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Abstract

“We relive the history of the design of the motor car. Gadgets and glitter prevail

over fundamental concerns of safety and economy.”—C.A.R. Hoare, The 1980 ACM

Turing Award Lecture.

Since its inception in 2008 [22], distributed ledger technology (DLT), has enabled a

suite of financial services to be offered without relying on trusted intermediaries. In

contrast to traditional finance, decentralized finance (DeFi) built upon DLT empow-

ers users to execute peer-to-peer electronic transactions in a trustless enivironment.

Account-based blockchain models, such as Ethereum, implement DeFi using smart

contracts—self-executing digital agreements—programmed to encode and execute in-

tended financial mechanisms. These smart contracts function as “bricks of lego”,

enabling developers to construct complex DeFi services by composing individual com-

ponents [25, 1]. These compositions introduce new, complex inter-dependencies and

vulnerabilities which, owing to the transparent and public nature of the ledger, makes

them susceptible to exploitation by malicious participants. The subject of economic

exploitation is a recurring issue and has been studied in the literature as Maximal

Extractable Value (MEV) [9, 4, 21, 24]. Surprisingly enough, existing studies on com-

positionality are few. The notion of secure composability in [4] suffers from usability

and algorithmic issues, while failing to specify the contracts from which MEV is ex-

tracted and incorrectly classifying as not composable contracts that have intended

MEV. While the notion of “MEV non-interference” introduced in [7] addresses these

drawbacks and checks whether the contracts that will be deployed suffer a loss when

adversaries manipulate their dependencies, it is limited. Since the notion is quali-

tative, it does not provide information about the degree of interference caused and

possible upper bounds to the loss suffered by a compound contract. This thesis per-

forms an exploratory study of quantitative notions for secure composability of smart

contracts, eventually arriving at MEV interference. Our MEV interference, which we
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denote by I(S ⇝ ∆), captures various security properties one would deem desirable.

We study the theoretical properties of this notion and apply it to study paradigmatic

contract compositions of Lending Pools, Automated Market Makers, and Betting

contracts.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Developing decentralized applications nowadays involves suitably designing, assem-

bling and customizing a multitude of smart contracts, resulting in complex interac-

tions and dependencies. In particular, recent DeFi applications are highly intercon-

nected compositions of smart contracts of various kinds, including tokens, derivatives,

decentralized exchanges (DEX), and lending protocols [15, 16].

This complexity poses significant security risks, as adversaries targeting one of

the components may compromise the security of the overall application. Note that,

for this to happen, the attacked component does not even need to have a proper

vulnerability to exploit. For example, in an application composed of a lending protocol

and a DEX serving as a price oracle, adversaries could target the DEX in order

to artificially inflate the price of an asset that they have previously deposited to

the lending pool. This manipulation would allow adversaries to borrow other assets

with an insufficient collateral, circumventing the intended economic mechanism of the

lending protocol [13, 23, 6, 20, 2].

The first step to address these risks is to formally define when a system of smart

contracts is secure. In recent years, a few security notions have emerged, starting

from Babel, Daian, Kelkar and Juels’ “Clockwork finance” paper [4]. Broadly, these

definitions try to characterise the economic security of smart contract systems based

on the extent of economic damage that adversaries can inflict on them. In this context,

adversaries are typically assumed to have the powers of consensus nodes, namely they

can reorder, drop or insert transactions in blocks. Accordingly, the economic damage
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on a system S can be quantified in terms of the Maximal Extractable Value (MEV)

that adversaries can extract from S by leveraging these powers [11]. To provide a

more concrete formulation of the existing notions, consider a set of contracts ∆ to

be deployed in a system S . We denote by S | ∆ the system composed of S and ∆.

The security criterion in [4] requires that MEV(S | ∆) ≤ (1 + ε)MEV(S): namely,

the MEV extractable from S | ∆ does not exceed the MEV extractable from S by

more than a factor of ε. This notion does not capture our intuition of assessing the

security of ∆ in terms of the economic losses that ∆ could incur due to adversaries

interacting with the context S . For example, an airdrop contract ∆ that gives away

tokens would be deemed insecure, since interactions with S are immaterial.

In a different security setting, a similar intuition was the basis of Goguen and

Meseguer’ non-interference [12], which was originally formulated as follows:

“One group of users, using a certain set of commands, is noninterfering

with another group of users if what the first group does with those com-

mands has no effect on what the second group of users can see”.

In the setting of smart contract compositions, this notion can be reinterpreted by

requiring that adversaries interacting with S do not inflict economic damage to ∆.

The notion of MEV non-interference introduced by [7] is based on this idea, using

MEV as a measure of economic damage. The approaches in [14, 28] are also based on

the idea of non-interference, but replacing MEV with an explicit tagging of contract

variables into high-level or low-level variables.

A common aspect of these approaches to economic non-interference is their qual-

itative nature: namely, these definitions classify a composition as either secure or

insecure, in a binary fashion. While such a qualitative evaluation is sufficient when a

composition is deemed secure, in case it is not it fails to give any meaningful estimate

of the degree of interference. For example, when in the above-mentioned (insecure)

composition between a lending protocol and a DEX, a quantitative measure could

provide insights into the extent to which the system state (e.g., the liquidity reserves

in the DEX) and the contract parameters (e.g., the collateralization threshold) con-

tribute to increasing the economic loss.
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1.2 Contributions

This thesis studies various quantitative notions of economic security for smart con-

tract compositions, ultimately arriving at one that best serves our needs. Our MEV

interference, which we denote by I(S ⇝ ∆), measures the increase of economic loss of

contracts ∆ that adversaries can achieve by manipulating the context S . We apply

our notion to assess the security of some notable contract compositions, including

a bet on a token price, and a lending protocol relying on a DEX as a price oracle.

We prove some fundamental properties of our notion: more specifically, I(S ⇝ ∆)

increases when S is extended with contracts that are not in the dependencies of ∆

(Theorem 5); I(S ⇝ ∆) does not depend on the token balances of users except ad-

versaries (Theorem 6); I(S ⇝ ∆) is preserved when extending S with contracts Γ

that enjoy some specific independency conditions with respect to ∆ (Theorem 7).

1.3 Outline

This thesis is divided into 2 sections: Part I provides the background to this thesis—

Chapter 1 describes the motivation to our research problem, objectives and the main

contributions of this thesis; Chapter 2 introduces the blockchain model and defini-

tions; Chapter 3 states a few basic results on MEV; Chapter 4 proposes an initial

definition of quantitative MEV interference; Chapter 5 proposes an alternate defini-

tion of MEV interference which is independent of adversarial wealth. Part II provides

a detailed account of the major contributions of this thesis— Chapter 6 provides the

definition of MEV Interference and its theoretical properties; Chapter 7 illustrates

our definition on a few paradigmatic smart contract compositions; Chapter 8 sum-

marises the main contributions of this thesis, discusses its limitations and provides a

sketch of avenues open for future work.
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Part I

Background
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Chapter 2

Blockchain model

This section presents a brief overview of our working blockchain model (refer to

Section 2 in [7] for a more elaborate description and the underlying motivations).

2.1 Blockchain states

Our blockchain model defines a system comprising a set T of token types (T, T′ , . . .)

and a countably infinite set A of accounts, which are further subdivided into user

accounts A, B, . . . ∈ Au and contract accounts C, D, . . . ∈ Ac. We define a subset M of

the user accounts to represent the adversarial entities within the system. The state

of a user account, i.e. a wallet , is denoted by w ∈ T → N, which maps tokens to

non-negative integers, representing the token balances in the account. The state of

a contract account is a pair (w, σ), where w is a wallet and σ is a key-value store.

Blockchain states S, S ′, . . . are finite maps from accounts to their respective states,

where the user accounts include at least the adversary’s wallets. Furthermore, we use

the operator | to deconstruct a blockchain state into its components.

2.2 Contracts

Contracts are defined as an associated set of methods, each capable of executing the

following range of operations: (i) update the contract wallet and state, (ii) receive

parameters and tokens from a caller, (iii) call other contracts (possibly transferring

tokens along with the call), (iv) transfer tokens to user accounts, (v) return values

and transfer tokens to a caller, (vi) abort. As usual, a method cannot drain tokens
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from other accounts: the only ways for a contract to receive tokens are (i) from a

caller invoking one of its methods, or (ii) by calling a method of another contract

that sends tokens to its caller. We assume that a contract C can only call methods

of contracts deployed before it. Formally, defining “C is called by D” when some

method of D calls some method of C, we are requiring that the transitive and reflexive

closure ⊑ of this relation is a partial order. We also assume that blockchain states

contain all the dependencies of their contracts: formally, if C are the contracts in

S , we require that deps(C) = {C′ | ∃C ∈ C. C′ ⊑ C} are in S . States satisfying these

assumptions are said well-formed : all states mentioned in our results (either in hy-

pothesis or thesis) are always well-formed. We write S = W | Γ for a blockchain state

S composed of user wallets W and contract states Γ. We can deconstruct wallets,

writing S = W | W ′ | Γ when domW and domW ′ are disjoint, as well as contract

states, writing S = W | Γ | ∆. We denote by †Γ the set of contract accounts in Γ (i.e.

†Γ = domΓ), and let deps(∆) = deps(†∆). Finally, we assume that contracts cannot

inspect the state of other accounts, including users’ wallets and the state of other

contracts. Formally, we are requiring that each transaction enabled in S produces

the same effect in a “richer” state S ′ ≥$ S containing more tokens in users’ wallets

(Definition 5).

2.3 Transactions

We model contracts behaviour as a deterministic transition relation −→ between

blockchain states, where state transitions are triggered by transactions X,X′, . . ..

A transaction is a call to a contract method, written A: C.f(args), where A is the user

signing the transaction, C is the called contract, f is the called method, and args is the

list of actual parameters, which can also include transfers of tokens from A to C. In-

valid transactions are rolled-back, i.e. −→ preserves the state. Given X = A: C.f(args),

we write callee(X) for the target contract C. Methods can refer to A via the identifier

origin and to the caller (contract or user) account via sender.

2.4 TxScript

We specify the contracts in our examples in a concrete contract language: TxScript

(refer to [8] for the syntax of TxScript contracts and transactions): (i) the expression
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#T denotes the number of tokens T stored in the contract; (ii) the formal parameter

? x: T requires the sender to transfer some tokens T to the contract along with the

call (the unsigned integer variable x generalises Solidity’s msg.value to multi-tokens);

(iii) the command a! e: T transfers e units of T from the contract to account a, where

e is an expression, and a could be either a user account or the method sender).

2.5 Wealth and gain

We denote by $A(S) the wealth of accounts A in S and by $1T the price of token

type T.

Definition 1 (Wealth). The wealth of A ⊆ A in S = W | Γ is given by:

$A(S) =
X

A∈A∩domW, T

W(A)(T) · $1T +
X

C∈A∩domΓ, T

fst(Γ(C))(T) · $1T (2.1)

To rule out ill-formed states with an infinite amount of tokens, we require blockchain

states to enjoy the finite tokens axiom, i.e.
P

A,T S(A)(T) ∈ N. This makes the wealth

always finite.

Definition 2 (Gain). The gain of A ⊆ A upon firing a transactions sequence X⃗ in

S is given by γA(S, X⃗) = $A(S
′)− $A(S) if S

X⃗−→ S ′.

9
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Chapter 3

Local MEV

We enlist below the results taken from Section 3 in [7], which are heavily used through-

out this thesis, for the reader’s convenience.

3.1 Results on Local MEV

We denote by κ(M, P ) the set of transactions craftable by M using a mempool P ,

and by κ(M, P )∗ their finite sequences. We assume that the mempool is empty, just

writing κ(M). This is because in defining secure composability we are concerned

about the MEV extractable by exploiting new contracts, and not that extractable

from the mempool.

Definition 3 (Local MEV). Let κD(M) = {X ∈ κ(M) | callee(X) ∈ D} be the set of

transactions craftable by M and targeting contracts in D. We define:

MEVD(S,C) = max
n
−γC(S, X⃗)

��� X⃗ ∈ κD(M)∗
o

(3.1)

Hereafter, we abbreviate MEVAc(S,C) as MEV(S,C).

In Item 3, we write Γ ⪯ ∆ whenever ∆ is a widening of Γ. More precisely:

Γ ⪯ ∆ ⇐⇒ ∀C ∈ C. C ∈ dom∆ ∧ Γ(C) = ∆(C)

Therefore, the condition Γ ⪯ ∆ in Item 3 means that ∆ is a widening of the state Γ

with other arbitrary contract states.

11



Lemma 1 (Basic properties of MEV). For all S , C,D ⊆ Ac:

1. MEVD(S, ∅) = MEV∅(S,C) = 0, MEVAc(S,Ac) ≥ MEV(S)

2. if D ⊆ D′, then MEVD(S,C) ≤ MEVD′(S,C)

3. MEVD(W | Γ,C) ≤ MEVD(W | ∆,C) if Γ ⪯ ∆

4. MEVD(W | Γ,C) = MEVD(W | Γ,C ∩ †Γ) = MEVD∩†Γ(W | Γ,C)
5. 0 ≤ MEVD(S,C) ≤ $C(S)

Definition 4 (Richer state). We write S ≤$ S ′ when the state S ′ can be obtained

from S by making the wallets larger, i.e. when S = W | Γ and S ′ = (W +Wδ) | Γ,
for some W, Wδ, and Γ.

Definition 5 (Wallet-monotonicity). A blockchain state S = W | Γ is wallet-

monotonic if, whenever S
X−→ W ′ | Γ′ for a valid transaction X, then W + Wδ |

Γ
X−→ W ′ +Wδ | Γ′, for all Wδ.

Lemma 2 (MEV and adversaries’ wallets). For all S , S ′, ∆, W, WM:

1. if domWM = M, then MEVD(WM | W | Γ,C) = MEVD(WM | Γ,C)

2. if S ≤$ S
′, then MEVD(S,C) ≤ MEVD(S

′,C)

Lemma 3 (Stability). For all C, D, Γ, there exists an adversary wallet WM such

that MEVD(WM | Γ,C) = MEVD(W
′
M | Γ,C) for all W ′

M ≥$ WM.

3.2 Results on Local MEV of wealthy adversaries

Definition 6 (Local MEV of wealthy adversaries). For all C,D,Γ, let:

MEV∞
D (Γ,C) = max

W
MEVD(W | Γ,C) (3.2)

Lemma 4 (Basic properties of MEV∞). For all Γ, C,D ⊆ Ac:

1. MEV∞
D (Γ, ∅) = MEV∞

∅ (Γ,C) = 0

2. if D ⊆ D′, then MEV∞
D (Γ,C) ≤ MEV∞

D′ (Γ,C)

3. MEV∞
D (Γ,C) ≤ MEV∞

D (∆,C) if Γ ⪯ ∆

4. MEV∞
D (Γ,C) = MEV∞

D (Γ,C ∩ †Γ) = MEV∞
D∩†Γ(Γ,C)

5. 0 ≤ MEV∞
D (Γ,C) ≤ $C(Γ)
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3.3 Results on MEV non-interference

Definition 7 (MEV non-interference). A state S is MEV non-interfering with ∆, in

symbols S ̸⇝ ∆, when MEV(S | ∆, †∆) = MEV†∆(S | ∆, †∆).

Definition 8 (MEV non-interference against wealthy adversaries). A contract state

Γ is MEV∞ non-interfering with ∆, in symbols Γ ̸⇝∞ ∆, when MEV∞(Γ | ∆, †∆) =

MEV∞
†∆(Γ | ∆, †∆).

Theorem 1 (Sufficient conditions for ̸⇝). Let S = W | Γ. Each of the following

conditions implies S ̸⇝ ∆: (1) MEV(S | ∆, †∆) = 0 (2) Γ and ∆ are token

independent in S | ∆ and contract independent (3) Γ and ∆ are token independent

in S | ∆ and ∆ is stable w.r.t. moves of M on Γ.

3.4 Supplementary results

This section consists of additional results on MEV, MEV∞ and non-interference that

have been subsequently employed in this thesis. We would like to remark that this

thesis contains alternately defined notions of stripping in Theorem 2 and token inde-

pendence in Definition 9.

Lemma 5 states that widening the contract state Γ with new contracts Γ′ preserves

the MEV extractable from the target contracts. This is because the contracts allowed

to be targeted by the adversary, i.e. D, are not widened. It refines Item 3 of Lemma 1,

giving an equality under the additional assumption D ⊆ †Γ.

Lemma 5. MEVD(W | Γ,C) = MEVD(W | ∆,C) when D ⊆ †Γ and Γ ⪯ ∆.

Proof. The inequality ≤ follows directly from Item 3 of Lemma 1. For the inequality

≥, assume that ∆ is the composition of the contracts Γ with some other contracts

Γ̄, i.e. Γ ⪯ ∆, Γ̄ ⪯ ∆, and ∆ ⪯ Γ | Γ̄. Let X⃗ ∈ κD(M)∗ be a valid sequence of

transactions that maximizes the loss −γC(W | ∆, X⃗). Since X⃗ consists of transactions

targeting contracts in D ⊆ †Γ and since, by the well-formedness assumption, there

are no internal calls from Γ to Γ̄, the contracts in Γ̄ are not affected by X⃗. Hence,

executing X⃗ yields a transition of the form:

W | ∆ X⃗−→ W ′ | ∆′ where Γ̄ ⪯ ∆′

13



As noted above, X⃗ does not include any direct/indirect calls to †Γ̄, and so X⃗ is also

valid in W | Γ. Therefore, we also have some Γ′ such that:

W | Γ X⃗−→ W ′ | Γ′

To prove that the loss is constant, observe that:

γC(W | Γ, X⃗) = $C(W
′ | Γ′)− $C(W | Γ)

= $C(Γ
′)− $C(Γ)

= $C(∆
′)− $C(Γ̄)− $C(∆) + $C(Γ̄)

= $C(∆
′)− $C(∆)

= $C(W
′ | ∆′)− $C(W | ∆)

= γC(W | ∆, X⃗)

This implies that:

MEVD(W | ∆,C) ≤ MEVD(W | Γ,C)

which gives our thesis.

Lemma 6. MEV∞
D (Γ,C) = MEV∞

D (∆,C) when D ⊆ †Γ and Γ ⪯ ∆.

Proof. This has an analogous statement in Lemma 5, which holds for any wallet state.

Due to the stability lemma ( Lemma 3) and the definition of MEV∞ ( Definition 6),

the ”rich-adversary” version of the statement must also hold.

Before stating Theorem 2, we formalize the notions of contract independence,

token independence and sender-agnosticism.

Contract and Token Independence Intuitively, we say that S and ∆ have con-

tract dependencies when some contract in ∆ calls a contract in S . Formally, contract

states Γ and ∆ are contract independent when their dependencies are disjoint, i.e.

deps(Γ) ∩ deps(∆) = ∅. For example, we will consider Section 7.2 in the upcoming

chapter that shows contract dependencies between a bet contract and an Automated

Market Maker (AMM) used as a price oracle.

14



We now formalize token independence. Intuitively, we say that S and ∆ have

token dependencies when some contract in ∆ outputs tokens that can be used as

input to contract in S , or vice-versa). Note that this is an alternately defined notion

of that defined in [7]. Formalizing token independence requires two auxiliary notions:

the token types that can be received by Γ in S , denoted inS (Γ), and those that can

be sent, denoted by outS (Γ).

Definition 9 (Token independence). Let S = W | Γ. We define:

• inS (Γ) as the set of token types T for which there exists a state S ′ reachable

from S through a sequence of steps, containing a transaction that causes an

inflow of tokens T to some contract in Γ.

• outS (Γ) as the set of token types T for which there exists a state S ′ reachable

from S through a sequence of steps, containing a transaction that causes an

outflow of tokens T from some contract in Γ.

We say that contracts in Γ and ∆ are token independent in S = W | Γ | ∆ when

inS (Γ) ∩ outS (∆) = ∅ = inS (∆) ∩ outS (Γ).

Definition 10 (Sender-agnostic). A contract is sender-agnostic if:

• the effect of calling each of its functions can be decomposed as: (i) updating

the contracts’ states (either directly or through internal calls); (ii) transferring

tokens from and to users and contracts; (iii) transferring tokens to its sender.

• any call with the same arguments and origin, but distinct sender, has the

same effect, except for the item (iii) where tokens are transferred to the new

sender.

Theorem 2 gives sufficient conditions under which we can strip D of all the

non-dependencies of C while preserving MEVD(S,C). Condition (i) is that contract

methods are sender-agnostic, i.e. they are not aware of the identity of the sender, be-

ing only able to use it as a recipient of token transfers. Condition (ii) ensures that D

consists enough contracts to reproduce attacks in the stripped state. Condition (iii)

requires that the dependencies and the non-dependencies of C inD are token indepen-

dent in S . In other words, there are no token dependencies between D∩ deps(C) and

D \ deps(C), which could have potentially be exploited by non-wealthy adversaries.
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Theorem 2. MEVD(S,C) = MEVD∩deps(C)(S,C) holds if the contracts C′ = deps(C)∩
deps(D \ deps(C)) satisfy: (i) C′ are sender-agnostic, (ii) C′ ⊆ D, and (iii)

deps(D) ∩ deps(C) and deps(D) \ deps(C) are token independent in S .

Proof. First, note that the inequality MEVD↾C (S,C) ≤ MEVD(S,C) follows from

Item 2 of Lemma 1, so we just need to show that:

MEVD(S,C) ≤ MEVD↾C (S,C)

To do so, let X⃗ ∈ κD(M)∗ be a sequence of transactions that maximizes the loss of

C when executed in state S . We show that there exists Y⃗ ∈ κD↾C (M)∗ that causes a

loss to C equal to the one caused by X⃗, i.e.:

Y⃗ ∈ κD↾C (M)∗ γC(S, Y⃗) = γC(S, X⃗) (3.3)

W.l.o.g. we assume that all the transactions in X⃗ are valid: indeed, invalid transac-

tions in X⃗ are reverted, so they can be removed without affecting the loss.

Note that each transaction Xi = M[i]: Ci,1.fi,1(argsi,1) in X⃗ can trigger a sequence of

internal contract-to-contract function calls:

Ci,1: Ci,2.fi,2(argsi,2) Ci,2: Ci,3.fi,3(argsi,3) · · · Ci,k−1: Ci,k.fi,k(argsi,k)

Let x⃗ be the sequence of all function calls (either external or internal) that are per-

formed upon the execution of X⃗ in state S . To construct Y⃗, we start by considering

the subsequence y⃗ of x⃗ containing all and only the calls of the form:

(a) M[i]: Ci,1.fi,1(argsi,1) where Ci,1 ∈ deps(C), or

(b) Ci,j−1: Ci,j.fi,j(argsi,j), where Ci,j−1 ̸∈ deps(C) and Ci,j ∈ deps(C).

Claim (1). If Ci,j−1: Ci,j.fi,j(argsi,j) ∈ y⃗, then Ci,j ∈ C′.

Proof of Claim (1). By hypothesis, Ci,j ∈ deps(C). Let Xi ∈ X⃗ be the transaction

that originated the call. Since Xi ∈ κD(M), then Ci,1 ∈ D. Since deps(C) is closed

downward and Ci,j−1 ̸∈ deps(C), then Ci,1 ̸∈ deps(C). So, Ci,1 ∈ D \ deps(C), and

therefore Ci,j ∈ deps(D \ deps(C)). This completes the proof of Claim (1).

To describe the construction of Y⃗, let the meta-variables ai range over user and
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contract addresses, so to rewrite the sequence y⃗ as follows:

a1: C1.f1(args1) a2: C2.f2(args2) · · · an: Cn.fn(argsn) · · ·

We translate y⃗ into the sequence of transactions Y⃗ by preserving the senders ai that

are user accounts (i.e., ai = M[i]), and by replacing the ai that are contract accounts

into the user account that originated the corresponding call. Namely, if ai = Ci,j−1 is

a contract account corresponding to the following call in y⃗:

Ci,j−1: Ci,j.fi,j(argsi,j)

then the sender of the i-th transaction in Y⃗ is M[i], i.e. the originator of the call. Note

that each transaction Yi in Y⃗ can be funded by the adversary:

• if ai = M[i], then the fact that the corresponding transaction Xi in X⃗ was valid

implies that M[i] has the tokens needed to fund the call;

• if ai = Ci,j−1, then there is no token transfer from Ci,j−1 to Ci,j, and so Yi does

not need to be funded. This is because:

– Ci,j−1 ∈ deps(D) \ deps(C): indeed, Ci,j−1 ∈ deps(D) since Xi ∈ κD(M),

and Ci,j−1 ̸∈ deps(C) by definition of case (b);

– Ci,j ∈ deps(D) ∩ deps(C): indeed, Ci,j ∈ deps(D) since Xi ∈ κD(M), and

Ci ∈ deps(C) by definition of case (b);

– deps(D)↾C and deps(D) \ deps(C) are token independent in S by assump-

tion ((iii)).

Claim (2). Y⃗ ∈ κD↾C (M)∗

Proof of Claim (2). Consider a transaction Yi in Y⃗. We have two cases, depending

on whether Yi is due to conditions (a) or (b):

(a) in this case, Yi corresponds to some Xi = M[i]: Ci,1.fi,1(argsi,1) in X⃗ where

Ci,1 ∈ deps(C). Since Xi ∈ κD(M), then Yi ∈ κD↾C (M).

(b) by Claim (1), the callee of Yi is in C′ = deps(C) ∩ deps(D \ deps(C)), which
is included in D by assumption (ii). Note that M is able to craft the actual

arguments of that call by simulating the execution of X⃗. This implies that

Yi ∈ κD↾C (M). This completes the proof of Claim (2).
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We now show that Y⃗ and X⃗ modify the state of contracts in C in exactly the same

way. Note that the transactions Yi that are in Y⃗ due to condition (b) have callee

in C′ by Claim (1), and so their functions are sender-agnostic by assumption (i).

So, the fact that in the execution of Yi they are called directly from a user address,

while in the execution of Xi they are called from a contract address, does not affect

the execution of these calls. Note that a call Ci,j−1: Ci,j.fi,j(argsi,j) in Xi could

send tokens to the sender Ci,j−1, thus affecting its gain, while the corresponding call

M[i]: Ci,j.fi,j(argsi,j) would send these tokens to M[i]. This difference however do not

affect the gains and losses of C, since Ci,j−1 is not in deps(C) by condition (b).

Note that the sequence h⃗ of calls performed upon the execution of Y⃗ is the sub-

sequence of x⃗ that contains every call to functions of contracts in deps(C). For this

reason, both x⃗ and h⃗ modify the state of contracts deps(C) in the same way — and,

in particular, they cause exactly the same losses to the contracts in C. This implies

that Y⃗ is valid in S and that γC(S, Y⃗) = γC(S, X⃗). Since we have proved (3.3) for all

possible X⃗, we obtain the thesis.

Theorem 3 is an alternatively stated statement of Theorem 1 in [7].

Theorem 3. MEV∞
D (Γ,C) = MEV∞

D∩deps(C)(Γ,C) holds if the contracts C
′ = deps(C)∩

deps(D \ deps(C)) satisfy: (i) C′ are sender-agnostic, and (ii) C′ ⊆ D.

Proof. First note that MEV∞
D∩deps(C)(Γ,C) ≤ MEV∞

D (Γ,C) holds by Item 2, so we just

need to show that

MEV∞
D (Γ,C) ≤ MEV∞

D∩deps(C)(Γ,C)

To do so, we consider a wallet WM that maximizes MEVD(WM | Γ,C) (it must exist

by Lemma 3), and show that, for any sequence of transactions X⃗ ∈ κD(M)∗ that is

valid in S = WM | Γ, we can find a W ′
M and transaction sequence Y⃗ ∈ κD∩deps(C)(M)∗

valid in S ′ = W ′
M | Γ such that −γC(S

′, Y⃗) = −γC(S, X⃗).

We will first construct W ′
M . Since the adversary may have different aliases, we rewrite

WM as the composition w1 | w2 | · · · . Moreover, the transactions in X⃗ are all valid in

S , so their origin must be one of the aliases in the composition. The sequence X⃗ is

finite, so we can assume wlog that the aliases which are the origin of some transaction
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are the first n appearing in the composition. Finally, we let

W ′
M = w1 + w′ | · · · | wn + w′ | wn+1 | · · ·

where w′ consists of the sum of all tokens that have been transferred during the

execution of X⃗ in state S (both directly and due to internal method calls). Note that

the tokens of w′ are added only to the wallets that are origin of some transaction in

X⃗, so the finite tokens axiom is still satisfied.

We construct Y⃗ exactly as in Theorem 2, and note that if any of the original calls

transferred some tokens, then the corresponding transaction of Y⃗ will provide the same

amount of tokens, taking them from the wallet owned by the alias that originated the

method call. By the construction of W ′
M , there are always enough tokens to do so.

The rest of the proof remains the same as Theorem 2.

Theorem 4 is an alternatively stated result of Theorem 4 in [7].

Theorem 4 (Contract Stripping). If contracts in deps(∆)∩ deps(†Γ \ deps(∆)) are

sender-agnostic, then

Γ ̸⇝∞ ∆ ⇐⇒ MEV∞
†(Γ|∆)∩deps(∆)(Γ | ∆, †∆) = MEV∞

†∆(Γ | ∆, †∆)

Proof. We start by showing the following equality:

MEV∞(Γ | ∆, †∆) = MEV∞
†(Γ|∆)∩deps(∆)(Γ | ∆, †∆) (3.4)

By letting D = †(Γ | ∆), and

C′ = deps(∆) ∩ deps(†(Γ | ∆) \ deps(∆)) = deps(∆) ∩ deps(†Γ \ deps(∆))

we can see that C′ ⊆ D and that contracts in C′ are sender-agnostic (by assumption).

This means that both conditions of Theorem 3 are satisfied, and we have proven (3.4).

Now, recall that Γ ̸⇝∞ ∆ implies:

MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆) (3.5)

Now, combining (3.4) and (3.5) gives us our thesis.
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Chapter 4

Towards MEV Interference

In this chapter, we propose an initial definition of quantitative MEV interference: We

quantify the interference caused by a blockchain state S on newly deployed contracts

∆ as p(S,∆). We study its theoretical properties and discuss why they are desirable.

Simultaneously, we provide examples to demonstrate our results.

4.1 A preliminary definition

Definition 11. For a blockchain state S = W | Γ and a contract state ∆, we quantify

the MEV interference caused by S on ∆ as:

p(S,∆) =
MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆)

$†∆(∆)
if $†∆(∆) ̸= 0

When $†∆(∆) = 0, we define p(S,∆) = 0.

Example 1. Consider the Betp contract in Figure 4.2, which allows a player to

bet on the exchange rate between a token and ETH. It is parameterized over an

oracle that is queried for token prices. Betp receives its initial pot from its owner

upon deployment. To join, a player must pay an amount of ETH equal to the pot.

The winner receives a proportion potShare (set by the owner on deployment) of

the total pot, when the oracle exchange rate exceeds potShare times the bet rate.

The remaining part is taken by the owner as a fee. Without loss of generality, we can

assume that potShare ≥ 1/2, since a smaller proportion would make the bet irrational

for any player. Consider the following instance of the Betp contract using the AMM
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contract AMM {
addLiq (?x0:T0 ,?x1:T1) { // add liquidity to the AMM

require #T0 * (#T1 -x1) == (#T0 -x0) * #T1 }
getTokens () { return (T0 ,T1) } // token pair
getRate (t) { // exchange rate

if (t==T0) return #T0/#T1 // r:T0 for 1:T1
else if (t== T1) return #T1/#T0 // r:T1 for 1:T0
else abort }

swap (?x:t,ymin) {
if (t==T0)

{ y=(x*#T1)/#T0; require ymin <=y<#T1; sender !y:T1 }
else if (t== T1)

{ y=(x*#T0)/#T1; require ymin <=y<#T0; sender !y:T0 }
else abort }

}

Figure 4.1: A constant-product AMM contract.

in Figure 4.1 as a price oracle, where tokens are assigned unitary prices:

S = M[320: ETH] | AMM[600: ETH, 600: T] | block.num = d− k | · · ·
∆ = Betp[10: ETH, owner = A, tok = T, rate = 2, deadline = d, potShare = 3/4]

Consider the computation:

S | ∆ M:Betp.bet(? 10:ETH)−−−−−−−−−−−→ M[310: ETH] | AMM[600: ETH, 600: T] | Betp[20: ETH, · · · ]
M:AMM.swap(? 300:ETH,0)−−−−−−−−−−−−−→ M[10: ETH, 200: T] | AMM[900: ETH, 400: T] | Betp[20: ETH, · · · ]
M:Betp.win()−−−−−−−→ M[25: ETH, 200: T] | AMM[900: ETH, 400: T] | Betp[5: ETH, · · · ]
M:AMM.swap(? 200:T,0)−−−−−−−−−−−→ M[325: ETH] | AMM[600: ETH, 600: T] | Betp[5: ETH, · · · ]

By Definition 3, we have that S ⇝ ∆, since:

MEV(S | ∆, †∆) = MEV{AMM,Betp}(S | ∆, {Betp}) = (3/4 · 20)− 10 = 15− 10 = 5

MEV†∆(S | ∆, †∆) = MEV{Betp}(S | ∆, {Betp}) = 0

Quantitative MEV interference is estimated through Definition 11 as follows:

p(S,∆) =
MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆)

$†∆(∆)
=

5− 0

${Betp}(∆)
=

5

10
=

1

2

⋄
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contract Betporacle {
constructor (?x:ETH ,t,r,d,p) {

require t!= ETH && oracle . getTokens () ==( ETH ,t);
tok=t; rate=r; owner= origin ; deadline =d; potShare =p

}
bet (?x:ETH) {

require player == null && x==# ETH;
player = origin

}
win () {

require block.num <= deadline && origin == player ;
require oracle . getRate (ETH)>rate;
player !( potShare *# ETH):ETH

}
close () {

require block.num > deadline && origin == owner;
owner !# ETH:ETH

}
}

Figure 4.2: The Betp contract.

Proposition 1 relates the qualitative notion of interference introduced in [7] to the

quantitative one: when S is non-interfering with ∆, our quantitative definition gives

us an interference value of 0 and vice-versa.

Proposition 1 (p vs. ̸⇝). p(S,∆) = 0 ⇐⇒ S ̸⇝ ∆

Proof. If p(S,∆) = 0, then it must be MEV(S | ∆, †∆) = MEV†∆(S | ∆, †∆) or

$†∆(∆) = 0. In the first case, by Definition 7 we directly have the thesis. In the

second case, by Lemma 1(5) it must be MEV(S | ∆, †∆) = MEV†∆(S | ∆, †∆) =

0, from which the thesis follows. To prove the other implication, if S ̸⇝ ∆ then

by Definition 7 it must be MEV(S | ∆, †∆) = MEV†∆(S | ∆, †∆). The thesis follows

from Definition 11.

Lemma 7 provides some basic properties of p. Items 1 and 2 study border

cases: Item 1 states that when ∆ = ∅, i.e. there are no newly deployed contracts to

check interference on, the blockchain state S does not interfere with ∆, as one would

naturally expect. Item 2 states that when the blockchain state S only consists of

user wallets but no contracts, S non-interferes with any newly deployed contracts.

Likewise, this is coherent with our intuition because there is no contract in S that an
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contract Airdrop {
constructor (?x:t) { tout=t } // deposit any token t
withdraw () { sender !# tout:tout } // any user withdraws

}
contract Exchange {

constructor (?x:t1 ,t2 ,r) {
require r >0;
rate=r; tout=t1; tin=t2; owner= origin

}
getTokens () {

return (tin ,tout)
}
getRate () {

return rate
}
setRate ( newRate ) {

require origin == owner;
rate= newRate

}
swap (?x:t) { // receives x units of tin

require t== tin && #tout >=x*rate;
sender !x*rate:tout // sends x*rate units of tout

}
}

Figure 4.3: An airdrop and an exchange contract.

adversary could leverage to inflict a loss to ∆. Item 3 states that the interference is

bounded between 0 and 1. An interference value of 0 corresponds to the case where

we have no interference from S to ∆, while a value of 1 corresponds to the case where

we have the maximum interference and ∆ is drained of all funds. This is preferable

since we would like to readily verify when contracts suffer no loss or a complete loss

of funds upon deployment.

4.2 Theoretical Properties

Lemma 7 (Basic properties of p). For all S,∆:

1. p(S, ∅) = 0

2. p(W | ∅,∆) = 0

3. 0 ≤ p(S,∆) ≤ 1

Proof. For (1), note that $†∅(∅) = 0, and so the thesis follows by Definition 11.
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For (2), in the case where $†∆(∆) = 0, we have p(S,∆) = 0 by definition. And in

the case where $†∆(∆) ̸= 0, we have that:

p(W | ∅,∆) =
MEV(W | ∅ | ∆, †∆)−MEV†∆(W | ∅ | ∆, †∆)

$†∆(∆)

By Lemma 1(4), MEV(W | ∅ | ∆, †∆) = MEV†∆(W | ∅ | ∆, †∆), this gives p(W | ∅,∆) =

0.

For (3), in the case where $†∆(∆) = 0, we have p(S,∆) = 0 by definition. And in

the case where $†∆(∆) ̸= 0, we have that:

0 ≤ MEV†∆(S | ∆, †∆) by Lemma 1(5)

≤ MEV(S | ∆, †∆) by Lemma 1(2)

≤ $†∆(∆) by Lemma 1(5)

which implies 0 ≤ p(S,∆) ≤ 1.

Proposition 2 states that widening the blockchain state S potentially increases

MEV interference. This is because, by appending S with contract states Γ, we are

enabling the adversary to invoke a larger set of contracts, some of which may poten-

tially be leveraged to cause a greater loss to newly deployed contracts∆. Furthermore,

we make note of a few important observations that substantiate the reasonableness

of our thesis in Proposition 2. Let S | Γ be a widening of S , i.e. S ⪯ S | Γ. By

hypothesis, S is well-formed, i.e. any valid transaction sent to S never calls methods

of contracts outside of S . This requires that all the contract dependencies of †S are

self-contained, i.e. deps(S) ⊆ †S . (Notice that on the other hand, there is no such

restriction on †Γ, i.e. †Γ can have dependencies in Γ as well as in S . Formally, we

have deps(Γ) ⊆ †(S | Γ).) Since we assume S | ∆ to be well-formed and that the

dependencies of contracts are fixed, we have that widening the state Γ does not affect

the dependencies of †∆, i.e. deps(∆) ⊆ †(S | ∆). Moreover, we note that when we

compose S | Γ with ∆, we are implicitly assuming that the contracts names in ∆ are

disjoint from those in S | Γ, i.e. †(S | Γ) ∩ †∆ = ∅.

Proposition 2. If deps(∆) ∩ †Γ = ∅, then:

p(S,∆) ≤ p(S | Γ,∆)
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Proof. By Definition 11, we have two cases.

If $†∆(∆) = 0, then p(W | Γ,∆) = p(W | Γ′,∆) = 0, hence the thesis holds trivially.

Otherwise, assume that $†∆(∆) ̸= 0. Then, by Definition 11:

p(S,∆) =
MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆)

$†∆(∆)

p(S | Γ,∆) =
MEV(S | Γ | ∆, †∆)−MEV†∆(S | Γ | ∆, †∆)

$†∆(∆)

From Lemma 1, we have that:

MEV†(S |∆)(S | ∆, †∆) ≤ MEV†(S |∆)(S | Γ | ∆, †∆) by Item 3

≤ MEV†(S |Γ|∆)(S | Γ | ∆, †∆) by Item 2 (4.1)

We know from (4.1),

MEV(S | ∆, †∆) ≤ MEV(S | Γ | ∆, †∆)

By Lemma 5, we have

MEV†∆(S | ∆, †∆) = MEV†∆(S | Γ | ∆, †∆) (4.2)

Then:

MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆) ≤ MEV(S | Γ | ∆, †∆)−MEV†∆(S | Γ | ∆, †∆)

which finally gives us:

MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆)

$†∆(∆)
≤ MEV(S | Γ | ∆, †∆)−MEV†∆(S | Γ | ∆, †∆)

$†∆(∆)

which gives our thesis, i.e. p(S,∆) ≤ p(S | Γ,∆).

Example 2. To show that a larger contract state might strictly increase MEV inter-

ference, consider a composition of the Airdrop and Exchange in Figure 7.1, where the

state S only includes the adversary’s wallet and no contract accounts. The intuition

here is that the adversary M is able to leverage token dependencies between the newly
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deployed contracts †Γε to extract more MEV from †∆. More precisely, consider the

following instance:

S = W | Γ = M[0: T] | ∅
Γε = Airdrop[1: T, tout = T]

∆ = Exchange[100: ETH, tin = T, tout = ETH, rate = 10, owner = B]

Observe that by Definition 3, assuming unitary prices, we have that:

$†∆(∆) = ${Exchange}(∆) = 100

MEV(S | ∆, †∆) = MEV{Exchange}(S | ∆, {Exchange}) = 0

MEV(S | Γε | ∆, †∆) = MEV{Airdrop,Exchange}(S | Γε | ∆, {Exchange}) = 10

MEV†∆(S | ∆, †∆) = MEV{Exchange}(S | ∆, {Exchange}) = 0

MEV†∆(S | Γε | ∆, †∆) = MEV{Exchange}(S | Γε | ∆, {Exchange}) = 0

Therefore S ̸⇝ ∆, while S | Γε ⇝ ∆. With Definition 11 we have:

p(S,∆) = 0

p(S | Γε,∆) =
MEV(S | Γε | ∆, †∆)−MEV†∆(S | Γε | ∆, †∆)

$†∆(∆)
=

10− 0

100
= 0.1

⋄

In Remark 1, we show that we cannot infer in general that wealthier adversaries are

always able to cause more interference. However, this does not imply that wealthier

adversaries will never be able to cause more interference to a blockchain state. To

demonstrate this, we show two examples after the proposition: in one case, the wealth

of the adversary plays a role in determining the interference caused, while in the

second case, the wealth of the adversary is not a determining factor.

Remark 1. We observe that:

S ≤$ S
′ ≠⇒ p(S,∆) ≤ p(S ′,∆)

Example 3. To show that a wealthier adversary might potentially increase the MEV

interference, consider the AMM-Bet composition with the entry fee set by the owner

27



of the Bet contract is a large sum. For instance:

S = M[10: ETH] | AMM[600: ETH, 600: T] | block.num = d− k | · · ·
S ′ = M[310: ETH] | AMM[600: ETH, 600: T] | block.num = d− k | · · ·
∆ = Bet[10: ETH, owner = A, tok = T, rate = 2, deadline = d, potShare = 3/4]

Observe here that when we are in state S , M will not be able to perform an attack

on Bet using AMM because she does not possess the necessary wealth to both enter

the bet and produce a volatility in AMM. Instead, when M possesses more wealth i.e.

we are in state S ′, we have that p(S ′,∆) = 1/2 as shown in Example 1. Hence, this

example shows an instance where a wealthier state implies an increased interference

caused to ∆ as compared to a poorer state. ⋄

Example 4. To show that a wealthier adversary might potentially decrease the MEV

interference caused to contracts †∆, consider again the example of the Airdrop and

Exchange in Figure 7.1. Let:

S = M[0: T] | Airdrop[2: T, tout = T]

S ′ = M[9: T] | Airdrop[2: T, tout = T]

∆ = Exchange[100: ETH, tin = T, tout = ETH, rate = 10, owner = B]

Assuming unitary prices assigned to all tokens, we have

$†∆(∆) = ${Exchange}(∆) = 100

In the case where our blockchain state is S , by Definition 3, we have that:

MEV(S | ∆, †∆) = MEV{Airdrop,Exchange}(S | ∆, {Exchange}) = 20

MEV†∆(S | ∆, †∆) = MEV{Exchange}(S | ∆, {Exchange}) = 0

Therefore S ⇝ ∆, and with Definition 11 we have:

p(S,∆) =
MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆)

$†∆(∆)
=

20− 0

100
= 0.2
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Whereas, in the case where our blockchain state is S ′, by Definition 3, we have that:

MEV(S ′ | ∆, †∆) = MEV{Airdrop,Exchange}(S
′ | ∆, {Exchange}) = 100

MEV†∆(S
′ | ∆, †∆) = MEV{Exchange}(S

′ | ∆, {Exchange}) = 90

Therefore S ′ ⇝ ∆, and by Definition 11 we have:

p(S ′,∆) =
MEV(S ′ | ∆, †∆)−MEV†∆(S

′ | ∆, †∆)

$†∆(∆)
=

100− 90

100
= 0.1

Hence, p(S,∆) = 0.2 while p(S ′,∆) = 0.1, i.e. the interference caused to Exchange

is greater in a poorer state than in a wealthier state. This is because the richer

adversary in S ′ gets less advantage from Airdrop to cause a loss to Exchange. ⋄

Proposition 3 states that to calculate MEV interference, we only need to focus on

adversary wallets. Stated in another way, we have that the MEV interference caused

to †∆ by the state WM | W | Γ is equal to that caused by WM | Γ, i.e with the

non-adversarial wallets removed.

Proposition 3.

domWM = M =⇒ p(WM | W | Γ,∆) = p(WM | Γ,∆)

Proof. By Definition 11, we have two cases. If $†∆(∆) = 0, then p(WM | W | Γ,∆) =

p(WM | Γ,∆) = 0, hence the thesis holds trivially. Otherwise, if $†∆(∆) ̸= 0:

p(WM | W | Γ,∆) =
MEV†(Γ|∆)(WM | W | Γ | ∆, †∆)−MEV†∆(WM | W | Γ | ∆, †∆)

$†∆(∆)
and

p(WM | Γ,∆) =
MEV†(Γ|∆)(WM | Γ | ∆, †∆)−MEV†∆(WM | Γ | ∆, †∆)

$†∆(∆)

Now, from Item 1 in Lemma 2, we have

MEV†(Γ|∆)(WM | W | Γ | ∆, †∆) = MEV†(Γ|∆)(WM | Γ | ∆, †∆), and

MEV†∆(WM | W | Γ | ∆, †∆) = MEV†∆(WM | Γ | ∆, †∆)
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And so we have:

p(WM | W | Γ,∆) = p(WM | Γ,∆)

Remark 2. Widening ∆ does not necessarily increase the interference caused by S

on ∆. In other words, given that S | ∆ is a well-formed state, we have

∆ ⪯ ∆ | ∆ε ≠⇒ p(S,∆) ≤ p(S,∆ | ∆ε)

Example 5. Consider the following instance to illustrate the non-implication above:

S = W | Γ = M[320: ETH] | AMM[600: ETH, 600: T] | block.num = d− k | · · ·
∆ = Betp1[10: ETH, owner = A, tok = T, rate = 2, deadline = d, potShare = 1]

∆ | ∆ε = ∆ | Betp2[10: ETH, owner = A, tok = T, rate = 2, deadline = d, potShare = 3/4]

Clearly, p(S,∆) = 1. While,

p(S,∆ | ∆ε) =
MEV(S | ∆ | ∆ε, †(∆ | ∆ε))−MEV†(∆|∆ε)(S | ∆ | ∆ε, †(∆ | ∆ε))

$†(∆|∆ε)(∆ | ∆ε)

=
10 + 5− 0

10 + 10
=

15− 0

20
=

3

4
= 0.75

Hence p(S,∆) ≰ p(S,∆ | ∆ε). ⋄

We note that the non-implication in Remark 2 arises primarily due to the following

reason: when we widen the contract state ∆ to ∆ | ∆ε, the total value locked of the

whole contract state increases, i.e. $†(∆|∆ε)(∆ | ∆ε) ≥ $†∆(∆). This results in a larger

denominator in the computation of S ⇝ ∆ | ∆ε (in comparison to S ⇝ ∆) which

reduces the interference caused by S to the total contract state ∆ | ∆ε.
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Chapter 5

Revisiting MEV Interference

In this chapter, we study an alternate definition of MEV interference which we call p∞:

it represents a notion of interference independent of user wallets, and more specifically,

of adversarial wealth. Throughout the chapter, we assume that adversaries possess

unbounded wealth. By doing so, we are empowering the adversary to inflict more loss

on contracts, since wealth is no longer a limitation on conducting attacks. In practice,

this is possible when adversaries capitalize on flash loans which allow users to borrow

assets without providing any upfront collateral with the condition that it must be

returned within the same blockchain transaction. Otherwise, the entire transaction

is reverted.

5.1 MEV Interference with wealthy adversaries

Definition 12. For contract states Γ and ∆, we quantify the amount of MEV∞

interference caused by Γ on ∆ as:

p∞(Γ,∆) =
MEV∞(Γ | ∆, †∆)−MEV∞

†∆(Γ | ∆, †∆)

$†∆(∆)
if $†∆(∆) ̸= 0

When $†∆(∆) = 0, we define p∞(Γ,∆) = 0.

Proposition 4, Lemma 8 and Proposition 5 state that p∞ adheres to the basic

properties that we have seen before for p ( Proposition 1, Lemma 7 and Proposition 2).

Proposition 4 (p∞ vs. ̸⇝∞). p∞(Γ,∆) = 0 ⇐⇒ Γ ̸⇝∞ ∆
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Proof. If p∞(Γ,∆) = 0, then it must be MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆) or

$†∆(∆) = 0. In the first case, by Definition 8 we directly have the thesis. In the

second case, by Lemma 4(5) it must be MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆) = 0,

from which the thesis follows. To prove the other implication, if Γ ̸⇝∞ ∆ then

by Definition 8 it must be MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆). The thesis follows

from Definition 12.

5.2 Theoretical Properties

Lemma 8 (Basic properties of p∞). For all Γ,∆:

1. p∞(Γ, ∅) = 0

2. p∞(∅,∆) = 0

3. 0 ≤ p∞(Γ,∆) ≤ 1

Proof. Items (1), (2), (3) have analogous statements in Lemma 7 which hold for any

wallet state. The corresponding results for MEValso hold for MEV∞ due to Lemma 3

and Definition 6.

Proposition 5. If deps(∆) ∩ †Γε = ∅, then:

p∞(Γ,∆) ≤ p∞(Γ | Γε,∆)

Proof. Because (4.1) and (4.2) hold for any wallet state, analogous ”rich-adversary”

versions of these equations can be proved using Item 2 and Item 2 of Lemma 4

and Lemma 6. We can then re-use the same reasoning to prove the proposition.

Example 6. To demonstrate that a larger contract state might strictly increase the

MEV∞ interference caused to ∆, consider the contracts in Figure 5.1 and let:

Γ = C2[0: T] Γε = C1[0: T] ∆ = C0[5: T]

Observe that by Definition 6, assuming unitary prices, we have that $†∆(∆) = 5 and

MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆) = MEV∞

†∆(Γ | Γε | ∆, †∆) = 0
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contract C0 { f() { require sender ==C1; sender !5:T} }
contract C1 { g() { C0.f(); sender !#T:T} }
contract C2 { h() { C0.f(); sender !#T:T} }

Figure 5.1: Contracts for Example 6.

Instead, MEV∞(Γ | Γε | ∆, †∆) = 5. Therefore Γ ̸⇝∞ ∆, while Γ | Γε ⇝ ∆. Now,

with Definition 11, we have p∞(Γ,∆) = 0 while p∞(Γ | Γε,∆) = 1. Consequently, we

have p∞(Γ,∆) < p∞(Γ | Γε,∆). ⋄

Proposition 6 gives sufficient conditions under which it is possible to extend Γ with

Γε without altering the interference caused to contracts in ∆. When contracts C′ =

deps(∆) ∩ deps(†(Γ | Γε) \ deps(∆)) are sender-agnostic, i.e. they are not influenced

by the caller identity, then we can strip away all the non-dependencies of ∆ from

contracts in Γ | Γε. Since deps(∆) is restricted to contracts ⊆ Γ, stripping away

contracts in Γε does not affect the interference that an adversary M can cause to †∆.

Furthermore, Proposition 7 provides a synonymous proposition where we prepend Γ

with Γε instead.

Proposition 6. Given deps(∆) ∩ †Γε = ∅,

p∞(Γ,∆) = p∞(Γ | Γε,∆)

when contracts in deps(∆) ∩ deps(†(Γ | Γε) \ deps(∆)) are sender-agnostic.

Proof. For simplicity, we let Γ′ = Γ | Γε. By Definition 12, we have two cases.

If $†∆(∆) = 0, then p∞(Γ,∆) = p∞(Γ′,∆) = 0, hence the thesis holds trivially.

Otherwise, if $†∆(∆) ̸= 0, we can expand each of the interferences as follows:

p∞(Γ,∆) =
MEV∞(Γ | ∆, †∆)−MEV∞

†∆(Γ | ∆, †∆)

$†∆(∆)

p∞(Γ′,∆) =
MEV∞(Γ′ | ∆, †∆)−MEV∞

†∆(Γ
′ | ∆, †∆)

$†∆(∆)

We will show the following two sets of equalities:

MEV∞(Γ | ∆, †∆) = MEV∞(Γ′ | ∆, †∆) (5.1)

MEV∞
†∆(Γ | ∆, †∆) = MEV∞

†∆(Γ
′ | ∆, †∆) (5.2)
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Observe that (5.2) follows directly from Lemma 6. Now, to prove (5.1), we start by

proving the following equality using Theorem 3:

MEV∞(Γ′ | ∆, †∆) = MEV∞
†(Γ′|∆)∩deps(∆)(Γ

′ | ∆, †∆) (5.3)

By letting D = †(Γ′ | ∆), and

C′ = deps(∆) ∩ deps(†(Γ′ | ∆) \ deps(∆)) = deps(∆) ∩ deps(†Γ′ \ deps(∆))

we can see that C′ ⊆ D and that contracts in C′ are sender-agnostic (by assumption).

This means that both conditions of Theorem 4 are satisfied and we have proven (5.3).

Now, since deps(∆) ∩ †Γε = ∅, we have that:

†(Γ′ | ∆) ∩ deps(∆) = †(Γ | Γε | ∆) ∩ deps(∆) = †(Γ | ∆) ∩ deps(∆)

Hence, we can rewrite (5.3) as

MEV∞(Γ′ | ∆, †∆) = MEV∞
†(Γ|∆)∩deps(∆)(Γ

′ | ∆, †∆) (5.4)

Next, using Theorem 3 again, we prove the equality

MEV∞(Γ | ∆, †∆) = MEV∞
†(Γ|∆)∩deps(∆)(Γ | ∆, †∆) (5.5)

First, observe

deps(∆) ∩ deps(†Γ′ \ deps(∆))

=deps(∆) ∩ deps((†Γ ∪ †Γε) \ deps(∆))

=deps(∆) ∩ deps((†Γ \ deps(∆)) ∪ (†Γε \ deps(∆)))

=deps(∆) ∩ {deps(†Γ \ deps(∆)) ∪ deps(†Γε \ deps(∆))}
={deps(∆) ∩ deps(†Γ \ deps(∆))} ∪ {deps(∆) ∩ deps(†Γε \ deps(∆))}

Since C′ = deps(∆)∩deps(†Γ′ \ deps(∆)) are sender-agnostic, we have that deps(∆)∩
deps(†Γ \ deps(∆)) are also sender-agnostic. To prove (5.5), this time we let D =

†(Γ | ∆) and

C′ = deps(∆) ∩ deps(†(Γ | ∆) \ deps(∆)) = deps(∆) ∩ deps(†Γ \ deps(∆))
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we can see that C′ ⊆ D and that contracts in C′ are sender-agnostic (by assumption).

This means that both conditions of Theorem 4 are satisfied. Now, using Lemma 6

we have:

MEV∞
†(Γ|∆)∩deps(∆)(Γ

′ | ∆, †∆) = MEV∞
†(Γ|∆)∩deps(∆)(Γ | ∆, †∆) (5.6)

Therefore, we can prove (5.1) by using (5.4), (5.5) and (5.6). Observe:

MEV∞
†(Γ|∆)∩deps(∆)(Γ

′ | ∆, †∆) = MEV∞
†(Γ|∆)∩deps(∆)(Γ | ∆, †∆) from (5.6)

∥ ∥ from (5.4) and (5.5)

MEV∞(Γ′ | ∆, †∆) MEV∞(Γ | ∆, †∆)

A direct consequence of Proposition 6, when the dependencies of ∆ are sender-

agnostic, is that the adversary attacking∆ gains no additional advantage by deploying

contracts before ∆. This result is similar in essence to Corollary 2 in [7].

Corollary 1. Given deps(∆) ∩ †Γε = ∅, p∞(Γ,∆) = p∞(Γ | ΓM ,∆) when the con-

tracts in deps(∆) are sender-agnostic.

Proof. The proof follows directly by replacing Γε with ΓM .

Proposition 7. Given deps(Γ | ∆) ∩ †Γε = ∅,

p∞(Γ,∆) = p∞(Γε | Γ,∆)

when contracts in deps(∆) ∩ deps(†(Γε | Γ) \ deps(∆)) are sender-agnostic.

Proof. Firstly, we note that without the condition deps(Γ | ∆) ∩ †Γε = ∅, the state

Γ | ∆ is not well-formed and the thesis does not make sense. The proof remains

exactly the same as for Proposition 6.

Remark 3. Given that MEV∞(Γ | ∆, †∆) is determined solely by deps(∆), it follows

that p∞(Γ,∆) is computable based exclusively on deps(∆). Formally, if the conditions
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specified in Theorem 4 hold, we can rewrite p∞(Γ,∆) as follows:

p∞(Γ,∆) =
MEV∞

†(Γ|∆)∩deps(∆)(Γ | ∆, †∆)−MEV∞
†∆(Γ | ∆, †∆)

$†∆(∆)
if $†∆(∆) ̸= 0

and p∞(Γ,∆) = 0 otherwise.

5.3 Comparing existing perspectives on MEV In-

terference

There are a few differences between Definition 11 and Definition 12 that are to be

noted. Firstly, in general, assuming particular fixed contract states Γ and ∆, taking

the maximum of p(Γ,∆) over all wallet states does not yield p∞(Γ,∆), i.e.

Remark 4. For given contract states Γ and ∆,

p∞(Γ,∆) ̸= max
W

p(W | Γ,∆)

This is because while Definition 11 captures both token and contract dependencies

between Γ and ∆, Definition 12 only captures contract dependencies and is agnostic

to token dependencies between S and ∆. That is, in the case that there are token-

dependencies between S and ∆ being leveraged by the adversary, Definition 12 would

be unable to capture that. And hence, the value obtained in the RHS is larger than

the one from the LHS in general.

Example 7. To demonstrate MEV interference which leverages token dependencies

and hence is not captured by Definition 12, consider Airdrop and Exchange in Fig-

ure 7.1, and let:

S = W | Γ = M[0: T] | Airdrop[1: T, tout = T]

∆ = Exchange[100: ETH, tin = T, tout = ETH, rate = 10, owner = B]

Here, $†∆(∆) = ${Exchange}(∆) = 100. Let us calculate the interference values for

this case using both definitions. To calculate p(S,∆), observe that the unrestricted

MEV of Exchange is 10 · $1ETH, since M can first extract 1: T from Airdrop, and then
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use Exchange, draining 10: ETH. Instead, its restricted MEV is zero, since M cannot

obtain the needed 1: T.

By Definition 3, we have that:

MEV(S | ∆, †∆) = MEV{Airdrop,Exchange}(S | ∆, {Exchange}) = 10

MEV†∆(S | ∆, †∆) = MEV{Exchange}(S | ∆, {Exchange}) = 0

Therefore, by Definition 11 we have:

p(S,∆) =
10− 0

100
= 0.1 ≤ max

W
p(S,∆)

To calculate p∞, by Definition 6, we have that:

MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆) = 10

Therefore, by Definition 12 we have that:

p∞(Γ,∆) = 0 < max
W

p(S,∆) ⋄

Remark 5. Let WM be the threshold adversary wallet given by Lemma 3. Then, the

interference values yielded by Definition 11 and Definition 12 match, i.e.:

p∞(Γ,∆) = p(WM | Γ,∆)
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Part II

Contributions
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Chapter 6

Quantitative MEV Interference

In this chapter, we arrive on a final definition for quantitative MEV interference:

I(S ⇝ ∆). Our new notion satisfies properties that one would consider desirable

for a quantitative notion of composability to provide: namely, (i) When ∆ has zero

wealth, then I(S ⇝ ∆) is zero. (ii) I(S ⇝ ∆) is zero when the contract dependencies

and the token dependencies of ∆ in S are irrelevant to the ability of inflicting a loss

to ∆. (iii) I(S ⇝ ∆) does not decrease when we extend S with contracts that are not

dependencies of ∆. (iv) I(S ⇝ ∆) is independent of the users’ wallets in S , except

for those belonging to adversaries. (v) I(S ⇝ ∆) has a maximum, corresponding

to the case where the economic loss that can be inflicted to ∆ is purely due to the

interactions of the adversary with S .

Definition 13 (Quantitative MEV interference). For a blockchain state S = W | Γ
and a contract state ∆, we quantify the MEV interference caused by S on ∆ as:

I(S ⇝ ∆) = 1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
if MEV(S | ∆, †∆) ̸= 0

When MEV(S | ∆, †∆) = 0, we define I(S ⇝ ∆) = 0.

Proposition 8 (I vs. ̸⇝). I(S ⇝ ∆) = 0 ⇐⇒ S ̸⇝ ∆

Proof. If I(S ⇝ ∆) = 0, then it must be MEV(S | ∆, †∆) = MEV†∆(S | ∆, †∆)

or MEV(S | ∆, †∆) = 0. In the first case, by Definition 13 we directly have the

thesis. In the second case, the thesis directly follows by Definition 7. To prove the

other implication, if S ̸⇝ ∆ then by Definition 7, it must be MEV(S | ∆, †∆) =

MEV†∆(S | ∆, †∆). The thesis directly follows from Definition 13.
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6.1 Theoretical Properties

We now study the theoretical properties of I(S ⇝ ∆).

Lemma 9 (Basic properties of I). For all S,∆:

1. I(S ⇝ ∅) = 0

2. I(W | ∅ ⇝ ∆) = 0

3. 0 ≤ I(S ⇝ ∆) ≤ 1

Proof. For Item 1, by Item 1 of Lemma 1 we have MEV(S | ∅, †∅) = 0. The thesis

follows by Definition 13.

For Item 2, by Item 4 of Lemma 1 we have:

MEV(W | ∅ | ∆, †∆) = MEV†∆(W | ∅ | ∆, †∆)

which gives us I(W | ∅ ⇝ ∆) = 0, and hence we have our thesis.

For Item 3, there are two cases. If MEV(S | ∆, †∆) = 0, then I(S ⇝ ∆) = 0 holds

by definition. Otherwise, by Items 2 and 5 of Lemma 1:

0 ≤ MEV†∆(S | ∆, †∆) ≤ MEV(S | ∆, †∆)

=⇒ 0 ≤ MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≤ 1

=⇒ 0 ≤ 1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≤ 1

which implies 0 ≤ I(S ⇝ ∆) ≤ 1, giving us our thesis.

Lemma 10. If $†∆(∆) = 0, then I(S ⇝ ∆) = 0.

Proof. From Items 2 and 5 of Lemma 1, we have:

0 ≤ MEV†∆(S | ∆, †∆) ≤ MEV(S | ∆, †∆) ≤ $†∆(∆)

By hypothesis, $†∆(∆) = 0. So, by the inequalities above, MEV(S | ∆, †∆) = 0.

Definition 13 gives the thesis.
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Theorem 5. When deps(∆) ∩ †Γ = ∅: I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆)

Proof. By Definition 13, we have two cases.

If MEV(S | ∆, †∆) = 0, then I(S ⇝ ∆) = 0. From Lemma 93, we have I(S | Γ ⇝
∆) ≥ 0. This implies the thesis, I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆).

Otherwise, assume that MEV(S | ∆, †∆) > 0. Then, by Definition 13:

I(S ⇝ ∆) = 1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)

Now, by Item 3 of Lemma 1, we have that:

0 < MEV(S | ∆, †∆) ≤ MEV(S | Γ | ∆, †∆)

Therefore, by Definition 13:

I(S | Γ ⇝ ∆) = 1− MEV†∆(S | Γ | ∆, †∆)

MEV(S | Γ | ∆, †∆)

From Lemma 1, we have that:

MEV†(S |∆)(S | ∆, †∆) ≤ MEV†(S |∆)(S | Γ | ∆, †∆) by Item 3

≤ MEV†(S |Γ|∆)(S | Γ | ∆, †∆) by Item 2 (6.1)

We know from (6.1),

MEV(S | ∆, †∆) ≤ MEV(S | Γ | ∆, †∆)

Taking the reciprocal on both sides gives us

1

MEV(S | ∆, †∆)
≥ 1

MEV(S | Γ | ∆, †∆)

By Lemma 5, we have MEV†∆(S | ∆, †∆) = MEV†∆(S | Γ | ∆, †∆). Then:

MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≥ MEV†∆(S | Γ | ∆, †∆)

MEV(S | Γ | ∆, †∆)
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which finally gives us

1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≤ 1− MEV†∆(S | Γ | ∆, †∆)

MEV(S | Γ | ∆, †∆)

which gives our thesis, i.e. I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆).

Theorem 6. If domWM = M, then I(WM | W | Γ ⇝ ∆) = I(WM | Γ ⇝ ∆).

Proof. From Item 1 of Lemma 2, we have:

domWM = M =⇒ MEVD(WM | W | Γ,C) = MEVD(WM | Γ,C)

This implies:

MEV†(Γ|∆)(WM | W | Γ | ∆, †∆) = MEV†(Γ|∆)(WM | Γ | ∆, †∆), and

MEV†∆(WM | W | Γ | ∆, †∆) = MEV†∆(WM | Γ | ∆, †∆)

which gives us our thesis, i.e. I(WM | W | Γ ⇝ ∆) = I(WM | Γ ⇝ ∆)

Theorem 7 provides sufficient conditions under which an adversary M attack-

ing the newly deployed contracts in ∆ gains no advantage by deploying malicious

contracts †ΓM before the attack. Essentially, these conditions guarantee that the in-

terference caused to ∆ is preserved when the state S is extended with contracts ΓM

satisfying specific conditions. Condition (i) requires deps(∆) to be sender-agnostic,

i.e. its contract methods are unaware of the identity of the sender, only being able

to use it as a recipient of token transfers. Condition (ii) requires token independence

between the (contract) dependencies and the non-dependencies of ∆ which could

have possibly been exploited by M. Since Definition 13 assumes that states are well-

formed, Theorem 7 implicitly assumes that contracts in ∆ do not have dependencies

in ΓM .

Theorem 7. I(S ⇝ ∆) = I(S | ΓM ⇝ ∆) holds if (i) deps(∆) are sender-agnostic,

and (ii) deps(∆) and deps(S | ΓM) \ deps(∆) are token independent in S | ΓM | ∆.
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Proof. We show the following two equalities, which imply the thesis:

MEV(S | ∆, †∆) = MEV(S | ΓM | ∆, †∆) (6.2)

MEV†∆(S | ∆, †∆) = MEV†∆(S | ΓM | ∆, †∆) (6.3)

Observe that (6.3) follows directly from Lemma 5. To prove (6.2), we pass through

two auxiliary results. We start by proving the following equality via Theorem 2:

MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆) = MEV†S∩deps(†∆)(S | ΓM | ∆, †∆) (6.4)

In order to apply Theorem 2, let:

C = †∆ D = †(S | ΓM | ∆) C′ = deps(∆) ∩ deps(D \ deps(C))

Note that the assumptions of Theorem 2 are satisfied:

• assumption (i): C′ are sender-agnostic, by assumption (i);

• assumption (ii): C′ ⊆ D holds trivially;

• assumption (iii): since the state S | ∆ is well-formed by assumption, then

deps(∆) ⊆ †(S | ∆), and so we have that:

deps(D) ∩ deps(C) = deps(S | ΓM | ∆) ∩ deps(∆) = deps(∆)

deps(D) \ deps(C) = deps(S | ΓM | ∆) \ deps(∆) = deps(S | ΓM) \ deps(∆)

⊆ †(S | ΓM) \ deps(∆)

Since S | ΓM | ∆ is well-formed and deps(∆) and †(S | ΓM) \ deps(∆) are

disjoint, then ?? (iii) ensures that these sets are token independent.

Therefore, by Theorem 2 it follows that (6.4) holds.

Next, using Theorem 2 again, we prove the equality:

MEV†(S |∆)(S | ΓM | ∆, †∆) = MEV†S∩deps(†∆)(S | ΓM | ∆, †∆) (6.5)

This time, in order to apply Theorem 2 we let:

C = †∆ D = †(S | ∆) C′ = deps(∆) ∩ deps(D \ deps(C))
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Again, note that the assumptions of Theorem 2 are satisfied:

• assumption (i): C′ are sender-agnostic, by assumption (i);

• assumption (ii): C′ ⊆ D holds trivially;

• assumption (iii): since the state S | ∆ is well-formed by assumption, then

deps(∆) ⊆ †(S | ∆), and so we have that:

deps(D) ∩ deps(C) = deps(S | ∆) ∩ deps(∆) = deps(∆)

deps(D) \ deps(C) = deps(S | ∆) \ deps(∆) = deps(S) \ deps(∆)

Condition (iii) ensures that these sets are token independent.

Therefore, by Theorem 2 it follows that (6.5) holds.

Now we can prove (6.2) by observing the following chain of equalities:

MEV†(S |∆)(S | ΓM | ∆, †∆) = MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆) from (6.4) and (6.5)

∥ ∥ from Lemma 5

MEV†(S |∆)(S | ∆, †∆) MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆)

∥ ∥ by Lemma 1(4)

MEV(S | ∆, †∆) MEV(S | ΓM | ∆, †∆)

Now, the thesis directly follows from Equations (6.2) and (6.3).
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Chapter 7

Use Cases

We now apply our notion to analyze paradigmatic smart contract compositions.

7.1 Airdrop/Exchange

Consider an instance of the Exchange contract in Figure 7.1, to be deployed in a

blockchain state S containing an instance of the Airdrop contract in Figure 7.1.

More specifically, let:

S = M[nM : T] | Airdrop[nA : T]

∆ = Exchange[nE : ETH, tin = T, tout = ETH, rate = r, owner = A]

The Exchange contract allows any user to swap tokens of type tin with tokens of type

tout (in the instance, T and ETH, respectively), at an exchange rate of 1 unit of tin

for rate units of tout. For simplicity, assume that rate is a floating-point number,

and arithmetic operations are floored, and that $1T = $1ETH = 1. We evaluate the

MEV interference from S to ∆. When the exchange rate is favourable, i.e. the rate

is greater than 1, the adversary M can extract MEV from ∆ by exchanging T for

ETH. This is possible as far as Exchange has enough ETH balance. The MEV can be

further increased by draining nA : T from Airdrop, and swapping these tokens through
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contract Airdrop {
constructor (?x:t) { tout=t } // deposit any token t
withdraw () { sender !# tout:tout } // any user withdraws

}
contract Exchange {

constructor (?x:t1 ,t2 ,r) {
require r >0;
rate=r; tout=t1; tin=t2; owner= origin

}
getTokens () {

return (tin ,tout)
}
getRate () {

return rate
}
setRate ( newRate ) {

require origin == owner;
rate= newRate

}
swap (?x:t) { // receives x units of tin

require t== tin && #tout >=x*rate;
sender !x*rate:tout // sends x*rate units of tout

}
}

Figure 7.1: An airdrop and an exchange contract.

the Exchange. More precisely, we have:

MEV{Exchange}(S | ∆, {Exchange}) =




⌊nM · r⌋ if ⌊nM · r⌋ < nE

nE otherwise

MEV(S | ∆, {Exchange}) =




⌊(nM + nA) · r⌋ if ⌊(nM + nA) · r⌋ < nE

nE otherwise

Therefore, the MEV interference from S on ∆ is bounded by:

p(S,∆) ≤





nA/(nM+nA ) if ⌊(nM + nA) · r⌋ < nE

1− nM ·r/nE if ⌊(nM + nA) · r⌋ ≥ nE > ⌊nM · r⌋
0 otherwise

When M is sufficiently rich, she can drain the Exchange without invoking the Airdrop.

Instead, when M’s wealth is limited, she is able to inflict a greater loss of Exchange
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contract Betvoracle {
constructor (?x:ETH ,t,d) {

require t!= ETH && oracle . getTokens () ==( ETH ,t);
tok=t; rate=r; owner= origin ; deadline =d

}
bet (?x:ETH) {

require player == null && x==# ETH;
player = origin

}
win(v) {

require block.num <= deadline && origin == player ;
require v >=0 && v <=1;
if ( oracle . getRate (ETH) >=v*rate) then

player !(v*# ETH):ETH
else abort

}
close () {

require block.num > deadline && origin == owner;
owner !# ETH:ETH

}
}

Figure 7.2: Betv sends a variable proportion of the pot to the winner based on the
oracle exchange rate.

by leveraging the Airdrop. So, the interference caused to Exchange in this case

has a dual dependence on the adversary’s and the Airdrop’s wealth. Furthermore,

the interference is inversely proportional to M’s wealth, i.e. richer adversaries have

less need to exploit the context, resulting in lower interference from S to ∆. This

is coherent with our intuition, since we would expect a poorer adversary to benefit

more from exploiting the Airdrop than a richer one. ⋄

7.2 AMM/Betv

The Betv contract in Figure 7.2 allows a player to bet on the exchange rate between

a token and ETH. It is parameterized over an oracle that is queried for the token

price. Betv receives the initial pot from its owner upon deployment, and a player

must match this amount to enter the bet. Before the deadline, the player can win

a proportion potShare of the total pot if the oracle exchange rate exceeds or equals

potShare times the bet rate. The remaining portion is taken by the owner as a fee.

Consider an instance of Betv using the Automated Market Maker AMM in Figure 4.1
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as a price oracle:

S = M[m: ETH] | AMM[r0: ETH, r1: T] | block.num = d− k | · · ·
∆ = Betv[b: ETH, owner = A, tok = T, rate = r, deadline = d]

When M is allowed to manipulate the AMM, she can inflate the exchange rate of ETH,

provided that she possesses sufficient funds. Formally, if M swaps x: ETH for y: T, then

according to the criterion specified in Bet.win(), the winner receives an amount ⌊2bp⌋
only if AMM.getRate(ETH) = r0+x/r1−y ≥ p · r. Assuming that M enters the bet only

when she can choose x sufficiently high to satisfy this condition, and for p ≥ 1/2 (since

a smaller proportion makes the bet irrational for her), she fires the following sequence

of transactions: where, in the swap transaction, x = m− b ≥ 0 is the number of ETH

units sent to the AMM, y = ⌊xr1/r0+x⌋ is the number of T units received, and the value

that M bets on is p = r0+x/r(r1−y):

S | ∆ M:Bet.bet(? b:ETH,p)−−−−−−−−−−−→ AMM[r0: ETH, r1: T] | Bet[2b: ETH, potShare = p, · · · ] | · · ·
M:AMM.swap(?x:ETH,0)−−−−−−−−−−−→ AMM[r0 + x: ETH, r1 − y: T] | Bet[2b: ETH, · · · ] | · · ·
M:Bet.win()−−−−−−→ AMM[r0 + x: ETH, r1 − y: T] | Bet[2b− ⌊2bp⌋: ETH, · · · ] | · · ·
M:AMM.swap(? y:T,0)−−−−−−−−−−→ AMM[r0: ETH, r1: T] | Bet[2b− ⌊2bp⌋: ETH, · · · ] | · · ·

By Equation (3.2) we have:

MEV(S | ∆, {Bet}) = b− (2b− ⌊2bp⌋) = ⌊2bp⌋ − b ≤ 2bp− b =
2b(r0 + x)

r(r1 − y)
− b

=
2b(r0 + x)

r
�
r1 −

j
xr1
r0+x

k� − b ≤ 2b(r0 + x)

r
�
r1 − xr1

r0+x

� − b

=
2b(r0 + x)2

rr0r1
− b =

�
2(r0 +m− b)2

rr0r1
− 1

�
b

Whereas, if M was restricted to interact with Bet only, there are two cases: if

AMM.getRate = r0/r1 ≥ p · r, then M wins the bet. Otherwise, she loses (and, therefore,

Bet does not suffer an economic loss). Even in this case, M enters the bet only for
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p ≥ 1/2. Therefore Equation (3.1) gives us:

MEV{Bet}(S | ∆, {Bet}) =




b−

�
2b−

j
2br0
rr1

k�
if r0

rr1
≥ 1/2

0 otherwise

=





j
2br0
rr1

k
− b if r0

rr1
≥ 1/2

0 otherwise

>





2br0
rr1

− b− 1 if r0
rr1

≥ 1/2

0 otherwise

Hence MEV interference is estimated through Definition 11 as follows:

p(S,∆) <




1−

2br0
rr1

−b−1
�

2(r0+m−b)2

rr0r1
−1

�
b

if r0
rr1

≥ 1/2

1 otherwise

=




1− (2br0−brr1−rr1)r0

b(2(r0+m−b)2−rr0r1)
if r0

rr1
≥ 1/2

1 otherwise

=




1− 2br20−rr0r1(b+1)

2b(r0+m−b)2−brr0r1
if r0

rr1
≥ 1/2

1 otherwise

We observe maximum interference when M exploits the Betv by manipulating the AMM,

which would be impossible by interacting exclusively with Betv. Furthermore, the

interference value is proportional to the adversarial wealth, as one would anticipate.

By contrast, even if M was fortunate to be draining a portion of the Betv by fair

play, she can always increase this loss by manipulating the AMM (provided she owns

adequate funds). Note that in the composition between Betv and Exchange, the MEV

interference is zero, as the adversary cannot manipulate the exchange rate (unless she

is the Exchange owner). ⋄

7.3 AMM/LendingPool

The LP contract in Figure 7.3 implements a lending protocol, allowing users to deposit

tokens and borrow them only if their collateralization is above a certain threshold.

The collateralization is the ratio between the value of deposits and that of debits,
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and is a reflection of the borrowing capacity of a user. LP is parameterized over an

oracle that is queried for the token prices. Below we analyse a well-known attack

where the underlying oracle is an AMM, which an adversary manipulates to exceed

her previously limited borrowing capacity [13, 23, 6, 20, 2]. Consider the following

instance where we assume where we assume that the AMM is balanced and that M has

not deposited or borrowed tokens from the LP yet:

S = M[n: ETH] | AMM[r: ETH, r: T] ∆ = LP[a: ETH, b: T, Cmin = Cmin , · · · ]

To simplify the computations in this, we assume that LP permits users to trade

real-valued amounts of tokens (i.e. w ∈ T → R). Note that our simplified LP imple-

mentation only offers two functions, deposit and borrow. Calling deposit does not

extract tokens from the LP, so the only action through which M could cause a loss to

the LP is borrow.

We start by estimating the unrestricted local MEV, i.e. MEV(S | ∆, {LP}). When

M can interact with the AMM, she can maximize the loss caused to LP by maximizing

her loan amount, or in other words, by inflating her collateralization ratio. There is

only one way to do so: by depositing a portion of her ETH to the LP and by inflating

the exchange rate of ETH provided by the AMM. To this purpose, M partitions n into

x and n− x, where she deposits n− x: ETH in the LP and provides x: ETH to the AMM

in exchange for y: T. Let us suppose this allows M to borrow t: T from the LP, which

we assume to have sufficient reserves of T (i.e., b ≥ t). We first note that according

to LP.borrow, M can borrow t: T whenever she is over-collateralized, i.e.:

collateral(M) =
(n− x)(r + x)2

t(r − y)2
≥ Cmin

which gives us the maximum value of t that M can choose, which is:

t =
(n− x)(r + x)2

Cmin(r − y)2
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contract LP {
constructor (Cmin_) { Cmin = Cmin_; } // collateralization

threshold
collateral (a) { // return user a’s collateralization

val_minted = 0;
for c in minted : val_minted += minted [t][a] * AMM. getRate (t);
val_debts = 0;
for c in debts: val_debts += debt[t][a] * AMM. getRate (t);
return val_minted / val_debts ;

}
deposit (?x:t) { // deposit x units of token t in the LP

minted [t][ sender ] += x; // record the deposited units in the
minted map

}
borrow (x, t) { // borrow x units of token t in the LP

require balance (t) >=x;
debts[t][ sender ] += x; // record the borrowed units in the

debts map
require collateral ( sender ) >=Cmin; // sender is over -

collateralized
sender !x:t;

}
}

Figure 7.3: A Lending Pool contract.

To find the value of x which maximizes t, we maximize the function t(x) that gives

the loan amount as a function of the deposited amount x, subject to the constraint

0 ≤ x ≤ n. Since we assume LP allows trading of real-valued amounts of tokens, we

have that t(x) is continuous. Thus, we compute its derivative w.r.t x and set it to 0:

dt(x)

dx
=

d

dx

�
(n− x)(r + x)4

Cminr4

�
=

4(n− x)(r + x)3 − (r + x)4

Cminr4
= 0

Since r + x ̸= 0, we can simplify the above as:

4(n− x) = r + x =⇒ x =
4n− r

5

subject to the constraint 0 ≤ x ≤ n. Therefore, x = 4n−r
5

maximizes t(x) when

4n ≥ r. Otherwise, the value of x that maximizes t(x) is x = 0. In other words,

when 4n < r, M does not need to interact with the AMM to maximize her borrowing

capacity.
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We can check that x = 4n−r
5

maximizes t(x) by performing the double derivative test.

We compute the double derivative of t(x) w.r.t x, plugging in x = 4n−r
5

, and check if

it is < 0.

Accordingly:

d2t(x)

dx2
=

d

dx

�
4(n− x)(r + x)3 − (r + x)4

Cminr4

�

=
12(n− x)(r + x)2 − 4(r + x3)− 4(r + x)3

Cminr4

=
12(n− x)(r + x)2 − 8(r + x)3

Cminr4

Substituting 4(n− x) = r + x we get:

d2t(x)

dx2
=

3(r + x)3 − 8(r + x)3

Cminr4

= −5(r + x)3

Cminr4

< 0

As a result, M fires the following sequence of transactions with a loan amount t =

(n−x)(r+x)2/Cmin (r−y)2 and the amount received on swap y = xr/r+x:

S | ∆ M:LP.deposit(M pays (n−x):ETH)−−−−−−−−−−−−−−−−−−→ AMM[r: ETH, r: T] | LP[a+ n− x: ETH, b: T, · · · ] | · · ·
M:AMM.swap(M pays x:ETH,0)−−−−−−−−−−−−−−−→ AMM[r + x: ETH, r − y: T] | LP[a+ n− x: ETH, b: T, · · · ] | · · ·
M:LP.borrow(t,T)−−−−−−−−−→ AMM[r + x: ETH, r − y: T] | LP[a+ n− x: ETH, b− t: T, · · · ] | · · ·
M:AMM.swap(M pays y:T,0)−−−−−−−−−−−−−−→ AMM[r: ETH, r: T] | LP[a+ n− x: ETH, b− t: T, · · · ] | · · ·
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Assuming $1ETH = 1 = $1T for simplicity, by ?? we get:

MEV(S | ∆, {LP}) = t+ x− n =
(n− x)(r + x)2

Cmin(r − y)2
+ x− n

= (n− x)

 
(r + x)2

Cmin(r − xr
r+x

)2
− 1

!

= (n− x)

�
(r + x)4

r4Cmin

− 1

�

=






n− 4n−r

5

��(r+ 4n−r
5 )

4

r4Cmin
− 1

�
if 4n ≥ r

n
�

1
Cmin

− 1
�

otherwise

=






n+r
5

��( 4(n+r)
5 )

4

r4Cmin
− 1

�
if 4n ≥ r

n
�

1
Cmin

− 1
�

otherwise

=






n+r
5

��
1

Cmin

�
4(n+r)

5r

�4

− 1

�
if 4n ≥ r

n
�

1
Cmin

− 1
�

otherwise

We note two key aspects of the transaction sequence fired by M: Firstly, the ordering

of deposit and the (initial) swap transactions is irrelevant. Hence, they can be

interchanged without causing a difference to the loss caused to LP. Secondly, firing

the (final) swap, i.e. de-manipulating the AMM only affects the wealth of M and not the

LP. Hence, it does not affect the MEV extractable from LP. Nevertheless, we include

it in the transaction sequence to reflect the attack execution employed in practice.

We now calculate the restricted local MEV, i.e. MEV{LP}(S | ∆, {LP}). In this case,

the only way M can maximize her borrowing capacity is by depositing her total avail-

able capital to the LP. Hence, M deposits n: ETH, being able to borrow t′: T if

collateral(M) =
n

t′
≥ Cmin
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Thus, the maximum amount that M can borrow equals t′ = n/Cmin. By Equation (3.1)

we have:

MEV{LP}(S | ∆, {LP}) = t′ − n =
n

Cmin

− n = n

�
1

Cmin

− 1

�

Accordingly, MEV interference is estimated through Definition 11 as follows:

p(S,∆) =





1 − n
�

1
Cmin

−1
�

(n+r
5 )

�
1

Cmin
( 4(n+r)

5r )
4−1

� if 4n ≥ r

1 − n
�

1
Cmin

−1
�

n
�

1
Cmin

−1
� otherwise

=




1 − n(1−Cmin)

Cmin
· 5
n+r

· (5r)4Cmin

(4(n+r))4−(5r)4Cmin
if 4n ≥ r

0 otherwise

=




1 − 55r4n(1−Cmin)

(n+r)(44(n+r)4−(5r)4Cmin)
if 4n ≥ r

0 otherwise

In accordance to our expectations, the interference is indeed proportional to the

attack capital n of the adversary. Naturally, adversaries with a higher manipulation

capital have an increased borrowing capacity. Moreover, the degree of interference is

influenced by the AMM reserves since the profitability of the attack rests on the cost

of manipulating and de-manipulating the AMM. ⋄
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Chapter 8

Conclusions

In this thesis, we make an exploratory study of the aspects that a notion quantifying

the security of smart contract compositions should possess. We extend the qualitative

notion of MEV non-interference proposed in [7] to a quantitative one. This notion

quantifies the economic loss that an adversary can inflict on a contract by targeting

its dependencies. We study its theoretical properties, explaining why those are de-

sirable, and finally apply it to assess the security of some common smart contract

compositions. We discuss below a few limitations of our study and further directions

of research.

8.1 Limitations

To keep our study simple, we make a few simplifications in our model. A first as-

sumption is that token prices in our model are constant and do not depend on the

blockchain state. This simplifying assumption allows local MEV to neglect the parts

of the state that could affect token prices. Consequently, the amount of interference

is not affected by fluctuations of these prices (while they could depend on the prices

provided by DEXes, like in Sections 7.2 and 7.3). A more realistic handling of to-

ken prices would require to extend the model with a function that determines the

token prices in a given state. Another assumption is that the notion of local MEV

in Equation (3.1) assumes the mempool to be empty, i.e. κ(M) instead of κ(M, P ).

This does not allow adversaries to exploit their knowledge of pending users’ trans-

actions (the public mempool). The rationale underlying this choice made in [7] was

that MEV interference should be the basis for a static analysis of smart contracts,
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where dynamic data such as the mempool transactions are not known. Assuming an

over-approximation of users’ transactions, we could extend our MEV interference by

making the mempool a parameter of local MEV, similarly to what done for MEV

in [9].

8.2 Future work

Although a few tools exist for detecting price manipulation attacks in DeFi proto-

cols [27, 18, 26], and others for estimating MEV opportunities [4, 5], none of the

existing tools address general economic attacks to smart contract compositions. The

technique underlying the detection of price manipulation attacks is taint analysis,

which aims at identifying potential data flows from low-level to high-level data (in

the DeFi setting, flows from to functions that manipulate token prices to functions

that transfer tokens). While this technique could be generalised to analyse qualita-

tive MEV non-interference, estimating our quantitative interference seems to require

more advanced techniques. Some inspiration could be drawn from static analysis

techniques for information-theoretic interference [10, 19, 17, 3]. We plan to explore

this line of research in future work.
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