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Abstract

The cytoskeleton, a dynamic network of semiflexible filaments and associated proteins,
plays a central role in maintaining cellular shape, organizing intracellular structures, and
transmitting and generating mechanical forces. The viscoelastic properties of these net-
works govern their mechanical response, which has been extensively studied in cross-linked
systems using computational and theoretical approaches. However, biological cytoskeletal
networks—such as the actin cortex—exhibit additional complexity due to active processes,
including motor-driven forces and actin filament turnover. This study aims to establish a sys-
tematic in silico framework using the Cytosim simulation suite to probe the viscoelasticity
of cytoskeletal networks. Using microrheology techniques, we investigate how cross-linker
density and filament renewal dynamics influence network rheology. Furthermore, we intro-
duce cytocalc, a python package enabling reproducible analysis of Cytosim simulations,
to facilitate broader exploration of cytoskeletal mechanics across diverse experimental and
theoretical contexts.
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Chapter 1

Introduction

1.1 The Cytoskeleton

Cells, as complex biological entities, exhibit a wealth of physical phenomena. One fas-
cinating process is that of cellular morphogenesis, which governs how cells adopt diverse
shapes and sizes, and respond to mechanical stress. For example, some cells, such as Leu-
cocytes (also known as White Blood Cells) simply lack a well-defined shape, allowing them
to squeeze through tiny gaps between tissues—a process known as diapedesis. This ability
to reorganize in response to external forces is underpinned by the cytoskeleton—a dynamic
network of filaments that serves as the cell’s structural scaffold and regulates the mechanical
response [1].

Figure 1.1: Actin, Microtubule and
Intermediate Filaments [2]

The cytoskeleton consists of three classes of semi-
flexible filaments—actins, microtubules and inter-
mediate filaments (IFs)—and many associated pro-
teins that cross-link, assemble, disassemble, or apply
forces on these.

Actin Networks

Actin networks, in particular, play a central role in
cellular force generation and shape determination.
These networks, in association with cross-linking
proteins such as α-actinin and myosin, exhibit inter-
esting viscoelastic properties that have been exten-

sively characterized both experimentally and theoretically.

Gittes et al. [3] performed computational and theoretical analysis of networks with passive
cross-linkers and obtained a high-frequency power law for the frequency dependent complex
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shear modulus (see Sec. 1.2.2) of G∗(ω) ∼ ω0.75, in line with experiments. Investigations
by Broedersz et al. [4] on networks with dynamic cross-linkers established that, in the low
frequency limit, the G∗ follows a power-law behaviour G ∼ ω

1
2 . Similarly, scaling regimes

have been observed and characterized in entangled actin solutions [5, 6].

In addition to cross-linking, the constant turnover and treadmilling of actin can result in re-
structuring of the network, giving rise rise to non-trivial rheological properties. However,
much less foray has been made into the study of renewal-dependent viscoelasticity of the cy-
toskeleton [7]. Similarly, recent experimental studies show that compound networks of actin
and other Intermediate Filaments (such as vimentin) play an important role in determining
the force response of cells [8]. The complexity of these networks makes them difficult to
model, and since many computational studies of the cytoskeleton employ in-house mod-
elling/simulations, the results are often not directly comparable.

In this project, we use Cytosim [9], an open source cytoskeleton simulation package, to
measure the complex shear modulus (G∗(ω) of cross-linked actin networks and demonstrate
that it captures known power law behaviours. As Cytosim is capable of modelling a wide
variety of cytoskeletal features, this enables the study of dynamic, active and compound
networks. In that vein, we present two models for renewal and study their effects on the
physics of the network. Finally, we present a python package cytocalc as an accessible
layer for quantifying rheology from Cytosim simulations, further facilitating the study of
these networks by the scientific community .

1.2 Rheology

The previous section emphasized the importance of viscoelastic properties that cytoskeletal
networks exhibit. For completeness, we present a brief look at the rheology (the study of
mechanical response) of non-Newtonian materials, introducing physical quantities neces-
sary for its characterization. For further reading, lecture notes from Pipkin [10] provides an
intuitive picture for the various quantities defined herein.

1.2.1 Viscoelasticty

For a purely elastic material, the shear stress σ and the strain γ are related by Hooke’s law:

σ(t) ∝ γ(t) =⇒ σ(t) = Gγ(t) (1.1)

Similarly, Newton’s law of viscosity relates the shear stress in a liquid to the strain rate:

σ(t) ∝
dγ(t)

dt
=⇒ σ(t) = η

dγ(t)
dt

(1.2)

16



where G and η are the elastic modulus and the viscosity respectively. However, most real
objects exhibit both elastic and viscous behaviour. Maxwell gave a simple representation of
such materials by connecting an elastic spring in series to a ‘dashpot’ (a viscous liquid).

G  η

Figure 1.2: Maxwell’s model for a Viscoelastic Material. CC0 Artwork from Wikipedia

Since the two components are connected in series, they experience the same stress σ(t).
Hence, the total strain is given by the sum of contributions from the spring and the dashpot:

γmaxwell(t) =
1
G

σ(t)+
1
η

∫ t

0
σ(t)dt (1.3)

If stress is delivered in a very short (t ≪ η/G) pulse, it is evident from Eq. 1.3 that the
contribution from the viscous component would be negligible. Hence, the system behaves
elastically, returning to its initial shape. However, upon application of a sustained stress, the
viscous component dominates at long times, and the deformation no longer decays even if
the stress is removed.

1.2.2 The Complex Shear Modulus

Suppose an oscillatory stress of the form R
[
Aeiωt] is applied on the Maxwell solid. The

strain response, from Eq. 1.3 would then be,

γ(t) =
1
G

Aeiωt +
1

iωη
Aeiωt (1.4)

=
G+ iωη

iωηG
σ(t)

Rearranging the equation,

σ(t) =
iωηG

G+ iωη
γ(t)

=
Gω2η2 + iG2ωη

G2 +ω2η2 γ(t)

= G∗(ω)γ(t) = (G′(ω)+ iG′′(ω))γ(t) (1.5)

We define G∗(ω) as the frequency-dependent complex shear modulus or the ‘dynamic’
modulus, with G′ and G′′ being the elastic/storage modulus and the viscous/loss modulus

17



respectively.

Taking a derivative on both sides of Eq. 1.4, we can similarly define a complex viscosity
η∗(ω), which is related to G∗(ω) by:

G∗(ω) = iωη
∗(ω) (1.6)

The Creep Compliance J

The compliance is a measure of ‘deformability’ of a material i.e the amount of shear pro-
duced by a unit stress. For elastic solids, it is the inverse of the shear modulus.

GJ = 1 (1.7)

For viscoelastic materials, Eq. 1.7 is generalized using a convolution [11]:

{G∗ J}(t) =
∫ t

0
G(t ′)J(t − t ′)dt ′ = t (1.8)

Using the convolution theorem1 (G∗(ω)J∗(ω)=Fu( ˙{G∗ J}(t)) ) where Fu is the unilateral
Fourier transform, we obtain a relation between the complex shear modulus and the complex
creep compliance:

G∗(ω)J∗(ω) =
1

iω
(1.9)

1.2.3 Measuring Viscoelasticity

Bulk Rheology

Elastic Viscous Viscoelastic

σ(t)

ϵ(t)
δ

Figure 1.3: Bulk Rheology: Stress response for oscillatory strain.

Building upon the theoretical framework of viscoelasticity outlined in Sec. 1.2.2, bulk rhe-
ology offers a direct experimental approach to quantify the frequency-dependent complex
shear modulus (G∗(ω)). This method involves applying a controlled oscillatory shear strain
(γ(t) = γ0eiωt) to the material and measuring the resultant stress response (σ(t)).

1The time derivative arises since G∗(ω) (as defined in Sec. 1.2.2) actually represents the Fourier transform
of the time derivative of G(t) - and we use the property ˙{u∗ v}= {u̇∗ v}
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By analyzing the amplitude ratio and phase lag (δ ) between the applied strain and measured
stress, the elastic (storage) modulus (G′(ω)) and viscous (loss) modulus (G′′(ω)) can be
obtained:

G′ =
σ0

γ0
cos(δ )

G′′ =
σ0

γ0
sin(δ )

Microrheology

In contrast to bulk rheology, microrheology offers an approach to characterize G∗(ω) by
analyzing the motion of probes embedded within the material. In passive microrheology,
the thermal fluctuations of the probe is used as a proxy for viscoelasticity, relating their
mean-squared displacement (MSD) to the material’s response via the generalized Stokes-
Einstein relation (GSER) as depicted in the schematic in Fig. 1.4. In active microrheology,
controlled external forces (e.g., via optical tweezers or magnetic fields) are applied on the
probe, enabling direct measurement of frequency-dependent compliance.

From an experimental standpoint, these techniques provide the means to characterize a ma-
terial without causing structural damage due to shearing, or to study spatial variation in a
heterogeneous environment. In simulations both approaches are typically feasible, and the
choice often reduces to technical considerations or to whether one attempts to emulate ex-
periments. In Sec. 2.2, we discuss the theoretical and practical framework of employing
passive microrheology.

Figure 1.4: Bead Microrheology Schematic
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Chapter 2

Methods

2.1 Cytosim

Cytosim is an extensible, agent-based stochastic dynamics simulation suite developed by
Nedelec et al. [9] for modelling semi-flexible filament networks and associated molecu-
lar components. Cytosim provides implementations for ‘high-level’ objects, such as fibers,
beads and couples, which can be added to a simulation using a straightforward syntax. For
example, the following code initializes 500 actin-like fibers with specified mechanical prop-
erties:

set fiber actin {

rigidity = 0.1

steric = 1, 0.0035

segmentation = 0.0028

}

new 500 actin { length = 1.5 }

A full configuration file (corresponding to the system described in Sec. 3.3.3) is included
in Appendix Sec. C.1. These objects are represented by points, stored in an N ×d array x,
where N is the number of points and d the dimensionality of the system. The dynamics of
the points is governed by an overdamped Langevin equation,

dx = µF(x, t)dt +dB(t) (2.1)

F(x, t) is an N×d array of forces acting on the points and B(t) is a stochastic noise term that
gives rise to Brownian motion. The mobility, µ , is calculated using a ‘drag model’ specific to
its shape. After an implicit integration scheme is used to solve Eq. 2.1, additional constraints
(such as for keeping filament lengths fixed) are satisfied using Lagrange multipliers [9].

Given the central role of fibers and couples in this project, a short description of each object
21



type, with some implementation details, has been provided below.

Fibers

Cytosim models a Fiber as a semi-flexible, piecewise-linear chain of N vertices with addi-
tional constraints ensuring that the distance between consecutive vertices remains constant1.
Each fibre has a radius given by the steric range (rs), within which other objects experience
a force:

F = ks(rb −d)

d = distance from the centre of the filament

ks = Stiffness Coefficient

Fibers can dynamically grow and shrink (both from the Plus end and the Minus end) at
specified rates. The number of vertices of a dynamic filament is changed as required to
maintain the segmentation length.

Couples

A Couple is a composite object containing two hands connected by a spring of stiffness k

and zero resting length. When within binding range rb of a filament, a hand binds to it at a
rate κb. Unbinding events happen at a rate κub, or if the force on the couple exceeds some
threshold fT . In our simulations, κub and fT were set to 0 and infinity respectively to match
the benchmark simulation, corresponding to no unbinding.

x1

x2
x3

x4

x5

x6

x7

x8

x9

x10

k

Steric Range (rs)

Figure 2.1: Fibers and Couples in Cytosim. The points xi represent the vertices of filaments,
constrained such that |xi − xi+1| is constant. A couple with spring constant k cross-links the
two filaments. Figure adapted from Nedelec et. al. (2007) [9]

Couples can be used to emulate molecular motors or cross-linkers depending on the activity
of the hand. With hands that can only bind, the couples used in Sec. 3.1 act as fixed cross-
linkers.

1and roughly equal to a specified segmentation length ls. Since the total length of the filament can be
specified independently of ls, it need not be an integral multiple of ls. Cytosim adjusts the actual length of each
segment such that the absolute difference between the true and expected (ls) segment lengths is minimized
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2.2 Extracting G* from MSD

In a Newtonian fluid, a particle’s diffusivity is related to the viscosity of the medium by the
Stokes-Einstein relation.

D =
kBT

6πηa
(2.2)

This, however, is not directly applicable for systems that exhibit frequency dependent vis-
cous behaviour—such as non-Newtonian fluids (Sec. 1.2.1). To address this limitation,
Mason et al. [12] proposed a generalization of the Stokes-Einstein relation (GSER) for fre-
quency dependent viscosities. In this section, we describe the generalization and , in some
detail, discuss the algorithms we use to extract the complex shear modulus.

2.2.1 Theory

Before introducing the generalized equation, let us look at a 3-dimensional particle of radius
a in a purely viscous fluid. The mean squared displacement for this particle given by [13]:

⟨∆r2(t)⟩= 6Dt =
kBTt
πηa

(2.3)

While ⟨∆r2⟩ is typically described as a function of time, we can, in principle, apply a uni-
lateral Fourier transform [14] on Eqn. 2.3 to obtain a frequency dependent mean-squared
displacement.

˜⟨∆r2(ω)⟩=− kBT
πηω2a

(2.4)

where ˜⟨∆r2(ω)⟩ is the MSD in Fourier space.

The Generalized Stokes-Einstein Relation similarly relates the ⟨ ˜∆r2(ω)⟩ of a particle in a
non-Newtonian liquid to a frequency dependent viscosity η∗(ω):

˜⟨∆r2(ω)⟩=− kBT
πη∗(ω)ω2a

(2.5)

From Eq. 2.5 and Eq. 2.4, it is evident that the standard Stokes-Einstein relation is retrieved
from the GSER for a medium with frequency-independent viscosity η . Appendix Sec. A.1
presents a rigorous derivation of Eq. 2.5 starting from a generalized Langevin equation.

Substituting G∗(ω) = iωη∗(ω) in Eq. 2.5 and rearranging,
23



G∗(ω) =
kBT

iπωa ˜⟨∆r2(ω)⟩
=

kBT
iπωaFu{⟨∆r2(t)⟩}

(2.6)

In Eq. 2.6, we have a theoretical framework for extracting the complex shear modulus G∗(ω)

from the Fourier transform (Fu) of the mean squared displacement. In addition to Eq. 2.6,
the GSER is often be represented using other quantities [15]. For example, in Sec. 2.2.3, we
use a version that relates the creep compliance J(t) to the mean-squared displacement:

πa
kBT

⟨∆r2(t)⟩= kBT
πa

J(t) (2.7)

2.2.2 Mason’s method

Using the Generalized Stokes-Einstein Relation to calculate the shear moduli requires per-
forming a unilateral Fourier transform on an arbitrary MSD obtained from the simulation—
or experiments. Since this is not always tractable, Mason et al. [14] use an estimate for the
Fourier transform by expanding Fu{⟨∆r2(t)⟩} around 1/ω:

iωFu{⟨∆r2(t)⟩} ≈ ⟨∆r2(1/ω)⟩Γ[1+α(ω)]i−α(ω) (2.8)

Where Γ[1+α] is the Gamma function and α(ω) is defined as:

α(ω) =

[
d ln⟨∆r2(t)⟩

d ln t

]
t=1/ω

(2.9)

Using this approximation in Eq. 2.6, we get expressions for the Storage (G′) and Loss (G′′)
moduli.

G′(ω) = |G∗(ω)|cos(πα(ω)/2)

G′′(ω) = |G∗(ω)|sin(πα(ω)/2)

where |G∗(ω)| is given by:

|G∗(ω)| ≈ kBT
πa⟨∆r2(1/ω)⟩Γ[1+α(ω)]

(2.10)

2.2.3 Evans’ method

While Eq. 2.10 is a straightforward technique to obtain the frequency-dependent shear mod-
uli, the approximate Fourier (or Laplace) transforms may affect the accuracy of the result.
Evans et al. [11] devised an improved algorithm that sidesteps this by exploiting a property
of the time dependent creep compliance J(t) (defined in Sec. 1.2.2):
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It is known that, for any material (viscous or viscoelastic), J(t) at long time approaches a
straight line. As a result, the double derivative of J(t) has to vanish. Moreover, causality
requires that J(t) (and hence J̈) be 0 for time t < 0 [11]. As a result, the Fourier transform
of J̈ does converge under all conditions, and can be used to reconstruct the Fu[J](ω):

Fu[J](ω) = J̃(ω) =
−1
ω2 Fu[J̈](ω) (2.11)

In practice, we perform a Discrete Time Fourier Transform (DTFT) [16] on J̈(t) to find
J̃(ω). Given J̃(ω), G∗(ω) is trivially calculated using,

G∗(ω) =
1

iω J̃(ω)
(2.12)

2.2.4 Segment Tracking Microrheology

Sec. 2.2.1 describes the GSER for a spherical probe. To analyze our simulations, we also
employ Segment Tracking Microrheology (STM), a technique devised by Kim et al. [17],
where filament segments are use as the probe instead of beads. This requires adapting Equa-
tions Eq. 2.10 and Eq. 2.11 for cylindrical probes. This is achieved by replacing the radius
of the bead a by an effective radius rb that satisfies the following relation:

ζ⊥ = 6πηMrb (2.13)

where,

ζ⊥ = 3πηMσ · 3+2L/σ

5
(2.14)

is the transverse frictional coefficient of the segment (σ and L being the diameter—steric
range in Cytosim—and length of the segment, respectively) and ηM is the viscosity of the
medium.

2.3 Renewal Strategies

As mentioned in Sec. 1.1, the turnover and treadmilling of actin entails significant effects on
the viscoelastic properties of the network. In this section, we discuss some implementations
for filament renewal in Cytosim.

2.3.1 Cut and Paste (CnP) Renewal

This first implementation is based on a minimal model for renewal of filaments used by
Belmonte et al. [18] to demonstrate pulsing in contracting actin networks. In this strategy,
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filaments are randomly deleted (at a specified rate) and added back at a random location
(Fig. 2.2).

Figure 2.2: Deletion-Creation Renewal Strategy. Figure provided kindly by Dr. Yoav Pol-
lack

However, when used in conjunction with STM, this poses a problem—the MSD of a filament
segment is valid only for times between a creation and a deletion event. This reduces the
total duration over which MSD is measured, which in turn shortens the frequency range of
G∗. To overcome this limitation, we added ‘Probe filaments’ that do not renew and tracked
only their MSD.

2.3.2 Run and Tumble (RnT) Renewal

While CnP renewal is efficient and easy to implement, a more realistic renewal model would
incorporate renewal as changes in filament lengths, mimicking polymerization and depoly-
merization. First, we present a simple model that maintains an average filament length and
discuss some of its limitations.

Consider a two state model of a filament with a ‘growing’ and a ‘shrinking’ state. Each
filament flips from one state to another at a rate α .

Growing Shrinkingα
dl
dt = +r dl

dt = −r

Figure 2.3: Two-State Model for filament renewal

This set of equations is reminiscent of 1-Dimensional Run and Tumble motion (Fig. 2.4).
As a result, the dynamics of the length of a filament is well described by a RnT particle
starting at x0 = l0, with a speed v = r 2. Since the mean position of a RnT particle is x0 [19],
we do not expect the average length of the filaments to change.

2Technically, since filament lengths are necessarily positive, the origin acts as an absorbing boundary.
However, for small enough times (t < l0/v) the dynamics is exactly described by an RnT particle
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Figure 2.4: Schematic: RnT (Run and Tumble) Renewal

However, it is known that the probability distribution, ψ(x, t), of a RnT particle does not
have a steady state distribution, but rather follows [19]:

⟨x(t)2⟩ ≈ 2Defft Deff =
v2

2α
(2.15)

Therefore, the length distribution of the filaments with the two-state model would keep
widening. Inside cells, however, the actin filament length distribution is highly regulated
[20, 21]. Moreover, since the number of filaments is finite, the growing length distribution
will result in a change in the mean length of filaments, contrary to our initial expectations.
In order to overcome these issues, the model needs to be capable of constraining the length
of the filaments to some finite domain.

Length Dependent Renewal

Theoretical work on generalized RnT particles suggests that using an inhomogeneous (po-
sition dependent) switching rates can trap a particle [22]. Singh et al. [23] showed that
employing two step functions, as defined in Eq. 2.16, it is possible to limit length fluctua-
tions.

αg→s =

α l > lhigh,

0 otherwise
αs→g =

r l < llow,

0 otherwise
(2.16)
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Chapter 3

Results & Discussion

In this section, we present the results of our investigation, commencing with the bench-
marking of our microrheological framework against established computational studies by
Kim et al. [17]. Subsequently, we explore the influence of cross-linking density on net-
work rheology, quantifying transitions from viscous to elastic behaviour. Building on this,
we introduce dynamic filament renewal models to probe the mechanical consequences of
turnover processes, providing a preliminary framework for future studies of renewing cy-
toskeletal networks. Finally, we present cytocalc, a python package designed to enhance
reproducibility and extensibility of Cytosim-based rheological studies, facilitating broader
exploration of cytoskeletal mechanics across diverse experimental and theoretical contexts.

3.1 The Protocol

We prepare a cross-linked network of actin-like filaments in Cytosim (Sec. 2.1), adapting
parameters from Kim et al. [17]. Table 3.1 lists the common parameters used in the simu-
lations, expressed in Cytosim units (c.u.). A cubic box of side length 2.8 µm with periodic
boundary conditions (PBC) is initialized with 500 filaments. In case of bead microrheology,
a 0.3 µm bead (probe) is added at the centre of the box. After a short equilibration1 of 5s
cross-linkers are added, and the system is equilibrated for 50s. Both the timestep and the
equilibration time are chosen according to the discussion in Sec. B.2.1.

The highest frequency our G∗(ω) is valid for is determined by the frame-rate2 and the low-
est by the total duration of the simulation (Appendix Sec. B.2). However, running long
simulations at high frame-rates, the amount of data produced increases exponentially with
each additional decade in frequency.

1Filaments are randomly placed without any bending. This short equilibration imparts Brownian fluctua-
tions onto the segments

2This is the reciprocal of the time between two saved frames (t f ) which is often longer than the timestep
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Parameter Value

Timestep 0.0001
Box Length 2.8
Periodicity xyz
Viscosity 0.1
Fil. length 1.5
Fil. rigidity 0.001
Fil. Segmentation 0.07
Fil. Steric Range 0.007
Fil. Steric Force 16.9
Cl. Binding Rate 10
Cl. Binding Range 0.02
Cl. Unbinding Rate 0
Cl. Stiffness 4.23
Cl. Diffusion 10

Table 3.1: Parameters of benchmark
simulation, in Cytosim units.
Fil:Filament, Cl:Cross-linker

To avoid this, different simulations are run for dif-
ferent ranges of frequency with a reasonable bal-
ance between duration and framerate. For exam-
ple, we use post-equilibration durations of 5s (high
frame-rate), 50s, and 500s (longer durations), sav-
ing 500 regularly spaced frames in each case. With
this setup, the data storage requirements grow lin-
early with the number of decades in frequency. In
Appendix Sec. B.2, we also explored, with little
success, the idea of ‘stitching’ the MSD from the
three simulations and extracting the shear modulus
from a single, long-time, high frame-rate MSD.

To obtain ensemble-averaged measurements, we
ran 80 trials for each system configuration. These
were run in big batches on the Göttingen univer-
sity physics department’s rocks computing cluster
(Appendix Sec. C.4). For bead probes, the MSD is averaged across all the simulations
(each containing a single bead). With filament probes, as in the case of Segment Tracking
Microrheology (STM), random filament segments (one per filament) (Appendix Sec. C.2)
were tracked as probes, with the MSD averaged over all probes across all trials.

3.2 Bead Microrheolgy

To mimic experimental conditions, a 0.3 µm bead was inserted into the system, and its MSD
was measured. The bead size was selected based on the network’s mesh size (Appendix Sec.
B.1.1). For viscoelastic systems, the MSD typically exhibits subdiffusive power-law scaling.
However, while the diffusion constant was reduced to two-thirds of the expected value for
a free viscous bead (Fig. 3.1 (Left)), the MSD remained diffusive (Fig. 3.1 (Right)), with
slopes of 1 in log-log plots.

The extracted G∗ (Fig. 3.2) showed no elastic component ( G′ fluctuating around 0 ), while
G′′ increased linearly with frequency—a signature of purely viscous systems (Sec. 1.2.2),
consistent with the slope of the MSD. Despite expectations that cross-linkers would induce
elasticity [24], increasing their numbers had no observable effect (Fig. 3.1).
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Figure 3.1: (Left) MSD of probe in the network (linear scale). The dotted line shows the
theoretical MSD of a probe of the same radius in a purely viscous medium (with viscosity
from table 3.1). (Right) MSD of probes in log-log scale for various cross-linker counts. The
slope of the curves is 1, indicating purely diffusive behaviour (MSD ∝ t)

G
',G

''

Figure 3.2: Viscous (G′′) and Elastic (G′) moduli extracted from bead MSD.

The MSD and the complex shear moduli obtained from a traditional bead microrheology-
like approach indicate that it might not capture the viscoelastic properties of the network.
Further examination of this system (in Appendix Sec. B.1) suggests that this might result
from inherent limitations in Cytosim as opposed to a sub-optimal choice of system parame-
ters.

3.3 Segment Tracking Microrheology

Following the limitations of bead microrheology (Sec. B.1), we switched to segment track-
ing microrheology (STM), a method proposed by Kim et al. [17] to probe cytoskeletal net-
works using filament segments. Unlike inert beads, segments are embedded within the
network and reflect its intrinsic mechanical properties, offering a more direct measure of
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viscoelasticity.

3.3.1 Using Segments as Probes

Since filament segments, unlike beads, also have additional constraints and do not demon-
strate diffusive behaviour, we tracked segments of free filaments and calculated G∗, charac-
terizing its viscoelastic behaviour (Fig. 3.3).

Both the elastic and viscous moduli follow a power law of G ∝ ω3/4, consistent with exper-
imental observations [25]. While the filament segments do show inherent elasticity, they are
still largely viscous. Furthermore, at the lower end of the frequency regime, the elastic mod-
ulus is 1-2 orders of magnitude smaller than the plateau value of G′ observe in cross-linked
networks (Fig. 3.8). Therefore, we can be certain that the observed viscoelastic properties
arise from the network and not due to the constrained dynamics of the probe.
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Figure 3.3: MSD and Shear Modulus for a free filament segment

3.3.2 Tracking Segments and Modification

Unlike beads, the MSD of segments in the cross-linked network does show subdiffusive be-
haviour (Fig. 3.4 (Left)). It was also observed that increasing the cross-linker concentration
had a substantial effect on the MSD, as expected from literature.

Calculating G* (Fig. 3.4 (Right)) shows that the system is viscoelastic, showing elastic
behaviour at low frequencies and viscous behvaiour at higher frequencies. This qualitatively
matches the results obtained by Kim et al. [17]. However, quantitatively, it was observed
that the crossover from elasticity-dominated to viscosity-dominated regimes occurred at a
frequency of ≈0.1Hz, an order of magnitude lower than the frequency at which Kim et al.

[17] observed the crossover.
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Figure 3.4: (Left) Mean Squared Displacement (MSD) of filament segments for two dif-
ferent cross-linker counts. (Right) Storage and loss moduli G′ and G′′ for the system with
1600 cross-linkers. The red and black plots correspond to simulations of different durations,
sampled at different framerates.

3.3.3 Matching benchmark simulation

The observed crossover frequency mismatch with Kim et al. [17] likely arises from differ-
ences in simulation parameters. While we were able to adapt almost all parameters from the
benchmark simulation into Cytosim, some parameter values were simply not specified in
the Kim et al. publication. In particular, the viscosity of the medium in the benchmark sim-
ulation was unknown, resulting in the usage of Cytosim’s default viscosity of η = 0.1 Pa · s
(roughly 1000-times the viscosity of water emulating the intra-cell environment).

Effect of Viscosity

To explore how changing medium viscosity might affect the crossover in simpler systems,
consider a non-Newtonian fluid described by the Maxwell model (Sec. 1.2.1). From Eq. 1.5
we have,

G′(ω) =
Gη2ω2

η2ω2 +G2 (3.1)

G′′(ω) =
G2ηω

η2ω2 +G2 (3.2)

The crossover point ω0 where G′(ω0) = G′′(ω0) is then given by,
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Gη2ω0
2

G2ηω0
=

G′(ω)

G′′(ω)
= 1

ω0 =
G
η

(3.3)

lnω0 = lnG− lnη (3.4)

Eq. 3.4 demonstrates that, for a Maxwell solid, an increase in viscosity shifts the crossover
point to the left. More generally, since the ‘characteristic timescale’ for a viscoelastic ma-
terial (over which the material stores energy) is given by τ = η/G (Sec. 1.2.1); the larger
the medium viscosity, the longer the elastic modulus dominates i.e. the crossover happens
at smaller frequencies.
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Figure 3.5: A decrease in the medium viscosity shifts the crossover to the right. The viscos-
ity η is represented in Cytosim Units (pNs/um2), where 1 c.u is approximately 1000 times
the viscosity of water.

This matches with our observations on changing the viscosity of the medium. Moreover,
we noticed that using a viscosity 100 times that of water, the shear moduli were in good
agreement (with a maximum deviation of 18% for G′ and 15% for G′′) with the benchmark
simulation. Fig. 3.6 shows a comparison between the results of our simulations and the
reference.

While we do not obtain a perfect match, there are other fundamental differences between
our system and the reference simulation (for example, the cross-linkers modelled by Kim et

al. [17] have a fixed resting length and additional bending rigidities) which might explain
slight discrepancies between the two simulations.
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Figure 3.6: Comparison of our results G∗ with the benchmark. The storage ( ) and loss (⋄)
moduli are of the same order of magnitude across the frequency range. The data points for
the reference simulation were extracted from Kim et al. [17] (2009) using Engauge Digitizer.

3.4 Parameter scans

Having tested and validated our setup, we studied the effect of increasing cross-linker con-
centration in the system varying the number of cross-linkers from 0 to 9000 in regular steps.
From literature [24], we expect the network to become more elastic/solid-like with increas-
ing cross-linker concentrations.

Figure 3.7: MSD: Varying Cross-linker Concentrations

Segment MSDs (Fig. 3.7) suggest a transition from diffusive to subdiffusive (potentially
viscoelastic) behaviour with increasing cross-linker counts.
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Figure 3.8: (Left) Frequency dependent G∗ for increasing cross-linker concentrations. Ir-
respective of the number of cross linkers, at the loss moduli converge to a high-frequency
power law of G′′ ∝ ω0.75.(Right) Experimental result from Tharmann et al. [26], show-
ing G| (storage modulus) and G|| (loss modulus) in a system with increasing concentra-
tion of crosslinkers (□= 0.02µM,⃝= 0.14µM, △= 0.29µM, ▽= 0.73µM, ◁= 1.35µM,
▷= 2.71µM.) Around ω = 0.1, both experiment and simulation show a plateau in G′ and a
power law of ω−0.5 for G′′ in systems with high crosslinker concentrations

The complex shear moduli obtained from our simulations have been plotted in Fig. 3.8
(Left), omitting cross-linker counts over 5000 for clarity. Appendix Fig. D.1 shows the
elastic and viscous shear moduli across the full range of cross-linker concentrations, which
follow a similar trend. Shown on the right are results from similar in vitro experiments
conducted by Tharmann et al. [26].

In line with theoretical expectations, we observe an increase in both the elastic modulus and
the magnitude of the complex shear modulus (|G∗|) with increasing cross-linker concentra-
tion (Fig. 3.9).
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Figure 3.9: (Left) Value of G’ at frequency ω ≈ 0.1. For Nc ≥ 3000, this lies in the plateau
for G’. (Right) Absolute value of frequency dependent G* for different value of Nc.
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The results are also in qualitative agreement with the experimental work by Tharmann et

al. [26] involving Actin networks cross-linked with Heavy Meromyosins (HMMs), showing
trends and similar power law behaviour.
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Figure 3.10: Creep (G′′/G′) vs ω

We also observe an increase in the creep (G′′/G′) at lower frequencies (Fig. 3.10, Fig. 3.8
(Right, inset)).

From Fig. 3.7, it can be seen that in the absence of cross-linkers, the system displays (close
to) purely viscous behaviour, in agreement with literature [27].

The plateau value of the storage modulus increases with increasing cross-linker concentra-
tions (Fig. 3.9). We also observe a slight decrease in G′ at lower frequencies.

Comparison with Experiments

To validate our results, we compared it against experimental work by Tharmann et al. [26],
which looks at the effect of increasing cross-linker concentrations in in vitro reconstituted
actin networks cross-linked by heavy meromyosin (HMM). Their choice of cross-linker is
of particular interest to us, since HMM has a very high binding affinity for actin (about
four orders of magnitude higher than the cellular cross-linker α-actinin). As a result, the
changes in rheology of the network is not dominated by unbinding of cross-linkers, but
rather by folding/unfolding of filaments. Since we use cross-linkers that never unbind, we
expect their observations to better represent our system. However, it has to be noted that,
unlike in our setup, the cross-linkers used by Tharmann et al. [26] can unbind at sufficiently
high forces. Furthermore, the experimentalists measured rheology using a Rheometer (Sec.
1.2.3), and as a result, could sample much lower frequencies.

Qualitatively, our system manages to capture several features reported by Tharmann et. al.
Both the experimental work and our simulations show a frequency regime where the viscos-
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ity modulus follows a power law of -0.5 (G′′ ∝ ω−0.5) followed by an increase (Fig. 3.8)
with the minima roughly corresponding to region where G′ approaches a plateau.

The Tube Model

R(s)

R̂

Figure 3.11: The tube model for cross-linked filament. Figure adapted from F.C. Edwards,
1988.

F. C. Edwards (1988) proposed a ‘tube’ model for cross-linked networks of rubber. In this
model, the polymer section between two cross-linkers is constrained to a tube. Higher modes
of vibration result from fluctuations of the segments. Therefore, the model predicts a high
frequency power law of ω0.75 (which our measurements in Sec. 3.3.1 capture via the fluctu-
ations of the filament segments). This theory also predicts an intermediate frequency power
law of ω−0.5 for the loss modulus due to the constrained motion. For even smaller frequen-
cies, one would expect diffusive behaviour (according to the tube model), but our current
simulations are not long enough to sample this.

3.5 Introducing Renewal

While the previous simulations assumed a constant length for simplicity, in the cell actin
filaments undergo turnover and depolymerization [21] which might have a significant effect
on the rheology of the system. In order to explore this further, we introduced the following
models of renewal of actin into our system.

3.5.1 Cut and Paste Renewal

As a first test, we adopted a very simple model for renewal of filaments proposed by Bel-
monte et al. [18], where a random filament is deleted and added back at a different position
(Sec. 2.3.1). We added 50 probe filaments to obtain MSDs that span the entire duration of
the simulation.

Fig. 3.12 (a) shows the MSDs for different rates of renewal (rnew). For higher rates of
renewal, it was seen that the probe filaments form bunches (Fig. 3.12 (b,c)). This suggests
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that the anomalous behaviour of the MSD at higher renewal rates might be an artefact.
Interestingly, we observe a considerable difference in the MSD at rnew = 0.25s−1, where
only 12 of the 550 filaments have a chance to undergo renewal.

(b)

(c)

(a)

Figure 3.12: (a) MSD of probe filaments (b) Snapshot of simulation with rnew = 0.25s−1 (c)
Snapshot of simulation with rnew = 256s−1: Non renewing (probe) filaments are shown in
white

The bunching up of probe filaments has a straightforward explanation—In the CnP renewal
scheme, a filament loses its cross-links upon deletion, freeing up cross-linkers in that pro-
cess. These cross-linkers can bind to other filaments. However, since probe filaments never
renew, the number of cross-linkers bound keeps increasing. Eventually, most cross-linkers
are bound to the non-renewing filaments, leading to the formation of bunches.

This demonstrates a major limitation of STM. Since the probes in STM are a part of the net-
work (rather than the inert probes in bead microrheology), there is little to no guarantee that
heterogeneous probes will be capable of measuring the viscoelastic properties of a system.
This would also be an important consideration for systems with multiple kinds of filaments.

To eliminate issues with heterogeneous probe filaments, it is necessary to conceive a mode
of renewal where the all filaments also undergo identical renewal, while also ensuring that a
sufficient number of segments can be tracked over the total duration of the simulation.

3.5.2 Run and Tumble (RnT) renewal

The more realistic RnT technique presented in Sec 2.3.2 does not have this problem since
all filaments are identical, and there are no direct deletion events.

We implemented the length dependent (LDR) renewal strategy described in Sec. 2.3.2 to
overcome the issue of the changing filament length distributions. Simulations were then run
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with the following switching rates:

rg→s =

0.4 s−1 l > 1.6,

0 s−1 otherwise
rs→g =

0.4 s−1 l < 1.4,

0 s−1 otherwise
(3.5)

where rg→s and rs→g are the rates at which a filament of length l changes from growing to
shrinking and vice versa.

Fig. 3.13 shows snapshots of network length distribution φL at different times in the sim-
ulation where filaments undergo RnT renewal with (b) and without (a) length dependent
renewal (LDR), demonstrating that LDR is capable of maintaining a constant φL for the
entire duration of the simulation.

Figure 3.13: Filament length distribution as a function of time (a) Uniform Switching Rates
(b) Length Dependent Switching rates: The y-axis has been normailized to [0,1]. With
uniform switching rates, the length of filaments increases with time, while LDR maintains a
steady-state distribtuion.

To study the effect of the RnT renewal model, we simulated a system with parameters iden-
tical to the ones in Sec. 3.3.3, and allowed the filaments to grow and shrink. Additionally, to
act as control for renewal, another simulation was run where filament growth/shrinkage was
switched off after reaching the steady-state length distribution, creating a non renewing sys-
tem with the same length distribution as the renewing system (Wider Length Distribution,
Fig. 3.14). For comparison, the MSD of the system from Sec. 3.3.3 has also been plotted in
Fig. 3.14.
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Figure 3.14: Segment MSD for filaments undergoing RnT renewal, compared against non-
renewing filaments. The orange curve, where renewal was stopped after equilibration, is
identical to the blue curve (with renewal). However, both the curves differ from the case
where all filaments in the network have an identical length

Results show that while the MSD is different for the renewing case, it does not change if
the renewal is stopped after equilibration. This suggests that, in the case of RnT renewal as
described in Sec. 2.3.2 the change in the MSD is caused by the altered length distribution
rather than renewal itself.

Is there really Renewal?

While LDR works well in conjunction with STM, there are a few caveats that might be
responsible for the apparent effect (or the lack thereof) of introducing renewal. For example,
with the chosen parameters, the filament length distribution (shown in Fig. 3.13 (b)) has a
standard deviation of 0.13µm (a length decrease of ∼ 0.06µm).

A rough estimate for the fraction of fully and partially unbinding cross-linkers (see Sec.
A.3) gives:

φPartial =
1
l0

σ√
2π

≈ 0.03

φFull =
1

4l02
σ2

π
≈ 0.005 (3.6)

With sufficient renewal, we expect changes in the viscoelastic behaviour resulting from tran-
sient network reorganization caused by binding and unbinding of cross-linkers. However,
Eq. 3.6 indicates that LDR triggers very few cross-linker unbinding events, resulting in
negligible structural changes.
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We have shown that, with this model, renewal does not lead to significant differences. How-
ever, Fig. 3.5.2 does show that a change in the MSD can arise from a non-degenerate length
distribution (Blue and Orange curves vs the green control). From Sec. 2.2.4, we know that
the mobility (and hence MSD) of a filament depends on its length. To check if this can ex-
plain the deviation, let us consider a single filament of length l with the mobility µ showing
subdiffusive behaviour. The MSD would be of the form

⟨r2⟩ ∝ µtα
α < 1

Since µ is inversely proportional to l,

⟨r2⟩ ∝
tα

l
= κ

tα

l
(3.7)

For an arbitrary length distribution φ(l), the average MSD is give by

⟨⟨r2⟩t⟩l =
∫

∞

0
ψ(l)⟨r2⟩(l)dl

=
∫

∞

0
ψ(l)κ

tα

l
dl (3.8)

From Eqn. 3.8, it is evident that changes in mobility alone cannot affect power law be-
haviours of the MSD. Moreover, if the length distribution is a narrow symmetric function
(as in the case of LDR) centered around l0, we can compute the integral, obtaining an ex-
pression for the ensemble MSD:

⟨⟨r2⟩t⟩l =
∫

∞

−∞

ψ(∆l)κ
tα

l0 +∆l
d∆l

=
∫

∞

−∞

ψ(∆l)κ
tα(1− l/l0)

l0
d∆l (∆l << l0)

=
∫

∞

−∞

ψ(∆l)κ
tα

l0
d∆−

����������:0 (Odd Function)∫
∞

−∞

ψ(∆l)κ
tα l
l02 d∆

= κ
tα

l 0
= ⟨r2⟩(l0) (3.9)

Clearly, the deviation in the MSD from the control is not an obvious effect of introducing a
wider length distribution. This suggests that the length distribution plays a role in the overall
network structure, revealing interesting physical behaviour.
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3.6 Cytocalc

To facilitate reproducible analysis of Cytosim simulations and extract viscoelastic proper-
ties, we developed Cytocalc, an open-source Python package. Cytocalc aims to address the
lack of standardized tools for analyzing Cytosim simulation outputs by providing robust
parsers for Cytosim’s (various) report files and convenience functions for interfacing with
other popular analysis packages, such as Freud.

Through a straightforward API, Cytocalc offers tested and fast implementations of Evans’
and Mason’s methods. While currently tuned for rheology measurements, the parser func-
tionality of Cytocalc allows it to form the basis for a more general-purpose Cytosim analysis
package. Furthermore, the open-source nature of Cytocalc ensures that the code is modifi-
able and easily accessible, promoting collaboration.
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Chapter 4

Conclusion

4.1 Summary

In this masters’ thesis, we systematically investigated the viscoelastic properties of cross-
linked actin networks using Cytosim, showing that it is possible to capture the viscoelastic
behavior of cytoskeletal networks using segment tracking microrheology (STM).

The traditional bead-based approach failed to capture network viscoelasticity, likely due to
inherent constraints in modeling bead-network interactions within Cytosim. Filament seg-
ments, on the other hand, proved to be effective as probes for microrheology, revealing sub-
diffusive dynamics and frequency-dependent shear moduli (G′, G′′) consistent with known
power-law behaviors (e.g. G′′ ∼ ω−0.5 at intermediate frequencies and G ∼ ω0.75 at high
frequencies). Parameter scans of cross-linker concentrations mirrored experimental trends,
showing increased elasticity and |G∗| with cross-linker density. Comparing the power laws
with predictions from the tube model for cross-linked networks in rubber showed that the
timescale of the simulations was comparable to the Rouse time τR.

In order to test the effects of renewal, two strategies—Cut-and-Paste (CnP) and Run-and-
Tumble (RnT)—were explored. While CnP renewal introduced artifacts due to heteroge-
neous probe filaments at high rates of turnover, significant changes in the mean-squared
displacement (MSD) was observed even at lower rates.

With RnT renewal, it was demonstrated that usign length-dependent regulation (LDR) can
profuce stable filament distributions. However, cross-linker unbinding events were limited
under tested parameters, resulting in minimal restructuring of the network. As a conse-
quence, the effect of renewal on the physical properties was minimal. This foray into RnP
renewal also suggested that the distribution of lengths might play a role in the viscoelastic
properties.
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With the aim of facilitating the use of Cytosim for viscoelastic measurements, a Python
package, cytocalc, was developed to perform rheological analysis on Cytosim outputs, en-
abling robust extraction of G∗(ω) via Evans’ and Mason’s methods.

4.2 Outlook

Having shown that Cytosim can be employed as a tool for probing the rheology of network,
the focus on future efforts would be to improve and refine the protocols proposed herein.

4.2.1 Quantitative Matches with Experimental Results

In this thesis, it was shown that STM in Cytosim can produce quantitative matches with
simulations from literature. We also presented a qualitative comparison to experimental
results. In collaboration with experimental groups, further validation of the approach can
be established by matching the results quantitatively by mimicking the setup as closely as
possible.

4.2.2 Rheology Techniques

The work presented in this thesis largely involved testing and characterizing results from
passive microrheology. Notably, the bead probe had to be replaced by segments to accurately
capture the elastic properties. However, as seen with the results of CnP renewal, segments
being a part of the network creates additional requirements on the probe.

Apart from passive microrheology, other local techniques like active bead microrheology
and two-point microrheology can also be employed to extract the complex shear modulus.
It is yet to be explored if one of these techniques work with inert beads, which would allow
for straightforward measurements on compound, dynamic and active networks.

Moreover, using the virial pressure of the system as a proxy for stress, it might be possible to
emulate bulk rheology techniques in Cytosim. Since the frequency of the applied shear strain
can be tuned, this would also allow probing larger frequencies than what can be studied
with microrheology, where the timestep and duration of the simulation present inherent
limitations (Appendix Sec. B.2).

4.2.3 Renewal Models

Since the preliminary renewal models used had several limitations, there is a need for devel-
opment of biophysically accurate renewal mechanisms that better mimic actin treadmilling
or motor-driven turnover. Aligned with this goal would be efforts to match typical length dis-
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tributions of actin inside the cell. Incorporating force-dependent unbinding rates for cross-
linkers might also facilitate network remodeling in living cells.

4.2.4 Activity and Network Complexity

With an established protocol, characterization of more complex systems becomes viable.
Contractile actin networks with molecular motors can be used to study how active stresses
modulate viscoelasticity. Similarly, compound networks of Actin and Intermediate filaments
can lead to rich physical responses. Studying these would require refinements to our current
technique, especially regarding the choice of probes.

Ultimately, the ease of simulation complex systems in Cytosim and having a framework for
probing the rheology therof offer several venues for future research involving semiflexible
networks.
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Appendix A

Derivations

A.1 The Generalized Stokes Einstein Relation

In this section, we present the derivation for a Generalized Stokes-Einstein Relation (GSER)
provided by Mason et al. [14]. A passive Brownian particle moving in a viscous medium is
well described by the Langevin equation

mv̇(t) = fS(t)− γv(t)dt (A.1)

For a particle in a non-newtonian fluid, Zwanzig et al. [28] proposed an analogous drag
coefficient that depends not only on the particle’s current velocity but also on its history.
Using this in Eq. A.1 gives us the generalized langevin equation [15]:

mv̇(t) = fS(t)−
∫ t

0
ζ (t − t ′)v(t ′)dt ′ (A.2)

For a purely viscous case, the function ζ (t − t ′) is simply γδ (t − t ′). Applying a unilateral
Fourier transform on Eq. A.2, we get:

ṽ(ω) =
mv(0)+ f̃S(ω)

imω + ζ̃ (ω)
(A.3)

For an overdamped system, the interia component mω is significantly smaller than the drag
component; hence, we can neglect the term in the denominator:

ṽ(ω) =
mv(0)+ f̃S(ω)

ζ̃ (ω)
(A.4)

To obtain the velocity autocorrelation function, we multiply Eq. A.4 by v(0) and take the
average on both sides:
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⟨v(0)ṽ(ω)⟩= m⟨v2(0)⟩+ ⟨v(0) f̃S(ω)⟩
ζ̃ (ω)

(A.5)

Using Equipartition theorem m⟨v2(0)⟩ = 3kBT and recognizing that the stochastic force fS

and v are uncorrelated,

⟨v(0)ṽ(ω)⟩= 3kBT

ζ̃ (ω)
(A.6)

Since the velocity autocorrelation function is related to the MSD as follows:

⟨v(0)ṽ(ω)⟩= −ω2

2
⟨∆r̃2(ω)⟩ (A.7)

we get,
˜⟨∆r2(ω)⟩=− 6kBT

ζ (ω)ω2 (A.8)

Assuming that Stokes’ law works similarly for the frequency dependent drag coefficient, we
have ζ (ω) = 6πη∗(ω)a, which upon being substituted into Eq. A.8 gives us the GSER.

˜⟨∆r2(ω)⟩=− kBT
πη∗(ω)ω2a

(A.9)

A.2 Crosslinker Binding Time

Each ‘hand’ of a cross-linker binds at a rate of κb (binding rate = 10s−1) if it is within a
distance rb (binding range = 0.002µm) of a filament. Therefore, the effective binding rate
for a cross-linker, k, is given by:

k = Pb ·κb

where Pb is the probability for a cross-linker to be in the binding range. We can estimate
using the volume fraction of filaments, treating them as cylinders with a radius rb. Therefore,

k = κb
N f L f πrb

2

V
(A.10)

=
10×500×1.5×π × (0.02)2

2.8×2.8×2.8

≈ 0.43 (A.11)

Since the network is nearly (and ideally) isotropic, we can assume that the binding rate is
identical for both free and single-bound cross-linkers. Using this, we set up the Master
equation for this system. Let φ f , φs and φd be the fraction of free, single-bound and double-
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bound cross-linkers respectively in the system. Then,

φ̇ f =−kφ f (A.12)

φ̇s = k(φ f −φs) (A.13)

φ̇d = kφs (A.14)

Solving Eq. A.12 with an initial condition φ f (0) = 1 and substituting in Eq. A.13,

kφs + φ̇s = k exp(−kt)

φ̇s exp(kt)+ kφs exp(kt) = k (Rearranging)

d
dt

(φs exp(kt)) = k

Solivng for φs and setting φs(0) = 0,

φs = kt exp(−kt)+C exp(−kt)

= kt exp(−kt) (A.15)

Substituting Eq. A.15 in Eq. A.14 and solving for φd ,

φ̇d = k2t exp(−kt)

φd =
∫

k2t exp(−kt)dt

=
∫

sexp(s)ds (s =−kt)

=−kt exp(−kt)− exp(−kt)+C

= 1− exp(−kt)(1+ kt) (A.16)

We have thus derived an analytical expression for the number of double-bound cross-linkers
in the network. Comparing with bound cross-linkers data from Cytosim, we obtain a quan-
titative match. Using this, we can determine the ideal equilibriation time for a given system.
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A.3 Renewal-Driven Cross-linker Unbinding

In this section, we provide a rough estimate for the average number of crosslinker unbinding
events that occur due to the shrinking of filaments, as in the case of renewal. We negelect
higher order unbinding events (where a crosslinker unbinds, binds and unbinds again) since,
for LDR, we expect such events to be rather rare (an argument supporting this is presented
towards the end of this section).

Let us consider a system with N f filaments of length l0 and NC cross-linkers. Suppose, as
a result of renewal, the length distribution changes to a gaussian distribution with standard
deviation σ . Then, the change in length of each filament ∆l follows:

ψ(∆l) =
1

σ
√

2π
exp

(
−∆l2

2σ

)
(A.17)

The number of cross-linkers bound to a filament is given by n = 2NC/N f (since each cross-
linker has two hands). Assuming that the binding points are randomly distributed on a
filament, the average number of cross-linkers bound to a region of length x is nx/l0.

Therefore, the number of first order cross-linker unbinding events (Nub) due to the change
in length distribution is given by

Nub =
∫

∞

0
N f

n∆l
l0

ψ(∆l)d∆l

= N f
n
l0

1
σ
√

2π

∫
∞

0
∆l exp

(
−∆l2

2σ

)
d∆l

= N f
n
l0

σ√
2π

(A.18)

Note that Eq. A.18 treats the unbinding of one of the hands of a cross-linkers as an ‘unbind-
ing event’. For complete unbinding, the equation has to account for the second hand of the
cross-linker lying in a shrunk segment. Thus,

Nub =
1
2

∫
∞

0

∫
∞

0
N f

nll′

l02 ψ(l)ψ(l′)dl′dl (∆l → l)

=
1
4

N f
n
l2
0

σ2

π
(A.19)

Using the values from our LDR simulations, we find that only ∼ 3% undergo partial unbind-
ing, with less than 10 cross-linkers fully unbinding. Since very few cross-linkers unbind in
the first place, we can neglect higher order unbinding events.
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Appendix B

Additional Results

B.1 Bead Mircorheology

B.1.1 Bead Size

In experimental setups, the size of the bead used is atleast 6 times the mesh size of the
network [29, 30]. To estimate the mesh size of the system, we extend the method employed
by Belmonte et al. [18] to 3D. The probability of intersection for two filaments at an angle
θ with each other would be

P(x|θ) = L3

8V
sin2

θ (B.1)

The total number of intersection X in a network with N filaments is therefore:

X =
N(N −1)

2

∫
π

0
P(θ)P(x|θ)dθ

=
N(N −1)

2

∫
π

0

1
π

L3

8V
sin2

θdθ

= N(N −1)
L3

32V

Using a mesh size of N/2X and substituting the values from the simulation, we estimate that
the bead size should be atleast ∼0.2µm. Other techniques for extimating the value of mesh
size [24, 31] also produce similar ranges.

B.1.2 Sanity Checks

In order to confirm that the issue does not lie with the range of the parameter space/system
parameters, we ran simulations with artifically high/low values of some of the parameters
(Fig. B.1) but the results remained unaffected by large changes in the network.
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Figure B.1: MSD of bead. Testing Parameters (a) Timestep (b) Crosslinker Count (c) Actin
Count

In cytosim, a bead is modelled as a point particle with a harmonic potential upto its radius
R. We suspected that this might be too simplistic to capture the effect of the network.

B.1.3 Using Spheres

In addition to beads, cytosim also provides a Sphere object to represent a rigid spherical
object, modelled as a bead with multiple points on its surface. Additionally, unlike the bead,
the sphere is also capable of rotation. However, running simulations with the bead showed
that, while the spheres did show slightly sub-diffusive behaviour, it still was unable to cap-
ture the rheology of the system. Additionally, the usage of spheres slowed the simulation
down by a factor of ∼ 10

Figure B.2: (Left) MSD of Sphere. Slope of Red line = 1 (diffusive). (Right) G∗ extracted
from the MSD for nbPoints=1000

Fig. B.2 (Left) shows the MSD obtained from sphere (nbPoints is the number of points on
the surface). While the MSD is slightly subdiffusive, the complex shear modulus does not
show elasticity (Fig. B.2 (Right)). (The artifacts at higher frequences are because of G′

osciallating rapidly about 0, exacerbated by the log scale.)
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B.2 Frequencies, Times and Timesteps

Since Evan’s method uses DTFT, the extracted complex shear modulus G∗ : R → C is a
continuous function of ω . However, the frequency range over which it is valid is limited by
the frame-step (time between two ‘saved’ frames) δ t f and the total duration of the simulation
T : ωmin = 1/T,ωmax = 1/δ t f .

As a result, gaining an additional decade in ω , requires running the simulation for 10 times
as long and generating an order of magnitude more data. This is unfeasible for more than
four decades, which generates over 10GB of data per simulation (including 80 ensembled).
However, it is possible to run simulations of varying durations and ‘stitch’ them together,
as shown in Fig.3.4 (Right). We also explored the possibility of stitching the MSDs and
generating G∗ from the longer MSD. This is desirable since the frame-rate can be tuned in
cytosim, avoiding the need to run two separate simulations.

Figure B.3: G∗ extracted from stitched MSD

However, with Evan’s method, the result at higher frequencies the result at higher fre-
quencies is noisy. We suspect that this might result from the interpolation step in Evan’s
method—at lower frequencies, the data is sampled solely from long-enough MSD ‘runs’.
Simulations with a high-framerate, therefore, does not contribute at all to this part. However,
at the high frequency regime, contributions from the linear interpolations of low-framerate
data are also included. Since the linear interpolations do not contain any information about
the actualhigh frequency fluctuations, this might explain the noisy behaviour. A DTFT
scheme more resilient to non-uniform sampling (such as the Non-uniform Discrete Fourier
Transform NDFT) might provide better results.
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B.2.1 Timestep and Equilibriation

Timestep

To prevent filaments from passing through each other, the timestep τ of the system should
be small enough that distance moved by a segment (of apparent radius r) is within the steric
range sr of another segment. Assuming diffusive motion, we estimate a timestep as follows:√

6µkBT τ ≤ sr

kBT
πηr

τ ≤ s2
r

τ ≤ πηrs2
r

kBT
≈ 0.001s (B.2)

Since the motion of filaments is largely subdiffusive, we expect this to serve as a good
estimate for our timestep. Running simulations with varying timesteps confirmed that the
value of G′ does not change significantly if timestep is lowered beyond 0.001 (Fig. B.4).

10 1 100 101

 [1/ t]

100

G

G' 0.01
G' 0.001
G' 0.0001

Figure B.4: Storage modulus for different timesteps

Interestingly, we observed that the loss modulus G′′ varied with timestep even beyond 0.001
(Fig. D.2). This is surprising because G′′ and G′ can be determined from each other using
the Kramers-Kronig relations [15, 32, 33].

G′(ω) =
1
π

∫
∞

−∞

G′′(ω ′)

ω ′−ω
dω

′ (B.3)

G′′(ω) =− 1
π

∫
∞

−∞

G′(ω ′)

ω ′−ω
dω

′ (B.4)

We suspect that these inaccuracies might arise because the algorithms we use employ a
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truncated version of the Kramers-Kronig relation to compute G′′ [33], however, this has to
be explored further.

Equilibriation

Sec. 3.4 demonstrates that the structure and properties of the network is affected greatly by
the number of bound cross-linkers. Therefore, the system has to be equilibriated atleast until
most of the cross-linkers are bound to two filaments. An analytical estimate for the fraction
of fully-bound cross-linkers (φdb) can be obtained by writing down a Master Equation for
the cross-linker hands and solving it (Appendix Sec. A.2).

φdb = 1− exp(−kt)(1+ kt) (B.5)

where k is the average binding rate of a cross-linker1, given by

k = κb
N f L f πrb

2

V
≈ 0.43 (B.6)
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Figure B.5: Fraction of doubly bound cross-linkers vs time

From Fig. B.5, it can be seen that the analytical formula is in good agreement with the
simulations. This can be used to determine a good estimate for the binding range.

1Note that this is different from the binding rate specified in the configuration file—which is the rate given
a crosslinker is within binding range of a filament
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Appendix C

Technical Notes

C.1 Cytosim Configuration File

A typical configuration file for Cytosim defines the properties of the objects, the simulation
duration and time step through the set keyword. Objects thus defined can be added to the
simulation using new. Once the system is set up, the simulation is run for a specified number
of timesteps.

set simul system {

time_step = 0.001

viscosity = 0.1

steric = 1, 16.9, 0

}

set space cell { shape = periodic }

new cell { length = 2.8,2.8,2.8 }

set fiber actin {

rigidity = 0.00106

steric = 1, 0.007

segmentation = 0.07

}

set hand binder { binding = 10, 0.02; unbinding = 0, inf }

set couple crosslinker {

hand1 = binder; hand2 = binder

stiffness = 4.23

diffusion = 10

fast_diffusion = 1

}

new 500 actin_Kim { length = 1.5 } % add filaments

run 5000 simul { solve = 1 } % Equilibriation of filaments

new 1600 crosslinker % add crosslinkers

run 50000 simul { solve = 1 } % Equilibriation

run 50000 simul { nb_frames = 500 } % save 500 frames
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C.1.1 Using Templates

To facilitate the creation of config files, Cytosim provides a ‘preconfig‘ script [34] that
can parse blocks of python within a ‘template’ config file. This is especially useful when
parameters depend on each other. For example, the file in the previous section specifies
the number of timesteps for which the simulation is run. However, it is more natural to
specify the total time (which also makes it robust against timestep changes). While this is
not possible with a cytosim config file, we can create a template:

[[ timestep = 0.001 ]]

[[ duration = 50.00 ]] % in seconds

set simul system {

timestep = [[ timestep ]]

...

run [[ int(duration / timestep) ]] {

The blocks enclosed by [[...]] are passed through a python interpreter. Additionally, these
template files can be used to quickly generate multple configuration files by specifiying a
list of numbers instead of a scalar, creating a file for each permutation.

[[ timestep = [0.01,0.001,0.0001] ]]

Syntax Highlighting

Cytosim provides a syntax-highlighting plugin for Sublime Text. vim-cytosim is a port of
this plugin to Vimscript, with additional formatting features.

C.2 Reporting Random Filament Segment

With Segment Tracking Microrheology (STM), the number of probes in the system dramat-
ically increases from 1 bead to 5000 filament segments. While having more probes does
provide smoother curves, it increases computational time for an implementation of Evan’s
method in python to ∼5 minutes per simulation. Moreover, the report file containing trajec-
tories of all filament segments is around 300MB in size. Using a single randomly selected
segment produces equally good result, while being more efficient. It is pivotal that the
choice of segment is consistent throughout the simulation. This can easily be achieved this
by exploiting the deterministic property of pseudo-random numbers:

/* Export Fiber-number, position of random vertex per fiber */

void Simul::reportFiberRandomPoint(std::ostream& out) const

{

out << COM << "identity" << SEP << repeatXYZ("pos") << SEP << "curvature";

std::mt19937 rng(1);
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// list fibers in the order of the inventory:

for ( Fiber const* fib = fibers.firstID(); fib; fib = fibers.nextID(fib) )

{

out << COM << "fiber " << fib->reference()

<< " " << fib->segmentation();

std::uniform_int_distribution<> dis(0, fib->nbPoints());

int index = dis(rng);

out << LIN << fib->identity();

out << SEP << fib->posP(index);

out << SEP << fib->curvature(index);

}

}

C.3 Units in Cytosim

Attached here for reference is a short list of the default units in Cytosim, as described in the
Cytosim Documentation.

Parameter Value

duration s
length or range um
force pN
rate 1/s
torque pN.um
speed um/s
diffusion constant um2/s
stiffness pN/um
angular stiffness pN.um/rad
energy pN.um
bending elasticity pN.um2

viscosity pN.s/um2

Table C.1: Cytosim Units

C.4 Cytosim on the Cluster

The sim executable, by default, lacks multi-threading capabilities. This is to encourage
running it on a cluster computer, simulating each trial of the ensemble in parallel. The
Institute of Theoretical Physics maintains rocks, a High performance Computing (HPC)
unit managed by the HT-Condor queueing system.
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My scripts for running cytosim simulations on the cluster are available in a public Gitlab
repository: https://gitlab.gwdg.de/vadakkeputha/cytosim-htcondor-scripts, -
along with instructions on its usage, providing a convenient way to run multiple trials for
different simulations on the cluster.
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Appendix D

Miscellaneous Figures

Figure D.1: Complex shear moduli with in-
creasing number of crosslinkers.

Figure D.2: Loss and Storage Moduli: Vary-
ing timesteps
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Figure D.3: Comparison: Mason’s Method
vs Evans’ Method
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disordered cytoskeletal networks,” Molecular Systems Biology, vol. 13, no. 9, p. 941,
Sep. 2017.

[19] A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, and G. Schehr, “Run-and-
tumble particle in one-dimensional confining potential: Steady state, relaxation and
first passage properties,” Physical Review E, vol. 99, no. 3, p. 032 132, Mar. 26, 2019.

[20] K. Kasza et al., “Actin Filament Length Tunes Elasticity of Flexibly Cross-Linked
Actin Networks,” Biophysical Journal, vol. 99, no. 4, pp. 1091–1100, Aug. 9, 2010.

[21] D. S. Banerjee and S. Banerjee, “Emergence and maintenance of variable-length actin
filaments in a limiting pool of building blocks,” Biophysical Journal, vol. 121, no. 12,
pp. 2436–2448, Jun. 21, 2022.

[22] P. C. Bressloff. “Trapping of a run-and-tumble particle in an inhomogeneous domain:
The weak noise limit.” (Feb. 20, 2021), [Online]. Available: http://arxiv.org/
abs/2102.10372 (visited on 03/13/2025), pre-published.

[23] P. Singh, S. Sabhapandit, and A. Kundu, “Run-and-tumble particle in inhomogeneous
media in one dimension,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2020, no. 8, p. 083 207, Aug. 2020.

[24] M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A.
Weitz, “Elastic Behavior of Cross-Linked and Bundled Actin Networks,” Science,
vol. 304, no. 5675, pp. 1301–1305, May 28, 2004.

68

https://doi.org/10.1103/PhysRevE.80.012501
https://doi.org/10.1103/PhysRevE.80.012501
https://doi.org/10.1103/PhysRevE.80.012501
https://doi.org/10.1103/PhysRevLett.74.1250
https://doi.org/10.1103/PhysRevLett.74.1250
https://doi.org/10.1103/PhysRevLett.74.1250
https://doi.org/10.1103/PhysRevLett.79.3282
https://doi.org/10.1103/PhysRevLett.79.3282
https://doi.org/10.1103/PhysRevLett.79.3282
https://doi.org/10.1146/annurev-fluid-121108-145608
https://doi.org/10.1146/annurev-fluid-121108-145608
https://doi.org/10.1371/journal.pcbi.1000439
https://doi.org/10.1371/journal.pcbi.1000439
https://doi.org/10.1371/journal.pcbi.1000439
https://doi.org/10.15252/msb.20177796
https://doi.org/10.15252/msb.20177796
https://doi.org/10.15252/msb.20177796
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1016/j.bpj.2010.06.025
https://doi.org/10.1016/j.bpj.2010.06.025
https://doi.org/10.1016/j.bpj.2022.05.014
https://doi.org/10.1016/j.bpj.2022.05.014
https://doi.org/10.1016/j.bpj.2022.05.014
https://doi.org/10.48550/arXiv.2102.10372
https://doi.org/10.48550/arXiv.2102.10372
http://arxiv.org/abs/2102.10372
https://doi.org/10.48550/arXiv.2102.10372
http://arxiv.org/abs/2102.10372
https://doi.org/10.1088/1742-5468/aba7b1
https://doi.org/10.1088/1742-5468/aba7b1
https://doi.org/10.1088/1742-5468/aba7b1
https://doi.org/10.1126/science.1095087
https://doi.org/10.1126/science.1095087
https://doi.org/10.1126/science.1095087


[25] F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, “Mi-
croscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal
Fluctuations,” Physical Review Letters, vol. 79, no. 17, pp. 3286–3289, Oct. 27, 1997.

[26] R. Tharmann, M. M. A. E. Claessens, and A. R. Bausch, “Viscoelasticity of Isotrop-
ically Cross-Linked Actin Networks,” Phys. Rev. Lett., vol. 98, no. 8, p. 088 103,
Feb. 21, 2007.

[27] M. Bouzid et al. “Transient contacts between filaments impart its elasticity to bran-
ched actin.” (Sep. 9, 2024), [Online]. Available: http://arxiv.org/abs/2409.
00549 (visited on 03/05/2025), pre-published.

[28] R. Zwanzig and M. Bixon, “Hydrodynamic Theory of the Velocity Correlation Func-
tion,” Physical Review A, vol. 2, no. 5, pp. 2005–2012, Nov. 1, 1970.

[29] S. N. Ricketts, J. L. Ross, and R. M. Robertson-Anderson, “Co-Entangled Actin - Mi-
crotubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation,”
Biophysical Journal, vol. 115, no. 6, pp. 1055–1067, Sep. 18, 2018.

[30] C. D. Chapman, K. Lee, D. Henze, D. E. Smith, and R. M. Robertson-Anderson, “On-
set of Non-Continuum Effects in Microrheology of Entangled Polymer Solutions,”
Macromolecules, vol. 47, no. 3, pp. 1181–1186, Feb. 11, 2014.

[31] T. Golde et al., “Glassy dynamics in composite biopolymer networks,” Soft Matter,
vol. 14, no. 39, pp. 7970–7978, Oct. 10, 2018.

[32] T. Pritz, “Unbounded complex moduli of viscoelastic materials and Kramers–Kronig
relations,” Journal of Sound and Vibration, vol. 279, no. 3, pp. 687–697, Jan. 21,
2005.

[33] H. C. Booij and G. P. J. M. Thoone, “Generalization of Kramers-Kronig transforms
and some approximations of relations between viscoelastic quantities,” Rheologica

Acta, vol. 21, no. 1, pp. 15–24, Jan. 1, 1982.
[34] F. Nedelec, “Preconfig: A Versatile Configuration File Generator for Varying Param-

eters,” Journal of Open Research Software, vol. 5, no. 1, Apr. 5, 2017.
[35] C. Das and D. J. Read, “A tube model for predicting the stress and dielectric relax-

ations of polydisperse linear polymers,” Journal of Rheology, vol. 67, no. 3, pp. 693–
721, May 1, 2023.

[36] M. Doi and S. F. Edwards, “Dynamics of concentrated polymer systems. Part 4.-
Rheological properties,” Journal of the Chemical Society, Faraday Transactions 2:

Molecular and Chemical Physics, vol. 75, no. 0, pp. 38–54, Jan. 1, 1979.
[37] B. L. Goode, J. Eskin, and S. Shekhar, “Mechanisms of actin disassembly and turnov-

er,” The Journal of Cell Biology, vol. 222, no. 12, e202309021, Nov. 10, 2023.
[38] H. Isambert and A. C. Maggs, “Dynamics and Rheology of Actin Solutions,” Macro-

molecules, vol. 29, no. 3, pp. 1036–1040, Jan. 1, 1996.

69

https://doi.org/10.1103/PhysRevLett.79.3286
https://doi.org/10.1103/PhysRevLett.79.3286
https://doi.org/10.1103/PhysRevLett.79.3286
https://doi.org/10.1103/PhysRevLett.98.088103
https://doi.org/10.1103/PhysRevLett.98.088103
https://doi.org/10.1103/PhysRevLett.98.088103
https://doi.org/10.48550/arXiv.2409.00549
https://doi.org/10.48550/arXiv.2409.00549
http://arxiv.org/abs/2409.00549
https://doi.org/10.48550/arXiv.2409.00549
http://arxiv.org/abs/2409.00549
https://doi.org/10.1103/PhysRevA.2.2005
https://doi.org/10.1103/PhysRevA.2.2005
https://doi.org/10.1016/j.bpj.2018.08.010
https://doi.org/10.1016/j.bpj.2018.08.010
https://doi.org/10.1016/j.bpj.2018.08.010
https://doi.org/10.1021/ma401615m
https://doi.org/10.1021/ma401615m
https://doi.org/10.1021/ma401615m
https://doi.org/10.1039/C8SM01061G
https://doi.org/10.1039/C8SM01061G
https://doi.org/10.1016/j.jsv.2003.11.040
https://doi.org/10.1016/j.jsv.2003.11.040
https://doi.org/10.1016/j.jsv.2003.11.040
https://doi.org/10.1007/BF01520701
https://doi.org/10.1007/BF01520701
https://doi.org/10.1007/BF01520701
https://doi.org/10.5334/jors.156
https://doi.org/10.5334/jors.156
https://doi.org/10.1122/8.0000605
https://doi.org/10.1122/8.0000605
https://doi.org/10.1122/8.0000605
https://doi.org/10.1039/F29797500038
https://doi.org/10.1039/F29797500038
https://doi.org/10.1039/F29797500038
https://doi.org/10.1083/jcb.202309021
https://doi.org/10.1083/jcb.202309021
https://doi.org/10.1021/ma946418x
https://doi.org/10.1021/ma946418x


[39] T. G. Mason, “Estimating the viscoelastic moduli of complex fluids using the general-
ized Stokes–Einstein equation,” Rheologica Acta, vol. 39, no. 4, pp. 371–378, Aug. 1,
2000.

[40] C. Pattamaprom, R. G. Larson, and T. J. Van Dyke, “Quantitative predictions of linear
viscoelastic rheological properties of entangled polymers,” Rheologica Acta, vol. 39,
no. 6, pp. 517–531, Nov. 1, 2000.

[41] B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, “Determining Micro-
scopic Viscoelasticity in Flexible and Semiflexible Polymer Networks from Thermal
Fluctuations,” Macromolecules, vol. 30, no. 25, pp. 7781–7792, Dec. 1, 1997.

[42] S. Shanbhag, “Analytical Rheology of Polymer Melts: State of the Art,” International

Scholarly Research Notices, vol. 2012, no. 1, p. 732 176, 2012.
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