21/3w 21302}, Let the elements of S3 be denoted as
s1 = e,50 = (12),83 = (23), 54 = (13), 55 = (123), 56 = (132). An element s € S5 correspond

to an embedding 75 : F' — C. The embeddings for F' are given as following:

21/3 s 21/3 21/3 N 21/3
Ty 1= 1: Tsy 1= T :

W w w — w?

21/3 > 21/3w ) 21/3 N 21/3w2
Tes 1= O Teg 1= 0 :

w— W w— W

21/3 s 21/30.) , 21/3 N 21/3w2
Tgy = TO Tgg = TO™ ©

2 2

W W

We consider two infinity types - n; = (nr,)ses, and ny = (1 )ses, such that we have,

s | s1=e|s2=(12) | s3=1(23) | s4 = (13) | s5 = (123) | s = (132)
n,. b wW—a c w—c w—b
Nr, a w—a w—a w—a a a

where a,b, ¢, w € Z. Now X is put into pair of complex conjugates as {(7s,, Tsy ), (Tsy» Tsg)s (Tsss Tss )}

which gives us that n’ +n. = w.

Now the infinity type ny = (n] ).es, is not a pure infinity type. Other possible complex

conjugate pairs of ¥ via automorphisms of Q gives us the pairings like {(7s,, sy ), (s> Tes )s (Tess Tsg) }

/

and {(7s;, Tay )5 (Tsy» Ts)s (s T )} From these pairings we get that n,, +n, =nl_

+n, =
w which implies that b = w—a for ny to be pure infinity type. Similarly, we get that ¢ = WQ—CL
for ny to be pure infinity type. Therefore, b,c, w — a all should be equal to each other for
n, to be pure infinity type. On the other hand n; = (n,,)scs, is a pure infinity type and has
purity type w. It also a base change from the infinity type m of F; = Q(w) with Mmr, =a

and m,, =w —a.
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7.4 Algebraic Hecke Characters of F with coefficients

in a finite GGalois Extension of )

Let the finite Galois extension of Q that takes a copy of F' inside itself be E, which is further
called the field of coefficients. Let us consider the infinity type n := (n;),.p_g, n, € Z or
n € Z[Hom(F, E)]. The difference here with the previously mentioned infinity type is that
in this case the infinity type is parametrised over Hom(F, E) instead of Hom(F, Q).

Consider an embedding ¢ : £ — Q. This gives an identification :* : Hom(F, E) —

Hom(F, Q) which maps 7 — o7 = (*7.

We focus on constructing an algebraic representation 6, on a one-dimensional vector
space M, g over the field E. This representation is given by 6, : G x E — GL1(Myug).
G is given as G = Respg(GL1/F) the Weil restriction of scalars of GL; over F' to Q, the

construction of which is discussed in the [article [5], section 5.1].

The 7-component of the representation is given by a — 6,-(a) := a" for a € GL,(F). For
xr € F* we have, Oh(x) = [ p_p50n (T(x)) = [ [.p_p 7(x)"". Now we consider an infinity
type n € Z|Hom(F, E')] and an associated representation (6, M, g) and a corresponding this
there is a sheaf M, g(for details one can refer to [article [5], section 5.2]) on the symmetric

space S§, the construction of which is discussed in details in [article [5], section 5.1].

The purity lemma thus can be re-written as:
Lemma 7.3. (Lemma 15, Section 5.2, [5]) Given n € Z[Hom(F, E)], the sheaf M, g of
vector spaces over £ on S¢ is non-zero iff there exists w € Z such that

1. if S, # ¢, then n, = w¥T € Hom(F, E)

2. if S, = &, then n,o, + nisr = wVr € Hom(F, E) and + € Hom(E, Q).

The details of the proof is discussed in [article [5], section 5.2].

For an integral ideal m of F' with values in E and infinity type n € Z[Hom(F, E)], an
algebraic Hecke character of F' of modulus m is defined as x : Jp(m) — E* such that for

() € Pr(m)* we have that x((2)) = [ Tesomqrzy ()"
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Let x be an algebraic Hecke character of F' with values in £ with modulus m = Hp|m pme
with infinity type n. We have a unique continuous homomorphism y, : Ip — E* with a

discrete topology on E*. This homomorphism follows certain properties:

Loxp ' (1) = Tes, FF [ Lojm(1 + 9™ Op) [ [ Op which is open in I}.
2. for p{m, x, of xa satisfies x,(m,) = x(p).
3. XA|F* = 911
Consider the embedding ¢ : F < C and let the place v, be the archimedean place of E. Now

we have a continuous homomorphism 6, 4 : [r — I and composing this with the projection

map I} — E; =~ C* we get O, : [p — C*.

Thus we have a continuous homomorphism, ‘y : I — C* which is defined as ‘y :=

(Lo XA)'QI:,},'
The following proposition summarises the properties of “y:

Proposition 7.6. (Proposition 16, Section 5.3, [5]) Let x be an algebraic Hecke character
of F' with values in F of modulus m and infinity type n. For the embedding ¢ : £ — C, ‘x

satisfies the following:

1. *x : Ip/F* — C* is a continuous homomorphism.
2. forall p ¢ Se, “Xp = L O Xy

3. Xew = 0;i| px 1s determined by its values on F™* embedded diagonally in F on which,
Opslrx = 005" = 0_.q, “x is a Hecke character of F' of modulus m with infinity type

—'n.

For k € Z the Tate twist “x(k) :=" x ® ||||" has infinity type —‘n + k.
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Chapter 8
Theory of Hecke L-functions

This chapter discusses about the critical values of Hecke L-functions and Harder’s result on
the ratio of critical L-values. The last part of the chapter discusses about the variation of
the result in case of a totally imaginary field and re-states the reciprocity law for the critical

L-values.

8.1 Critical Values of Hecke L-functions

Let x be an algebraic Hecke character of F' with values in £ of modulus m and infinity type
n. For the embedding ¢ : E — C, let us consider the character *“y as in Proposition 7.6. Let

us consider the special values of C-valued L-function L(s, ¢, x) := L(s," x)-

We can also consider the £ ® C valued L-function where £ ® C is identified as ]_L: g-cC
and the L-function is given by L(s, x) := {L(s, ¢, X)}.E-cC-

We assume that F' is totally imaginary number field, then from Proposition 7.2 we have
that if the width [ of “y satisfies [ > 2, then there exists two consecutive integers which are

critical for LL(s, x).
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8.2 Ratio of Critical Values of L-functions

Consider a an extension F|K of number fields and let Hom(F, K) = {0y, --,0,} and
{wi, - ,w,}isa K-basis of F'. The relative discriminant is the given by dpx := det([o;(w;)])*.
The absolute discriminant of F is given by dr|g. Harder proved a result [2] that states that

if m and m + 1 are critical integers for L(s, x) then

Crit(“x) := |5F@|1/2% Q (8.1)

and for any s € Gal(Q/Q) we have,
¢(Crit(“x)) = Crit(***x) (8.2)
Also the result stated in the article is for m = —1; for any general m one can get the result

using Tate twists.

1/2

Equation (8.1) shows that the ratio of L-values are algebraic since [0p|g|"/? is algebraic.

Now with the reciprocity law in (8.2) we can get the ratio of L-functions as

ol
L Lim+ 1)

€ u(FE) (8.3)

The statement in (8.3) turns out to be incorrect in case of F' being a totally imaginary
field and not of CM type. It needs to be modified by a sign, which is trivial if F' is a CM
field and non-trivial in case of a totally imaginary field. Let us now focus on an example

that shows that the (8.3) is not stable under base change and hence incorrect.

Let us consider the following field extension:



Let us calculate the determinant for the extensions: Firstly let us compute g . The
minimal polynomial of F over F} is given by x? — (4 + i) and since we have integral basis
{1,4/4 + i} for the ring of integers we have the discriminant as §pr = 4.(4 + 7). The norm
is given by Np0(0rjr) = 16.17. Next we compute dp,|g. The minimal polynomial of F}
over Q is given by x? + 1 and since we have integral basis again {1,i} thus we have the

discriminant dp |9 = —4.

Now the discriminant for the whole tower of fields we get, dp@ = 5%‘151]/\/' n0rm) =
(—4)2.16.17 = 28.17.

Let ¢ be an algebraic Hecke character of F; = Q(i); ¢ : Ap, /F} — C* with ¢y, : C* — C*
with ¥ (2) = 2%2%;a,b € Z and without loss of generality let us assume a > b. The critical
set of L(s,1) can be computed from Proposition 7.2 with the conditions that a + b = w and

a —b = { where w is the purity weight and /¢ is the width of ¢). The critical set will be given
by

1—

5 =5 < Crit(L(s,¥)) < —

L
2

|~

w
2

On putting the values of w and ¢ we get that Crit(L(s,v)) = {1l —a,2 —a,--- ,—b}.

On assuming a — b > 2 we can see that there are at least two critical points m,m + 1 €
Crit((L(s,)). Then from equation (8.3) we have that

L(m, )

5 2 Z\TH V)
riel L+ 1.0

€ Q(v) (8.4)

and Q(¢) is generated by the values of 9, the finite part of ¥. Since |0, g|"? € Q* we have
that,

L(m, )

) 8.5

L(m + 1,v) Q) (85)

Let w be a quadratic Dirichlet character and hence we can apply (8.5) to the character Yw

and we get,

L(m,yw)

e 8.6

L(m + 1,9Yw) Q) (86)

Let x be the base change of 1 which gives a Hecke character of F. It is given by

X = ¥ o Npp,. Since F,, = C x C, then x(21,22) = (zlzg)“(zle)b = 202,°284° which
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implies that xo = ¥y X 1y and hence we have Crit(L(s, x)) = Crit(L(s,)).

For a quadratic character w of F} we have that L(s, x) = L(s,¢)L(s,?w). Hence we have

that,
L(m, x)

m € Q(v) = Q(x) (8.7)

However, applying (8.3) directly to the L-function L(s, x) we get that,

bl =X ¢ g (89

(m+1,%)

Since [6pjg|? = (28.17)Y2 = /17 (mod Q*) and hence

L(m, x)
\Em € Q(x) (8.9)

Now (8.7) and (8.9) are contradictory to each other since v/17 ¢ Q(x). We can see that

then the equation (8.3) is not stable under base change.

The question we ponder upon here is that if this example can be generalized for an

imaginary quadratic field. For this we consider the tower of fields:

F =QWd,d)

£ =Q(Wad)

o =Q

where we assume that d € Z,d' € C and d = 2,3 (mod 4).

The choice of such d eases the discriminant calculation since we get an integral basis for
the ring of integers. Hence we get dp o = 4d. Also, 0pjp, = 4d’. The norm is given by
Nrjo(0pir) = 16]d|*.

Therefore, dpg = 65{51]NF1‘Q(5F|F1) = (4d)?16|d'|* = 28d*(a® + b*) where d’' = a + ib.
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Since d € Z, then we have 28d?> € Q. Hence the problem would arise from the factor
(a® + 1?). The answer to this would come from the existence of the Hecke character which
can be derived from its finite part - the Dirichlet character. We can consider the field of
coefficients Q(x) of a Dirichlet character y : (Z/nZ)* — C* and find an integer m € Z such
that m ¢ Z.

8.3 Variations in the Result

For the remaining part of the chapter we assume F' is totally imaginary field and F is a
number field that is Galois over Q and contains a copy of F. Let the infinity type n €
Z|Hom(F, E)| satisfies the purity condition in Lemma 7.3 and for an embedding ¢ : £ —
C let the character “x be as in Proposition 7.6. The width of “y is given by ¢(‘y) :=

min,. g g{|ner — N} = £(*n). The L-function L(s," x) has £(*x) many critical points.
Lemma 8.1. (Lemma 17, Section 6.3, [5]) ¢(*x) is independent of ¢ and depends on n.
Proof. 1f we have that F; = Fj that is ' has no CM subfield then the width ¢(*x) = 0. Thus
the lemma is proved in this case. If F'is totally imaginary field then n is the base change from

an infinity type m over Fj. Therefore, /(‘n) = ¢(*m). Let Hom(Fy, E) = {m, 74, - , Tk, T}

and 7;, 7; have same restriction to Fy and hence £(‘m) = min;{|m,, —m|}. =
J

The set of archimedean places of F'is given by S,,. We are interested on the permutation
of this set. The set Sy is given by {vy, -, v,}; where r = [F : Q]/2. Before going into the

permutation set, let us focus on the following lemma:

Lemma 8.2. (Lemma 18, Section 6.3, [5]) The following are equivalent:

1. s = —1 and s = 0 are critical integers for L(s," x)
2. <w< -4+

3. Foreach 7: F — E, 1: E — C there exists an element from the Weyl group of GL(2),

W,or such that-
o [(W,or) + l(wwr) =1
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nLOT . .
® W,or. ( 0 is dominant.

For the proof and related comments on the lemma, one can refer to Lemma 18 of [5].
This lemma introduces the Weyl group elements of GL(2) which acts on the characters of
the torus group of GL(2). [(w) denotes the length of the Weyl group element. The value of
this length is 1 if w is non-trivial element and 0 if w is the trivial element. Condition (3)
states that for a pair of conjugate embeddings {¢to 7,707} in ¥ one of them is trivial Weyl
group element and the other one is non-trivial. This defines a CM-type for F' given by,
®(n,t) := {7 € Lp : l(w,;) = 1} and that there is a bijection between this CM-types and the

set of archimedean places So, of F.

For each ¢ € Gal(Q/Q), there is a permutation m,,(s) of Sy, which acts on the CM-type
®(n, ). The sign of this permutation is given by

6n,L<§) = Sgn(ﬂ'nw(g))‘

Another CM-type is defined as ®(n,t) corresponding to a another infinity type ‘n with
respect to an induced representation. Therefore, for this CM-type we have ¢ € Gal(Q/Q) for

which there is a permutation 74 ,(s) of Sy. The signature of this permutation is given by

€a(s) := sgn(ma, (c)).

The details of the construction of these permutations can be referred to from section 6.3.2

of [5].
We state the main theorem on L-values now, which is a variation in Harder’s result.

Theorem 8.1. (Theorem 19, Section 6.3.3, [5]) Let F' be a totally imaginary field and E, a
number field, is a Galois extension of Q which has a copy of F' inside it. Consider an infinity
type n = X,.p_,p(n,7) € Z[Hom(F, E)] which satisfy the purity condition in Lemma 7.3 and
purity weight w. Let x be an algebraic Hecke character of F' with values in £ with infinity
type n. For an embedding ¢ : E — C let *x be a character as defined in Proposition 7.6.

Assume the condition —¢ < w < —4 + ¢ from Lemma 8.2.
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Therefore, £ > 2 and n is the base change to F' from the infinity type of a maximal CM
subfield of F'. Suppose m, m + 1 € Crit(IL(s, x)) then,

1/2 L(m," x)

CESTTRG (8.10)

935

and also, for every ¢ € Gal(Q/Q) we have the reciprocity law as:

1/2 L(m," x)
L(m + 1,5 x)

1/2 L(m," x)

Tt iy ~ omels)eads)-lorel (8.11)

s(19r ol

When we have a CM field F from 7.2 we have that cocor = cogor for ¢, c € Gal(Q/Q)
and 7 : F' — E. Thus here we get the permutations m4,(s) = mn,(s) to be equal which in
turn gives us that €5,(c) = en,(s). Particularly, (8.10) is not different from (8.3) as even
if we get ¢(®(n,co¢)) = ¢(c(P(n,¢))), the permutations can be different with e5,(<), en,. (<)

non-trivial.

The article [5] involves vast details about the arithmetic properties of such L-functions
and their special values - one can refer to [5] for studying these functions. The idele class

group characters are also an interesting study and the article [9] deals with the same.
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