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Abstract
Spinor Bose-Einstein Condensates enable the study of various phenomena such as coherent spin
dynamics, quantum phase transitions, topological structures and spin-textures. While there has
been significant progress in the theoretical and experimental understanding of spinor BECs with
a few sub-levels, there is very little work done for systems with spin f > 3. Experimentally,
spinor BECs with f > 3 have not been obtained. The above fact, along with recent works in ultra-
cold Dysprosium atoms, which host a metastable state having total angular momentum J = 10,
motivated us to take on the spin-10 BEC. Spinor BECs get significantly more complex as we move
to higher spins, with additional tensors appearing in the interaction Hamiltonians of the system,
and the dynamical equations being dependent on a much larger number of terms. Lots of parallels
can be drawn to multi-level atoms due to the high internal spin degrees of freedom. Due to the
completely unexplored nature of this system, we attempt to establish foundational knowledge in
this thesis, paving the way for in depth analyses of specific aspects in the future. We examine the
full Hamiltonian and the Gross-Pitaevskii equations governing the time dynamics of the system.
The Bogoliubov spectrum contains 2 f + 1 terms for a spin- f system, and governs the behaviour
under elementary excitations in the system. We provide a general method for finding the full
energy spectrum for two phases of the spin- f system, namely the ferromagnetic and polar phases.
The methods used in this thesis are easily generalizable, and we hope this sets the foundation for
additional theoretical work in higher spin condensates in general.
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Chapter 1

Introduction

Bose-Einstein Condensates were predicted in 1924-25 through works by Albert Einstein and Satyen-

dra Nath Bose. It was after these two pioneering scientists that the predicted state of matter was

named. However, it would take 70 more years for the first gaseous condensate to be prepared in

the laboratory at the University of Colarado Boulder using a gas of Rubidium atoms. Since then

various different types of BECs have been experimentally realized. Along with these successes in

the laboratory, came a host of theoretical and computational work in the field as well.

Bose-Einstein condensates fall under the regime of ultra-cold physics, where bosonic parti-

cles macroscopically occupy a certain quantum state. This type of behaviour is only possible for

bosonic species, since simultaneous occupation of a single state is prohibited for fermions under

Pauli’s Exclusion Principle. Bosonic species are those with integer spins, and include photons,

magnons, polaritons as well as certain atoms and molecules. Bose Einstein condensates can allow

us to study unique quantum behaviours, such as superfluidity[1, 2, 3] and coherence over macro-

scopic distances[4, 5, 6]. After 1995,there were rapid experimental realizations and theoretical

work on spinor BECs [7, 8, 9, 10, 11], dipolar BECS[12, 13, 14, 15], spin-orbit coupled BECs[16,

17, 18, 19], and binary BEC systems [20, 21, 22, 23].

Spinor BECs refer to the condensates which have spin internal degrees of freedom, due to the

hyperfine spin of the particles. These studies have led to the uncovering of interesting phenomena

such as magnetic phases[24, 25], quantum phase transitions [26, 27], Faraday patterns [28, 29, 30,
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31, 32], topological structures [33, 34, 35, 36] and spin textures [37, 38, 39, 40, 41, 42]. Spinor

BECs have been experimentally realized [43] for various species like 7Li, 23Na, 39K, 52Cr etc.

Increasing the spin makes the system increasingly complex, increasing the number of magnetic

sub-levels, introducing new possible ground state phases, topological excitations, new tensorial

terms in the dynamical equations of the system, and so on. There is a considerable lack of existing

literature for higher spin systems[44, 45], potentially due to the difficulty of working with such

systems. Furthermore, there have been no experimental realizations of BECs with spin f > 3.

In this thesis, we look at the properties of homogenous high-spin BECs, particularly spin-10

BECs. The main motivation for this study comes from a recent publication which reported the

observation of a metastable state [46, 47, 48, 49] having a total angular momentum of J = 10 in

a system of Dysprosium atoms. We have attempted to present our results in a way that should

make it easy to generalize to other systems and phases of interest. Therefore, we expect the results

to have applications in numerous future works on general high-spin systems. We shall attempt

to motivate this study from the point of view of multi-level atoms [50, 51, 52]. Our spin-10

system has magnetic sub-levels ranging from m = +10 to m = →10 giving us 21 total sub-levels,

with potential for population dynamics to occur across all sub-levels, with different couplings

across sub-levels based on the terms comprising the Hamiltonian of the system. This is very

reminiscent of behaviour and dynamics in multi-level atoms, where a specific level with total

angular momentum J can split into 2J+1 levels upon the application of a magnetic field due to the

Zeeman splitting of the energy levels. This can provide a complex system to observe couplings and

population transfer between the different levels based on system parameters and conditions. Such

dynamics and properties have been studied extensively in recent times. A connection can be drawn

between the many internal degrees of freedom in our system arising from the hyperfine spin of the

particles and the multiple Zeeman sublevels arising in multi-level atoms, and further comparisons

may be possible between these two systems in the future.

In this thesis, we describe many basic properties relevant to the system, mainly through the

use of analytical and theoretical techniques. To maintain simplicity, in this thesis we consider only

contact interactions. We ignore the long-range dipole-dipole interactions between particles. The
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thesis is structured as follows,

• Chapter 2 : We examine important and relevant topics in the field of Spinor Bose-Einstein

Condensates, and describe all the formalisms used in this thesis.

• Chapter 3 : We derive the full Hamiltonian for our spin-10 system in two choices of basis.

We further use this Hamiltonian and energy functional to derive the non-linear Schroedinger-

like Gross Pitaveskii Equations(GPEs), which govern the full dynamics of the system. We

also attempt to demonstrate some of the differences between high and low spin systems, and

the challenges associated with working with systems having so many internal spin degrees

of freedom.

• Chapter 4: This chapter focuses on the Bogoliubov energy spectrum which governs elemen-

tary excitations in the system. We perform analytical calculations for the Ferromagnetic and

Polar Phases of the general spin- f system, and find the full spectrum. We plot and attempt

to examine the derived spectrum for the spin-10 system.

• Chapter 5: In the final chapter, we summarize the obtained results, and make a few com-

ments about the future outlook and potential utility of the work done in this thesis.
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Chapter 2

Spinor Bose-Einstein Condensates

Spinor Bose-Einstein Condensates refer to the BECs having spin internal degrees of freedom aris-

ing from the hyperfine spin of the condensate particles, and atoms can coherently occupy multiple

magnetic sub-levels. A spin- f boson will have 2 f +1 magnetic sub-levels ranging from m = → f

to m = + f . Originally, magnetic traps were used to confine BECs, which resulted in the atoms

being confined to only one hyperfine state. However, it was later found that it was possible to

retain the spin degrees of freedom through the use of an optical trap, which led to the creation of

spinor BECs. A spinor BEC can host many different ground state phases as a result of the interplay

between the interparticle interactions and the linear and quadratic Zeeman shifts due to external

magnetic fields. Spinor BECs can host unique topological excitations, which are otherwise dif-

ficult to find elsewhere in nature. Overall, spinor BECs are a platform to study exotic physical

phenomena.

Typically we have both short range contact interactions in such systems, as well as much longer

range interactions arising from the dipole moments of the constituent particles. However these long

range dipole-dipole interactions are notoriously difficult to incorporate into studies of spinor con-

densates. We shall work only with the contact interactions in this thesis. We shall work within the

mean-field approximation, assuming that the system is dilute enough to consider only two particle

interactions. In the mean-field limit, the spin-f condensate order parameter will be represented as

a complex 2 f +1 vector.
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However, before we jump too far ahead, we need to establish some pre-requisites. In this first

section we shall develop all the necessary formalism needed to understand spinor condensates.

We shall start with the Hamiltonian of the system, and discuss the observable operators that the

Hamiltonian is commonly written in term of in literature. The full description can be found in [8].

Following this we look at the Bogoliubov energy spectrum for low spin systems, specifically the

polar phase for spin-1 and spin-2 BECs. The contents of this chapter shall be referenced repeatedly

in the remainder of this thesis.

Consider a weakly interacting gas of spin-f bosons. Within the weakly interacting regime,

we can approximate all interparticle interactions as contact interactions. The second quantized

Hamiltonian can be written as follows

Ĥ = Ĥ0 +V̂ (2.1)

where Ĥ0 is the single-particle Hamiltonian, while V̂ covers all of the interactions.

2.1 Single Particle Hamiltonian

For a general spin-f BEC, Ĥ0 is given as:

Ĥ0 =
∫

dr
f

!
m=→ f

!̂†
m

[
→ h̄2∀2

2M
→ pm+qm2 +Vtrap(r)

]
!̂m (2.2)

!̂m and !̂†
m denote the field operators that annihilates and create a boson in the mth Zeeman level

respectively. Vtrap(r) is the external trapping potential(considered equal here across magnetic sub-

levels). p is the linear Zeeman shift, and correspondingly, q is the quadratic Zeeman shift. These

cause energy shifts in the magnetic sub-levels due to an external magnetic field. They are expressed

in terms of the external magnetic field as:

p =→gµBB , q =
(gµBB)2

#Eh f
(2.3)
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where g is the Lande hyperfine g-factor, µB is the Bohr magneton, B is the external magnetic field,

applied in the z-direction, and #Eh f is the hyperfine energy splitting.

2.2 Interaction Hamiltonian

We consider only binary interactions since the system is assumed to be very dilute. Furthermore, in

the very dilute and low temperature regime, only the s-wave scattering between particles becomes

important. Since spinor BECs have internal spin-degrees of freedom, there are different ways a

scattering can take place between two spin- f particles. This introduces us to the concept of spin

collision channels. The collision will conserve the total spin of the colliding particles, and therefore

the channels can be labelled by the total spin of the interacting particles.

Let us consider two particle exchange in a spin- f system [8] . We know that the wave function

of the many body system shall change by (→1)2 f . However we can also decompose this into the

spin and orbital parts, which would give factors of (→1)F+2 f and (→1)L , where F and L are

the total spin, and the relative orbital angular momentum of the two particles respectively. Now

for consistency we must have, (→1)F+L+2 f = (→1)2 f , meaning (→1)F+L = 1. However, we are

only considering s-wave scattering in our system, meaning L = 0, which tells us that F must be

even. Our conclusion from this is that interactions can only take place in certain spin channels,

namely, when the total spin of the interacting particles is even. Furthermore, the total spin F must

be conserved in a two particle interaction. Now, we can write the interaction Hamiltonian as:

V̂ = !
F=0,2··· ,2 f

V̂ (F ) (2.4)

where we are splitting the interaction Hamiltonian into the allowed interaction channels of the

system. Therefore, when considering a spin-10 system, we will have f = 10 giving us 11 allowed

spin interaction channels, going from F = 0 to F = 20 in increments of 2 (only even values).

We now introduce the operator ÂFM (r,r↑), which is the annihilation operator for a boson pair at

positions r and r↑. Â†
FM

(r,r↑) correspondingly creates a boson pair at positions r and r↑. This is
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defined as:

ÂFM (r,r↑) =
f

!
m,m↑=→ f

↓F ,M | f ,m; f ,m↑↔!̂m(r)!̂m↑(r↑) (2.5)

where ↓F ,M | f ,m; f ,m↑↔ are the Clebsch Gordan coefficients. The interaction Hamiltonian can

be expressed in terms of these operators in the following form:

V̂ (F ) =
1
2

∫
dr

∫
dr↑V (F )(r,r↑)

F

!
M=→F

Â†
FM

(r,r↑)ÂFM (r,r↑) (2.6)

We are working under the mean field approximation. If the system is sufficiently dilute, we can

assume that V
(F ) can be replaced by a Dirac delta function, V

(F ) = gF ∀ (r→r↑) where gF is a

coupling constant which is directly proportional to the spin- F channel s-wave scattering length,

gF = 4# h̄2aF/M, where M is the mass of the particle.

2.3 Observable Operators

We start by giving the expression for the elements of the spin matrices

( fx)mm↑ =
1
2

[√
( f +m+1)( f →m)∀m+1,m↑ +

√
( f →m+1)( f +m)∀m→1,m↑

]
(2.7)

( fy)mm↑ =
1
2i

[
→
√

( f +m+1)( f →m)∀m+1,m↑ +
√
( f →m+1)( f +m)∀m→1,m↑

]
(2.8)

( fz)mm↑ = m∀mm↑ (2.9)

We now define the required observable operators. The total density operator is defined as

n̂(r) =
f

!
m=→ f

!̂†
m(r)!̂m(r) (2.10)

The spin singlet-pair operator is given by

Â00(r,r
↑) =

1↗
2 f +1

f

!
m=→ f

(→1) f→m!̂m(r)!̂→m(r
↑) (2.11)
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Similarly we can define the spin-density operator as follows

F̂∃(r) =
f

!
m,m↑=→ f

( f∃)mm↑!̂†
m(r)!̂m↑(r) (2.12)

Finally, the above spin density operator can be generalized to give the rank-k spin nematic tensor

operator (k = 2,3,4 · · · ,( f →1)) as follows

N̂(k)
∃1,∃2,··· ,∃k(r) =

f

!
m,m↑=→ f

( f∃1 f∃2 · · · f∃k)mm↑!̂†
m(r)!̂m↑(r) (2.13)

where (∃1,∃2, · · · ,∃k) = x,y,z, and ( f∃)mm↑ are the spin matrix elements, with ∃ = x,y,z.

We introduce the projection operator P̂F , where the total spin angular momentum of the two

body state is denoted by F . As the name suggests, P̂F projects onto the total spin F two body

state. It is represented as

P̂F =
F

!
M=→F

|F ,M ↔↓F ,M | (2.14)

We can begin with the very commonly known completeness relation, which is given by

Î = !
F

P̂F (2.15)

where Î is the identity operator.

We use this equation above, and (2.5) and (2.10) to simplify and get

: n̂(r)n̂(r↑) := !
F=0,2,··· ,2 f

F

!
M=→F

Â†
FM

(r,r↑)ÂFM (r,r↑) (2.16)

where the : : denotes the normal ordering of the operators, which places all the annihilation opera-

tors to the left, and the creation operators to the right. We can now also further use the composition

of angular momentum to derive another very useful relation

f̂1 · f̂2 =
1
2

[
(f̂1 + f̂2)

2 → f̂1
2 → f̂2

2
]
=

1
2
f̂2

tot → f ( f +1) (2.17)
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Now we shall use (2.5), (2.12) and (2.15) to get the following

: F̂(r) · F̂(r↑) := !
F=0,2,··· ,2 f

[
1
2
F (F +1)→ f ( f +1)

]
F

!
M=→F

Â†
FM

(r,r↑)ÂFM (r,r↑) (2.18)

We can extend this further to include terms of the form (f̂1 · f̂2)k as follows:

(f̂1 · f̂2)
k = !

F

[
1
2
F (F +1)→ f ( f +1)

]k
P̂F (2.19)

where k = 2,3,4 · · · . Using (2.5) and (2.13), we get the following:

!
∃1,∃2,···∃k=x,y,z

: N̂(k)
∃1,∃2,···∃k N̂(k)

∃1,∃2,···∃k(r
↑) : = !

F=0,2,··· ,2 f

[
1
2
F (F +1)→ f ( f +1)

]k

↘
F

!
M=→F

Â†
FM

(r,r↑)ÂFM (r,r↑) (2.20)

This gives us three main equations (2.16), (2.18) and (2.20), which we shall use to express the

interaction Hamiltonian (2.6) in terms of these ( f +1) observable operators. We will use the results

from this section in Chapter(3).

2.4 Bogoliubov Spectrum for Low Spin BECs

Bogoliubov theory describes the behaviour of a BEC under elementary excitations in the ground

state order parameter, and the behaviour associated with these excitations is governed by the Bo-

goliubov energy spectrum. The Bogoliubov spectrum for low spin systems can readily be found

in literature [8, 9, 53, 54, 55]. Here, we shall attempt to provide an overview of the polar phase

(where all particles occupy the m = 0 component) spectrum of the spin-1 and spin-2 systems. This

will help better motivate our calculations in Chapter(4), where we will perform a general analytical

calculation for the polar phase and ferromagnetic phase of a general spin- f system.
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2.4.1 Spin-1

The polar phase has the ground state order parameter(OP) of ω = (0,
↗

n, 0)T . This state is stable

for large values of q, and as the condensate only occupies the m = 0 state, the spin density vector

has zero magnitude.

The chemical potential for this system is µ = c0n. We write a perturbed solution of this polar

state,

∃m = (%m +∀!m)e→iµt/h̄ (2.21)

and the perturbation is given by the ansatz

∀!m = ume→i&t + v≃me+i&t (2.22)

These perturbations are very small, which means we shall discard all quadratic terms (and higher)

in um,vm.

The GPEs governing the dynamics of the spin-1 condensate can commonly be found in litera-

ture, and are given as,

ih̄
∋∃±1

∋ t
=

[
→ h̄2∀2

2M
+q⇐ p+ c0n± c1Fz

]
∃±1 +

[
c1F⇐↗

2

]
∃0 (2.23)

ih̄
∋∃0

∋ t
=

[
→ h̄2∀2

2M
+ c0n

]
∃0 +

[
c1F+↗

2

]
∃1 +

[
c1F→↗

2

]
∃→1 (2.24)

We shall insert our ansatz (4.3), and simplify by retaining only terms up to linear in um and vm.

After simplifying and equating the coefficients of exp
(→i&t

h̄
)

and exp
( i&t

h̄
)

on either side of the

equation, (2.23) will give us the BdG equations governing dynamics of excitations in the m =±1
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components,

&u1 =

(
→ h̄2∀2

2M
→ p+q+ c1n

)
u1 + c1nv→1 (2.25)

→&v1 =

(
→ h̄2∀2

2M
→ p+q+ c1n

)
v1 + c1nu→1 (2.26)

&u→1 =

(
→ h̄2∀2

2M
u→1 → pu→1 +qu→1 + c1nu→1 + c1nv1

)
(2.27)

→&v→1 =

(
→ h̄2∀2

2M
v→1 → pv→1 +qv→1 + c1nv→1 + c1nu1

)
. (2.28)

Similarly (2.24) gives the equation for the excitation in the m = 0 component,

&u0 =

(
→ h̄2∀2

2M
u0 + c0nu0 + c0nv0

)
(2.29)

→&v0 =

(
→ h̄2∀2

2M
v0 + c0nv0 + c0nu0

)
(2.30)

Since our system is homogeneous, we can write the perturbation in the plane wave basis, which

has the effect of replacing the free particle energy with (k = h̄2k2/2M. This has given us 6 total

equations which can be written as an eigenvalue equation, where the energy spectrum is given by

the eigenvalues of the following matrix,

M1 =





(̃k,++ c1n 0 0 0 0 c1n
0 →((̃k,++ c1n) 0 0 →c1n 0
0 0 ((k + c0n) (c0n) 0 0
0 0 →(c0n) →((k + c0n) 0 0
0 c1n 0 0 (̃k,→+ c1n 0

→c1n 0 0 0 0 →((̃k,→+ c1n)





(2.31)

where (̃k,± = (k ⇐ p+q. This 6↘6 matrix can now be written as block diagonal matrix consisting

of three 2↘2 matrices. The eigenvalues of the full matrix are simply given by the eigenvalues of

the individual blocks. The BdG matrix obtained for the higher spin systems can also be handled

this way, and we shall use use this fact later as well. The eigenvalues give the energy spectrum of
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the spin-1 Polar phase, which finally comes out to be:

Ek,⇐1 =
√
((k +q)((k +q+2c1n)± p (2.32)

Ek,0 =
√

(k((k +2nc0) (2.33)

where the Ek,0 mode is the gapless mode (meaning Ek,0 = 0, when k = 0), corresponding to density

excitations in the system, and the remaining 2 modes are the gapped modes(Ek,m ⇒= 0 when k = 0,

for m ⇒= 0) which are tied to spin excitations in the system.

2.4.2 Spin-2

We now move onto the spin-2 polar phase, which has the ground state order parameter of ω =

(0,0,
↗

n,0,0)T . We also easily find that µ = c0n+c2n/5, where µ is the chemical potential of the

system. The spin-2 GPEs governing the dynamics, are given as

ih̄
∋!±2

∋ t
=

[
→ h̄2∀2

2M
+4q⇐2p+ c0n±2c1Fz

]
!±2 + c1F⇐∃±1 +

c2↗
5

A00∃≃
⇐2 (2.34)

ih̄
∋!±1

∋ t
=

[
→ h̄2∀2

2M
+q⇐ p+ c0n± c1Fz

]
!±1 + c1

↗
6

2
F⇐∃0 +F±∃±2


→ c2↗

5
A00∃≃

⇐1

(2.35)

ih̄
∋!0

∋ t
=

[
→ h̄2∀2

2M
+ c0n

]
!0 +

↗
6

2
c1 (F→∃1 +F+∃→1)+

c2↗
5

A00∃≃
0 (2.36)

As in the spin-1 case, we consider a perturbed state of the polar phase order parameter

∃m = (%m +∀!m)e→iµt/h̄ (2.37)

and the perturbation takes the form of the following ansatz

∀!m = ume→i&t + v≃me+i&t (2.38)

and insert the above ansatz into all 5 spin-2 GPEs, neglecting the terms that are O(u2
m) and O(v2

m),

or higher. After simplifications and some elementary transformations, we get an eigenvalue equa-
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tion, where the relevant matrix can be diagonalized to get


u0

v0


=


((k + c0n+ c2n/5) (c0n+ c2n/5)
→(c0n+ c2n/5) →((k + c0n+ c2n/5)


u0

v0


(2.39)


u±2

v⇐2


=


((k +4q⇐2p→ c2n/5) (c2n/5)

→(c2n/5) →((k +4q±2p→ c2n/5)


u±1

v⇐1


(2.40)

and finally


u±1

v⇐1


=


((k +q⇐ p→ c2n/5+3nc1) (3nc1 → c2n/5)

→(3nc1 → c2n/5) →((k +q± p→ c2n/5+3nc1)


u±1

v⇐1


(2.41)

The final energy spectrum comes out to be:

Ek,⇐2 =



((k +4q)
(

(k +4q→ 2c2n
5

)
±2p (2.42)

Ek,⇐1=



((k +q)
(

(k +q+6nc1 →
2c2n

5

)
± p (2.43)

Ek,0 =



(k

(
(k +2nc0 +

2nc2

5

)
(2.44)

where the Ek,0 mode is the gapless mode(meaning Ek,0 = 0, when k = 0), corresponding to density

excitations in the system, and the remaining 4 modes are the gapped modes(Ek,m ⇒= 0 when k = 0,

for m ⇒= 0) which are tied to spin excitations.

In this chapter, we have established the basic formalism for the theoretical description of spinor

BECs. We started by describing the general formalism for Spinor BECs in general, which will

prove vital in Chapter(3), when we derive the Hamiltonian and Gross-Pitaevskii equations for the

spin-10 system. We also provided the calculations pertaining to the Bogoliubov spectrum for the

polar phase of spin-1 and spin-2 BECs. We will expand upon these calculations in Chapter(4)

where we work with general spin- f systems.

14



Chapter 3

Spin-10 Bose-Einstein Condensate

The main motivation for picking the spin-10 system comes from a series of works on doubly

dipolar dysprosium atoms[46, 47, 48, 49]. In these works, they chiefly speak about the total

angular momemtum Ja = 9 and Jb = 10 in dysprosium. They couple these two states using an

uniform electric field, and since dysprosium has a magnetic diople moment, this creates a doubly

dipolar system. However, the chief point of interest for us is the Jb = 10, whose linewidth under

the electric dipole approximation has been reported to be close to zero, meaning it is a metastable

state. A metastable state with total angular momentum 10 has a similar sub-level structure to our

system of interest, which is the spin-10 BEC. This above result was the main reason we started

working on the properties of the spin-10 system. Perhaps the work done in this thesis could also

have implications in future works in this field.

We shall use the formalism described in the previous chapter, and apply it to our system of

interest. We saw that a spin- f system has f + 1 linearly independent observable operators that

we can use to write the Hamiltonian of the system. For a spin-10 system, we have 11 indepen-

dent operators, namely the spin singlet-pair operator, the total density operator, the spin density

operator, and then 8 spin nematic tensor operators ranging from rank 2 to rank 9. We also cor-

respondingly have 11 total allowed spin interaction channels in the spin-10 Hamiltonian, ranging

from F = 0,2,4, · · · ,20.

There are two different, but physically equivalent ways to write the full Hamiltonian. We can ei-

15



ther choose to write it in terms of the creation and annhilation operators and the scattering lengths,

or in terms of the observable operators and the corresponding interaction coefficients. We shall

derive and examine the full Hamiltonian for the spin-10 system in this chapter. We shall then use

the derived Hamiltonian to find the general form of the Gross-Pitaevskii equations for the system.

These are a set of 2 f +1 non-linear Schroedinger like partial differential equations which describe

the complete time evolution of a spin- f condensate.

3.1 Hamiltonian

We have 11 independent operators for the spin-10 system. Let us describe the relation between

the creation and annihilation operators, and the 11 observable operators in the form of a matrix

equation, which looks as follows





Â†
00(r,r

↑)Â00(r,r↑)

: n̂(r)n̂(r↑) :
: F̂(r) · F̂(r↑) :

!∃1,∃2=x,y,z : N̂(2)
∃1,∃2(r)N̂

(2)
∃1,∃2(r

↑) :
...

!∃1,∃2,···∃9=x,y,z : N̂(9)
∃1,∃2,···∃9(r)N̂

(9)
∃1,∃2,···∃9(r

↑) :





= G





Â†
00(r,r

↑)Â00(r,r↑)

!2
M=→2 Â†

2M
(r,r↑)Â2M (r,r↑)

!4
M=→4 Â†

4M
(r,r↑)Â4M (r,r↑)

!6
M=→6 Â†

6M
(r,r↑)Â6M (r,r↑)

...
!20

M=→20 Â†
20M

(r,r↑)Â20M (r,r↑)





(3.1)

where G is a 11↘ 11 matrix whose entries will be given by (2.16), (2.18) and (2.20).Calculating

out the matrix elements leads to the following 11↘11 matrix
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G =





1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1

→110 →107 →100 →89 →74 →55 →32 →5 26 61 100
12100 11449 10000 7921 5476 3025 1024 25 676 3721 10000

→1.331↘106 →1.225↘106 →1↘106 →7.0496↘105 →4.052↘105 →1.663↘105 →3.276↘104 →1.250↘102 1.757↘104 2.269↘105 1↘106

1.464↘108 1.311↘108 1↘108 6.274↘107 2.999↘107 9.151↘106 1.049↘106 6.250↘102 4.570↘105 1.385↘107 1↘108

→1.611↘1010 →1.403↘1010 →1↘1010 →5.584↘109 →2.219↘109 →5.033↘108 →3.355↘107 →3.125↘103 1.188↘107 8.446↘108 1↘1010

1.771↘1012 1.501↘1012 1↘1012 4.970↘1011 1.642↘1011 2.768↘1010 1.074↘109 1.562↘104 3.089↘108 5.152↘1010 1↘1012

→1.949↘1014 →1.606↘1014 →1↘1014 →4.423↘1013 →1.215↘1013 →1.522↘1012 →3.436↘1010 →7.813↘104 8.032↘109 3.143↘1012 1↘1014

2.144↘1016 1.718↘1016 1↘1016 3.937↘1015 8.992↘1014 8.373↘1013 1.100↘1012 3.906↘105 2.088↘1011 1.917↘1014 1↘1016

→2.358↘1018 →1.838↘1018 →1↘1018 →3.504↘1017 →6.654↘1016 →4.605↘1015 →3.518↘1013 →1.953↘106 5.430↘1012 1.169↘1016 1↘1018









1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1

→110 →107 →100 →89 →74 →55 →32 →5 26 61 100
12100 11449 10000 7921 5476 3025 1024 25 676 3721 10000

→1.331↘106 →1.225↘106 →1↘106 →7.0496↘105 →4.052↘105 →1.663↘105 →3.276↘104 →1.250↘102 1.757↘104 2.269↘105 1↘106

1.464↘108 1.311↘108 1↘108 6.274↘107 2.999↘107 9.151↘106 1.049↘106 6.250↘102 4.570↘105 1.385↘107 1↘108

→1.611↘1010 →1.403↘1010 →1↘1010 →5.584↘109 →2.219↘109 →5.033↘108 →3.355↘107 →3.125↘103 1.188↘107 8.446↘108 1↘1010

1.771↘1012 1.501↘1012 1↘1012 4.970↘1011 1.642↘1011 2.768↘1010 1.074↘109 1.562↘104 3.089↘108 5.152↘1010 1↘1012

→1.949↘1014 →1.606↘1014 →1↘1014 →4.423↘1013 →1.215↘1013 →1.522↘1012 →3.436↘1010 →7.813↘104 8.032↘109 3.143↘1012 1↘1014

2.144↘1016 1.718↘1016 1↘1016 3.937↘1015 8.992↘1014 8.373↘1013 1.100↘1012 3.906↘105 2.088↘1011 1.917↘1014 1↘1016

→2.358↘1018 →1.838↘1018 →1↘1018 →3.504↘1017 →6.654↘1016 →4.605↘1015 →3.518↘1013 →1.953↘106 5.430↘1012 1.169↘1016 1↘1018





(3.2)

We can invert (3.1) to get





Â†
00(r,r

↑)Â00(r,r↑)

!2
M=→2 Â†

2M
(r,r↑)Â2M (r,r↑)

!4
M=→4 Â†

4M
(r,r↑)Â4M (r,r↑)

!6
M=→6 Â†

6M
(r,r↑)Â6M (r,r↑)

...
!20

M=→20 Â†
20M

(r,r↑)Â20M (r,r↑)





= G
→1





Â†
00(r,r

↑)Â00(r,r↑)

: n̂(r)n̂(r↑) :
: F̂(r) · F̂(r↑) :

!∃1,∃2=x,y,z : N̂(2)
∃1,∃2(r)N̂

(2)
∃1,∃2(r

↑) :
...

!∃1,∃2,···∃9=x,y,z : N̂(9)
∃1,∃2,···∃9(r)N̂

(9)
∃1,∃2,···∃9(r

↑) :





(3.3)
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Inverting matrix G given in (3.2) gives us the following matrix

G
→1 =





1 →7.722↘10→15 →5.157↘10→16 →3.798↘10→17 2.120↘10→19 7.952↘10→20 2.184↘10→23 2.730↘10→24 →1.787↘10→25 →1.521↘10→27 →7.329↘10→30

→2.174 1.202↘10→1 2.635↘10→2 2.727↘10→4 →4.316↘10→5 →9.326↘10→7 8.207↘10→9 3.100↘10→10 8.917↘10→13 →2.196↘10→14 →1.307↘10→16

2.113 →4.165↘10→1 →9.109↘10→2 →8.885↘10→4 1.497↘10→4 3.135↘10→6 →2.958↘10→8 →1.045↘10→9 →2.688↘10→12 7.411↘10→14 4.235↘10→16

→1.507 7.011↘10→1 1.524↘10→1 1.316↘10→3 →2.518↘10→4 →4.966↘10→6 5.283↘10→8 1.663↘10→9 3.426↘10→12 →1.180↘10→13 →6.344↘10→16

8.326↘10→1 →7.984↘10→1 →1.718↘10→1 →1.128↘10→3 2.851↘10→4 5.025↘10→6 →6.452↘10→8 →1.698↘10→9 →2.235↘10→12 1.207↘10→13 6.007↘10→16

→3.583↘10→1 7.063↘10→1 1.487↘10→1 3.480↘10→4 →2.451↘10→4 →3.398↘10→6 5.878↘10→8 1.205↘10→9 3.737↘10→13 →8.690↘10→14 →3.950↘10→16

1.185↘10→1 →5.693↘10→1 →1.124↘10→1 1.053↘10→3 1.595↘10→4 1.344↘10→6 →3.961↘10→8 →5.946↘10→10 6.258↘10→13 4.501↘10→14 1.852↘10→16

→2.917↘10→2 1.208 3.463↘10→2 →1.708↘10→3 →6.655↘10→5 →1.179↘10→7 1.847↘10→8 1.934↘10→10 →6.019↘10→13 →1.658↘10→14 →6.139↘10→17

5.047↘10→3 5.204↘10→2 1.390↘10→2 7.595↘10→4 1.162↘10→5 →1.317↘10→7 →5.288↘10→9 →3.588↘10→11 2.611↘10→13 4.141↘10→15 1.376↘10→17

→5.481↘10→4 →3.029↘10→3 →7.423↘10→4 →2.525↘10→5 6.099↘10→7 4.368↘10→8 7.288↘10→10 2.200↘10→12 →5.946↘10→14 →6.312↘10→16 →1.879↘10→18

2.815↘10→5 1.165↘10→4 2.781↘10→5 7.814↘10→7 →3.157↘10→8 →1.611↘10→9 →1.661↘10→11 2.089↘10→13 5.764↘10→15 4.443↘10→17 1.185↘10→19









1 →7.722↘10→15 →5.157↘10→16 →3.798↘10→17 2.120↘10→19 7.952↘10→20 2.184↘10→23 2.730↘10→24 →1.787↘10→25 →1.521↘10→27 →7.329↘10→30

→2.174 1.202↘10→1 2.635↘10→2 2.727↘10→4 →4.316↘10→5 →9.326↘10→7 8.207↘10→9 3.100↘10→10 8.917↘10→13 →2.196↘10→14 →1.307↘10→16

2.113 →4.165↘10→1 →9.109↘10→2 →8.885↘10→4 1.497↘10→4 3.135↘10→6 →2.958↘10→8 →1.045↘10→9 →2.688↘10→12 7.411↘10→14 4.235↘10→16

→1.507 7.011↘10→1 1.524↘10→1 1.316↘10→3 →2.518↘10→4 →4.966↘10→6 5.283↘10→8 1.663↘10→9 3.426↘10→12 →1.180↘10→13 →6.344↘10→16

8.326↘10→1 →7.984↘10→1 →1.718↘10→1 →1.128↘10→3 2.851↘10→4 5.025↘10→6 →6.452↘10→8 →1.698↘10→9 →2.235↘10→12 1.207↘10→13 6.007↘10→16

→3.583↘10→1 7.063↘10→1 1.487↘10→1 3.480↘10→4 →2.451↘10→4 →3.398↘10→6 5.878↘10→8 1.205↘10→9 3.737↘10→13 →8.690↘10→14 →3.950↘10→16

1.185↘10→1 →5.693↘10→1 →1.124↘10→1 1.053↘10→3 1.595↘10→4 1.344↘10→6 →3.961↘10→8 →5.946↘10→10 6.258↘10→13 4.501↘10→14 1.852↘10→16

→2.917↘10→2 1.208 3.463↘10→2 →1.708↘10→3 →6.655↘10→5 →1.179↘10→7 1.847↘10→8 1.934↘10→10 →6.019↘10→13 →1.658↘10→14 →6.139↘10→17

5.047↘10→3 5.204↘10→2 1.390↘10→2 7.595↘10→4 1.162↘10→5 →1.317↘10→7 →5.288↘10→9 →3.588↘10→11 2.611↘10→13 4.141↘10→15 1.376↘10→17

→5.481↘10→4 →3.029↘10→3 →7.423↘10→4 →2.525↘10→5 6.099↘10→7 4.368↘10→8 7.288↘10→10 2.200↘10→12 →5.946↘10→14 →6.312↘10→16 →1.879↘10→18

2.815↘10→5 1.165↘10→4 2.781↘10→5 7.814↘10→7 →3.157↘10→8 →1.611↘10→9 →1.661↘10→11 2.089↘10→13 5.764↘10→15 4.443↘10→17 1.185↘10→19





(3.4)

Therefore to summarize, we have the following interacting part of the Hamiltonian for the spin-F

channel in a spin-10 system

V̂ (F ) =
1
2

∫
dr

∫
dr↑V (F )(r,r↑)

F

!
M=→F

Â†
FM

(r,r↑)ÂFM (r,r↑) (3.5)

and then summing over all 11 possible spin channels gives us the total interaction Hamiltonian.

Finally, we can replace the !F

M=→F
Â†

FM
(r,r↑)ÂFM (r,r↑) in (3.5) using the matrix given in

(3.4) to write everything in terms of the 11 independent observable operators to get the complete

spin-10 Hamiltonian.

Looking back to the spin-1 system, we do a similar transformation to write the interaction Hamilto-

nian in terms of the commonly used c0 and c2 coefficients. For the spin-10 system, since there are

11 independent operators in the interaction Hamiltonian, there will be 11 interaction coefficients,
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ranging from c0 to c10. We can write the total Hamiltonian for a spin-10 BEC as follows

Ĥ =
∫

dr


10

!
m,m↑=→10

!̂†
m


→ h̄2∀2

2M
→ pm+qm2 +Vtrap(r)


!̂m↑

+
1
2


c1Â†

00(r,r)Â00(r,r)+ c0 : n̂(r)2 : +c2 : F̂(r)2 :

+c3 !
∃1,∃2=x,y,z

:


N̂(2)
∃1,∃2(r)

2
: + · · ·+ c10 !

∃1,∃2,···∃9=x,y,z
:


N̂(9)
∃1,∃2,···∃9(r)

2
:


(3.6)

where all of the interaction coefficients are explicitly determined by the entries of the matrix given

in (3.4). We write down the first few explicitly below

• c1 : g0→2.174g2+2.113g4→1.507g6+0.8326g8→0.3583g10+0.1185g12→0.02917g14+

0.005047g16 →0.0005481g18 +0.00002815g20

• c0: →7.722↘10→15g0+0.1202g2→0.4165g4+0.7011g6→0.7984g8+0.7063g10→0.5693g12+

1.208g14 +0.05204g16 →0.003029g18 +0.0001165g20

• c2: →5.157↘10→16g0+0.02635g2→0.09109g4+0.1524g6→0.1718g8+0.1487g10→0.1124g12+

0.03463g14 +0.01390g16 →0.0007423g18 +0.00002781g20

and so on.

As we can clearly see from (3.4), the later coefficients will be much smaller. The cn coefficients

fall in value as n increases.

3.2 Spin Nematic Tensor Magnitudes

Now that we have derived the full Hamiltonian, it might be worthwhile to have a look at how

some of the terms in the Hamiltonian behave, both within the spin-10 system, as well as across

different spin-f systems. We are already fairly familiar with the behaviour of the number density,

spin density and spin singlet terms since these are the terms that appear very often in literature for

spin- f systems when f ⇑ 3. Therefore we shall focus on spin nematic tensors.
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The spin nematic tensors first appear in the spin-3 system and add a unique feature to the

dynamics of the system. While we are familiar with the spin singlet operator which couples the

±m components, and the spin density operator which couples the mth sub-level to itself and to

m± 1, as is evident from the structure of the spin matrices (2.7), (2.8), (2.9). However, the spin-

nematic tensor couples sub-levels that are even further apart, which can be discerned from their

definition (2.13). Therefore, it can cause jumps in the population across sub-levels, instead of

the sequential dynamics that would be needed if the nematic tensors were absent. This has been

described for the spin-3 system in [56]. These high rank nematic tensors can therefore make the

couplings between components and the dynamics between them significantly more complex as we

move to higher spins. However, there is limited existing work on the potential physics arising due

to the higher rank nematic tensors.

3.2.1 Spin-10 Nematic Tensors

Let us start with the spin-10 system we have studied so far in this chapter. We know from (3.4)

that the interaction coefficients decrease in magnitude as their subscript increases. Essentially, in

general, we expect cn+1 < cn, although of course, their exact values will depend on the values of

all the scattering lengths. Now we know that we have 8 nematic tensors in the Hamiltonian of the

spin-10 system, ranging from rank-2 all the way up to rank-9. It might therefore be tempting to

ignore these higher ranked spin-nematic tensors, because their respective interaction coefficients

are negligible compared to the initial few coefficients. However, we have found that this may not

be as straightforward as it appears. To demonstrate this, let us consider two very commonly used

order parameters:

• Polar Phase: Complete occupation of only the m = 0 component.

• Ferromagnetic Phase: Complete occupation of the m =+ f component.

Using these two order parameters, we calculated the magnitudes of all the terms appearing in the

Hamiltonian given in (3.6). The results are shown in fig(3.1) and fig(3.2) for the polar and the

ferromagnetic phases respectively. The magnitudes of the rank-k nematic tensors increase incredi-
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Figure 3.1: Using the Polar Phase order parameter, values of the density, singlet, and nematic terms
for the spin-10 system, with the y-axis on a symmetric logarithmic scale

Figure 3.2: Using the Ferromagnetic Phase order parameter, values of the density, singlet, and
nematic terms for the spin-10 system, with the y-axis on a logarithmic scale
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bly quickly as we increase the tensor rank for both order order parameters. This is why we cannot

simply throw away the later nematic tensors. When trying to simulate the system, one will have to

pay attention to whether these tensors grow in magnitude faster than the interaction coefficients fall.

The values of the nematic tensors are independent of the scattering lengths of the system. The

interplay between scattering length and the interaction coefficient values is an interesting problem

to consider. Clearly, we do not have any experimental values to rely on. However, if we were to

consider all scattering lengths to be sampled from a uniform random distribution with a certain

mean and standard deviation, we find that as we decrease the standard deviation, all interaction

coefficients(except c0) also fall in value. This means that theoretically, if the scattering length val-

ues are extremely close together, the interaction coefficients will fall in value fast enough to safely

ignore higher order nematic terms.

This also has implications when it comes to approximation techniques like the spatial Single Mode

Approximation(SMA), which is commonly used to simplify numerical simulations of systems.

The asymmetric part of the Hamiltonian should be a perturbation to the symmetric part of the

Hamiltonian for the SMA to be valid. Here, symmetry is referring to whether that part of the

Hamiltonian remains unchanged under the exchange of indices corresponding to the different spin

components. Clearly since the nematic tensors are part of the asymmetric portion of the Hamilto-

nian, we need their energy contribution to be small. Therefore this interplay between the growth

of the nematic tensors and the fall of the interaction coefficients needs to be studied very carefully

before attempting to use the SMA for such high spin systems.

3.2.2 Comparison Between Spin-f tensors

In the previous section, we had a close look at the spin nematic tensors that appear in the spin-10

Hamiltonian. Now we shall look at these tensors as a function of the spin of the system. We

consider the same two order parameters as before: ferromagnetic and polar. The rank-2 nematic

tensor first appears in the spin-3 Hamiltonian. Let us consider the magnitude of this quantity plotted

as a function of spin of the system. The results are given in fig(3.3) and fig(3.4). We can see that
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Figure 3.3: Values of the rank-2 nematic tensor for different system spins, using the Polar Phase
order parameter.

Figure 3.4: Values of the rank-2 nematic tensor for different system spins, using the Ferromagnetic
Phase order parameter.
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even just for the rank-2 nematic tensor, we have a significant increase in magnitude with increase

in the spin of the BEC. We see very similar behaviour for both the Polar and Ferromagnetic order

parameters, but the figures indicate that the values of the tensor for a given spin, are larger for

the ferromagnetic order parameter compared to the polar order parameter, which is to be expected

given the structure of the spin-matrices.

3.3 Gross-Pitaevskii Equations

In the previous section, we fully derived the Hamiltonian for a spin-10 BEC under the mean-field

approximation. In this section, we shall focus on finding the non-linear Gross Pitaevskii equations.

These are very commonly used in literature to describe the time evolution of the condensate, which

can reveal some interesting population dynamics, as well as spin-textures, phase transitions, and

topological structures. The GPEs are a set of 2 f +1 equations for a spin- f system. We have 1 GPE

corresponding to each magnetic sub-level of the system. The GPEs are given by the following

general equation:

ih̄
∋!m(r)

∋ t
=

∀E
∀!≃

m(r)
(3.7)

where E is the mean field energy functional given by E[!] = ↓Ĥ↔0, where ↓· · ·↔0 = ↓ω| · · · |ω↔. Here

the state |ω↔ is the state vector under the mean field approximation where all the condensed bosons

are occupying a single spatial mode(which we can say is the i=0 mode), and a single spin state.

this state vector can be denoted as follows:

|ω↔= 1↗
N!


f

!
m=→ f

%mâ†
m0

N

|vac↔ (3.8)

Here |vac↔ is the vacuum state, and %m is normalized as follows

f

!
m=→ f

|%m|2 = 1 (3.9)
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We shall also subsequently need to make use of the following identities:

↓!̂m(r)↔0 = ↓!̂†
m(r)↔0 = 0 (3.10)

↓!̂†
m(r)!̂m↑(r↑)↔0 = !≃

m(r)!m↑(r↑) (3.11)

↓!̂†
m1
(r)!̂†

m2
(r↑)!̂m↑

2
(r↑↑)!̂m↑

1
(r↑↑↑)↔0 =

(
1→ 1

N

)
!≃

m1
(r)!≃

m2
(r↑)!m↑

2
(r↑↑)!m↑

1
(r↑↑↑) (3.12)

and we have
!m(r) =

↗
Nωm)m0(r) (3.13)

Here )mi is a orthonormal, complete basis, where m is the magnetic quantum number and i is the

spatial mode. We already have the expression for the non-interacting part of the Hamiltonian, and

we have (2.5) and (2.6) for the interacting part of the Hamiltonian. This relates the annihilation

operator to the Clebsch Gordan coefficients as follows

V̂ (F ) =
1
2

∫
dr

∫
dr↑V (F )(r,r↑)

F

!
M=→F

Â†
FM

(r,r↑)ÂFM (r,r↑) (3.14)

ÂFM (r,r↑) =
f

!
m,m↑=→ f

↓F ,M | f ,m; f ,m↑↔!m(r)!m↑(r↑) (3.15)

We now express CFM

f ,m; f ,m↑ = ↓F ,M | f ,m; f ,m↑↔, where CFM

f ,m; f ,m↑ is the Clebsch Gordan coefficient.

Since we are working under the mean-field approximation, we approximate V
(F ) = gF ∀ (r→r↑)

as before. We can then write the full general Hamiltonian for the spin-10 system as follows:

Ĥ =
∫

dr


f

!
m,m↑=→ f

!̂†
m

(
→ h̄2∀2

2M
→ p( fz)mm↑ +q( f 2

z )mm↑ +Vtrap(r)

)
!̂m↑

+
1
2


g0Â†

00(r)Â00(r)+g2

2

!
M=→2

Â†
2M

(r)Â2M (r)+ · · · +g20

20

!
M=→20

Â†
20M

(r)Â20M (r)



(3.16)
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Now we use (3.15) to write the full Hamiltonian as,

Ĥ =
∫

dr





10

!
m,m↑=→10

!̂†
m

(
→ h̄2∀2

2M
→ p( fz)mm↑ +q( f 2

z )mm↑ +Vtrap(r)

)
!̂m↑

+
1
2 !

F=0,2,··· ,20

F

!
M=→F

10

!
m1,m↑

1,
m2,m↑

2=→10

gF CFM

10,m1;10,m↑
1
CFM

10,m2;10,m↑
2
!̂m1(r)!̂m↑

1
(r)!̂†

m2
(r)!̂†

m↑
2
(r)





(3.17)

From here we find the expectation value of this Hamiltonian with respect to the state vector defined

in (3.8). We use the identities(3.10), (3.11) and (3.12). We shall also use ( fz)mm↑ =m∀mm↑ , meaning

( f 2
z )mm↑ = m2∀mm↑ . This gives us

E[!] = ↓Ĥ↔0 =
∫

dr


10

!
m=→10

!≃
m

(
→ h̄2∀2

2M
→ pm+qm2 +Vtrap(r)

)
!m

+
1
2 !

F=0,2,··· ,20




F

!
M=→F




10

!
m1,m↑

1,m2,m↑
2=→10

gF CFM

10,m1;10,m↑
1
CFM

10,m2;10,m↑
2
!m1(r)!m↑

1
(r)!≃

m2
(r)!≃

m↑
2
(r)













(3.18)

Where we are ignoring the term that goes as (1/N) since it will be very small compared to the

the remaining terms in the equation. Now we use (3.7) to find the non-linear Gross-Pitaevskii

equations. This will give us the general form of the GPEs:

ih̄
∋!m(r)

∋ t
=

(
→ h̄2∀2

2M
→ pm+qm2 +Vtrap(r)

)
!m

+
1
2 !

F=0,2,··· ,20




F

!
M=→F




10

!
m1,m↑

1,m2=→10
gF CFM

10,m1;10,m↑
1
CFM

10,m;10,m2
!m1(r)!m↑

1
(r)!≃

m2
(r)









(3.19)
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However, this can be simplified a little further. For the Clebsch Gordan(CG) coefficient determined

by the parameters ↓ j1 m1 j2 m2|J M↔, the explicit expression of the CG coefficient has the term

∀ (m1 + m2,M) multiplying with the rest of the expression, where ∀ represents the dirac-delta

function. Therefore the CG coefficient will simply be 0 unless we have m1+m2 =M. Furthermore,

we can see from (3.19) that we have the term CFM

f ,m1; f ,m↑
1
CFM

f ,m; f ,m2
. Since M is common for both

CG terms, we must have the following condition for the entire term to be non-zero

m1 +m↑
1 = m+m2 = M (3.20)

Now we look at the second term in (3.19) more closely, specifically the multiple summations we

have to work with. For a specific GPE, the parameter m will always be fixed. Now if we fix

m1 and m↑
1, then M can only take one value if the expression has to remain non-zero, which is

M = m1 +m↑
1. Therefore the summation over M is actually unnecessary, and can be eliminated

since only one term in the summation leads to a non-zero value. Furthermore, we notice that the

summation over M goes from →F to F , we must also have F ⇓ |m1 +m↑
1| to ensure that M

takes the value m1 +m↑
1. Now all of this means that we can rewrite (3.19) as follows:

ih̄
∋!m(r)

∋ t
=

(
→ h̄2∀2

2M
→ pm+qm2 +Vtrap(r)

)
!m

+
1
2 !

F=|m1+m↑
1|,··· ,2 f




f

!
m1,m↑

1,m2=→ f
gF CF (m1+m↑

1)
f ,m1; f ,m↑

1
CF (m1+m↑

1)
f ,m; f ,m2

!m1(r)!m↑
1
(r)!≃

m2
(r)



 (3.21)

The first summation in the above equation will go from |m1+m↑
1| to 2 f in steps of 2 if |m1+m↑

1| is

even, or |m1 +m↑
1|+1 to 2 f in steps of 2, if |m1 +m↑

1| is odd. This is particles can only interact in

spin channels having even F as discussed in Chapter(2). There are (2 f +1) magnetic sub-levels

for a spin- f system, and there will be 1 GPE equation for every sub-level, which we can explicitly

determine by plugging in the value of m, and the relevant Clebsch Gordan coefficients into (4.1).

Alternatively, we can also write the general GPE in terms of the interaction coefficients using the

Hamiltonian described in (3.6). The derivation is fairly straightforward and proceeds similarly to

the previous, so we shall directly state the final form here. The alternative form of the GPEs is

27



given as

ih̄
∋!m

∋ t
=

[
→ h̄2∀2

2M
→mp+m2q+Vtrap(r)+ c0n

]
!m+

(→1) f→mc1↗
2 f +1

A00!≃
→m+c2

f

!
m↑=→ f

F ·fmm↑!m↑

+c3 !
∃ ,∃ ↑


N(2)

∃ ,∃ ↑

f

!
m↑=→ f

( f∃ f∃ ↑)mm↑ !m↑


+ · · · +c9 !

∃1,∃2,··· ,∃9


N(9)

∃1,∃2,··· ,∃9

f

!
m↑=→ f

( f∃1 f∃2 · · · f∃9)mm↑ !m↑



(3.22)

These are both perfectly valid ways to describe the GPEs for the spin-10 system, and both have

their benefits depending on the context of the problem.

Therefore, in this chapter, we have found the full Hamiltonian for the spin-10 BEC. The entire

method can easily be generalized to find the Hamiltonian of a general spin- f system. We also

looked at the nematic terms in more detail, specifically how their magnitude depends on the rank of

the tensor, and the spin of the system and showed how this can have some interesting implications.

We also derived the non-linear Gross-Pitaevskii equations for the system, in two different forms.

We shall use the results from this section, specifically the results from Section(3.3), to find the

energy spectrum of a general spin- f system for certain phases.
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Chapter 4

Bogoliubov Spectrum

Small perturbations in the system, such as quantum or thermal fluctuations, or even external per-

turbations, can often highlight collective behaviour often observed in such interacting systems,

and are often described as elementary excitations of the ground state of the system. These ele-

mentary excitations in a Bose-Einstein condensate are described by the Bogoliubov theory, and

the behaviour associated with these excitations is governed by the Bogoliubov energy spectrum

of the system. The spectrum for a scalar BEC with no interparticle interactions, is given simply

by that of a single particle(⇔ k2). However, the introduction of interactions changes the nature of

the spectrum, which can now be given by linear behaviour initially, followed by quadratic single

particle like behaviour at larger values of the wavevector k.

For spinor BECs, the spectrum becomes much more complicated for higher spins, owing to

a larger number of tensorial interaction terms, as well as more sub-levels in the system. Further-

more, the possible ground state phases can also be much larger in number, and significantly more

complicated to work with. We will have multiple branches of excitation in spinor BECs, namely

2 f +1 terms in the energy spectrum for a spin- f BEC, and the spectrum will change depending on

the considered phase of the system. Since different phases will have a different spectrum, modes

can develop instabilities when crossing a phase transition. Phase transitions can be understood in

terms of the instabilities in the energy spectrum, and the spectrum can therefore provide valuable

microscopic information about the behaviour of the system.
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To find the spectrum, we start with the field operator for BEC and consider the ansatz where we

introduce a small perturbation to this field operator. We then use the GPEs derived previously, and

discard all terms that are quadratic or higher in the introduced perturbation. Simplifying further

will lead us to an eigenvalue equation, where the eigenvalues are the modes of the energy spectrum

for the system. We provided an introduction to this topic in Section(2.4), where we found the

polar phase spectrum of spin-1 and spin-2 BECs. In this section, We shall perform a full analytical

calculation of the spectrum for the polar and ferromagnetic phases of the general spin- f system.

Following this, we shall look at the full spectrum of a spin-10 system for the above phases.

4.1 General Spin- f System

Having looked at lower spin-systems, we are ready to move onto the general spin- f system. As

the spin degrees of freedom increase, the complexity of the system increases rapidly, for example,

in terms of the number of ground state phases observed. For our discussion, we shall consider two

important states, the state where the entire population is in the m = 0 sub-level(which we may term

as the polar phase, analogous to the lower spin systems we discussed), and the ferromagnetic state

where the entire population is in the m = + f sub-level (maximal magnetization in the system).

The general form of the non-linear Gross-Pitaevskii equations that we derived in Section(3.3) for

a spin- f system is given as,

ih̄
∋!m(r)

∋ t
=

(
→ h̄2∀2

2M
→ pm+qm2 +Vtrap(r)

)
!m

1
2 !

F=|m1+m↑
1|,··· ,2 f




f

!
m1,m↑

1,m2=→ f
gF CF (m1+m↑

1)
f ,m1; f ,m↑

1
CF (m1+m↑

1)
f ,m; f ,m2

!m1(r)!m↑
1
(r)!≃

m2
(r)



 (4.1)

Here CF (m1+m↑
1)

f ,m1; f ,m↑
1

= ↓F ,M | f ,m; f ,m↑↔ are the Clebsch Gordan coefficients, and gF = 4# h̄2aF/M,

where aF is the total spin-F channel scattering length

We consider a uniform stationary state described by the 2 f +1 component order-parameter ω, and
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then add the perturbation

∃m = (%m +∀!m)e→iµt/h̄ (4.2)

with the perturbation given by the ansatz

∀!m = ume→i&t + v≃me+i&t (4.3)

Inserting the ansatz in (4.1), and linearising in um,vm, we obtain the coupled differential equation

describing the dynamics of these perturbations. The equations, in general, couple all the states. But

we can show that for ferromagnetic and polar phases, the components couple in such a way that the

resultant matrix can always be reduced to a block diagonal form. Solving the eigenvalue equation

will give the energy spectrum for the phase considered. The key is to analyze the GPEs and find out

how different components couple to each other after inserting our ansatz and maintaining linearity

in the perturbation. We shall prove this for both phases below.

4.1.1 Polar Phase

Proof of a Claim

We use the zero magnetization phase, having the ground state order parameter %0 = 1 and %m⇒=0 = 0.

This corresponds to the phase commonly referred to as the ”polar phase” in lower spin systems.

Upon inserting our ansatz (4.3) into the GPE (4.1), we get the Bogoliubov-de-Gennes(BdG)

equations, which couples excitations in different components. Let us examine in detail how differ-

ent component excitations couple to each other.

The first part of the right hand side of the GPE (4.1) consists of the term,

(
→ h̄2∀2

2M
+Utrap(r)→ pm+qm2

)
!m (4.4)

which couples each component only to itself. The main portion of interest will be the second
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portion of the equation

1
2 !

F=|m1+m↑
1|,··· ,2 f




f

!
m1,m↑

1,m2=→ f
gF CF (m1+m↑

1)
f ,m1; f ,m↑

1
CF (m1+m↑

1)
f ,m; f ,m2

!m1(r)!m↑
1
(r)!≃

m2
(r)



 (4.5)

Through this term, the evolution of a component is coupled to the other ones. For further simplifi-

cation, we look at the !0 GPE equation and the rest of the equations separately. In Section(3.3), we

discussed the properties of the Clebsch Gordan coefficients, which gave us the following condition

m1 +m↑
1 = m+m2 (4.6)

We also recall that in (4.1), there is a summation over m1,m↑
1,m2, so all possible combinations of

these three parameters will need to be considered. We divide our problem into two cases.

m = 0

From (4.5), we see that the non-linear portion of the coupled GPE has a general form containing

the term !m1!m↑
1
!≃

m2
. The perturbed order parameter is given by

!m =

(
%m +um exp

(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))
e→iµt/h̄ (4.7)

Therefore, linearity of the expanded terms in um,vm require two out of three !m̃ terms to be !0.

We therefore know that two out of m1,m↑
1 and m2 must equal m to maintain the required linearity.

However, this immediately follows from (4.6) that the third parameter must always equal m. It

follows that m1 = m↑
1 = m2 = m = 0. This implies that the excitation in m = 0 phase does not

couple to other components and can be separately solved for the polar phase.

m ⇒= 0

If m ⇒= 0, we still need two two of the terms in !m1!m↑
1
!≃

m2
to be !0 for it to be linear in um,vm.

We also recall (4.6). There are only three possibilities to consider, and we shall go through all of

32



them.

1. m1 = m↑
1 = 0 and m2 ⇒= 0. In this case, for m1 +m↑

1 = m+m2 to hold, we would need

m2 =→m.

2. m1 = m2 = 0 and m↑
1 ⇒= 0. From (4.6), we must have m↑

1 = m.

3. m↑
1 = m2 = 0 and m1 ⇒= 0, clearly gives us m1 = m.

Finally let us check the couplings between the mth component and the zeroth component. We shall

consider the first of the three conditions mentioned above

!0!0!≃
→m =

(↗
n+u0 exp

(
→i&t

h̄

)
+ v≃0 exp

(
i&t
h̄

))2(
u≃→m exp

(
i&t
h̄

)
+ v→m exp

(
→i&t

h̄

))

= n
(

u≃→m exp
(

i&t
h̄

)
+ v→m exp

(
→i&t

h̄

))
(4.8)

where we have neglected higher order terms in u,mvm. There is clearly no dependence on u0 or v0

on the RHS, which proves that there is no dependence of the um and vm parameters on u0 or v0 in

the coupled equations. The other two conditions will clearly also yield the same conclusion.

We have therefore proven that for any value of m, um and vm will only be coupled to u±m and v±m.

This shows us that the eventual matrix(that needs to be diagonalized) can always be brought into a

block diagonal form. This result will significantly simplify our calculation.

Energy Spectrum Calculation

In this section, we shall perform the explicit analytical calculation to derive the Bogoliubov spec-

trum. We start by finding the chemical potential, which we denote by µ . We take the unperturbed

order parameter given by ∃0 =
↗

ne→iµt/h̄. When inserted into (4.1) with m = 0, we get,

µ =
1
2

n !
F=0,2,··· ,2 f

[
gF


CF 0

f ,0; f ,0

2
]

(4.9)

In order to solve for the BdG spectrum, Let us again divide our problem into two cases
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m = 0

Inserting our ansatz (4.3) into (4.1) gives us the following LHS,

ih̄
∋∃0

∋ t
=

(
&u0 exp

(
→i&t

h̄

)
→&v≃0 exp

(
i&t
h̄

))
e→iµt/h̄ +µ

(↗
n+u0 exp

(
→i&t

h̄

)
+ v≃0 exp

(
i&t
h̄

))
e→iµt/h̄

(4.10)

The RHS will be given as

ih̄
∋∃0

∋ t
=

[
→ h̄2∀2

2M

]
∃0 +

1
2 !

F=0,2,··· ,20
gF (CF 0

10,0;10,0)
2∃0∃0∃≃

0

=

[
→ h̄2∀2

2M

](↗
n+u0 exp

(
→i&t

h̄

)
+ v≃0 exp

(
i&t
h̄

))
+

1
2 !

F=0,2,··· ,2 f
gF (CF 0

f ,0; f ,0)
2

(
n3/2 +nu≃0 exp

(
i&t
h̄

)
+nv0 exp

(
→i&t

h̄

)
+2nu0 exp

(
→i&t

h̄

)
+2nv≃0 exp

(
i&t
h̄

))

(4.11)

However, from the ground state Polar phase order parameter, we know that we must have:

[
→ h̄2∀2

2M

]
(
↗

n)+
1
2 !

F=0,2,··· ,2 f
gF (CF 0

f ,0; f ,0)
2(n3/2) = µ

↗
n (4.12)

We substitute this back into the previous equation, Canceling out the common µ
↗

n term reduces

the equation to

(
&u0 exp

(
→i&t

h̄

)
→&v≃0 exp

(
i&t
h̄

))
+µ

(
u0 exp

(
→i&t

h̄

)
+ v≃0 exp

(
i&t
h̄

))

=

[
→ h̄2∀2

2M

](
u0 exp

(
→i&t

h̄

)
+ v≃0 exp

(
i&t
h̄

))
+

1
2 !

F=0,2,··· ,2 f
gF (CF 0

f ,0; f ,0)
2

(
nu≃0 exp

(
i&t
h̄

)
+nv0 exp

(
→i&t

h̄

)
+2nu0 exp

(
→i&t

h̄

)
+2nv≃0 exp

(
i&t
h̄

))
(4.13)
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And finally equating the coefficients of exp
( i&t

h̄
)

and exp
(→i&t

h̄
)

gives us the following two equa-

tions

&u0 =


(k +

n
2



!
F=0,2,··· ,2 f

gF


CF 0

f ,0; f ,0

2


u0 +
n
2



!
F=0,2,··· ,2 f

gF (CF 0
f ,0; f ,0)

2


v0 (4.14)

→&v0 =


(k +

n
2



!
F=0,2,··· ,2 f

gF


CF 0

f ,0; f ,0

2


v0 +
n
2



!
F=0,2,··· ,2 f

gF (CF 0
f ,0; f ,0)

2


u0 (4.15)

This can be written as

&


u0

v0


= M0


u0

v0


(4.16)

where the matrix, is given by

M0 =





[
(k +(n/2)

(
!F=0,2,··· ,2 f gF


CF 0

f ,0; f ,0

2
)]

n/2


!F=0,2,··· ,2 f gF (CF 0
f ,0; f ,0)

2


→(n/2)


!F=0,2,··· ,2 f gF (CF 0
f ,0; f ,0)

2


→
[

(k +(n/2)
(

!F=0,2,··· ,2 f gF


CF 0

f ,0; f ,0

2
)]





(4.17)

where writing in the plane wave basis has given (k = →h̄2k2/2M. The eigenvalues of this matrix

give us the first term in the energy spectrum

Ek,0 =

√(k


(k +n



!
F=0,2,··· ,2 f

gF


CF 0

f ,0; f ,0

2


(4.18)

m ⇒= 0

In the previous section, we were able to prove that um,vm couple only to themselves, and to

u→m,v→m, meaning our coupled equations take the form

ih̄
∋∃m

∋ t
= Lm∃m +L

↑
m∃≃

→m (4.19)

To proceed, we need the forms of Lm and L
↑

m. When m ⇒= 0, we have 3 cases as discussed in the

previous section. We shall consider them one at a time

• m1 = m↑
1 = 0
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This means m2 =→m. Now (m1 +m↑
1) = 0, and therefore (4.5) will give us

!
F=0,2,··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m ∃0∃0∃≃

→m


(4.20)

Inserting our ansatz will mean ∃0∃0∃≃
→m will simply give us n∃≃

→m +O(w2). Therefore,

we shall get

L
↑

m =
1
2

n



!
F=0,2,··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


(4.21)

• m1 = m2 = 0

Here m↑
1 = m. The term we get from (4.5) is

L̃m =
1
2 !

F


gF CF m

f ,0; f ,mCF m
f ,m; f ,0 ∃0∃m∃≃

0


(4.22)

The summation will go from |m| to 2 f if m is even, and |m|+ 1 to 2 f if m is odd. We also

have ∃0∃m∃≃
0 = n∃m +O(w2). Therefore, we get

L̃m =
1
2 !

F


ngF CF m

f ,0; f ,mCF m
f ,m; f ,0


∃m (4.23)

However, we also recall that the Clebsch Gordan coefficients are symmetric under particle

exchange, meaning
CF m

f ,0; f ,m =CF m
f ,m; f ,0 (4.24)

giving us

L̃m =
1
2 !

F

ngF


(CF m

f ,0; f ,m

2
∃m (4.25)

• m↑
1 = m2 = 0

Here m1 = m. However, it is almost immediately obvious that this will give us the exact

same result as the previous case, giving us the overall result of

2L̃m = !
F

ngF


(CF m

f ,0; f ,m

2
∃m (4.26)
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To summarize, if m is even:

Lm =

[
→ h̄2∀2

2M
→ pm+qm2

]
+n !

F=|m|,|m|+2,···2 f
gF (CF m

f ,0; f ,m)
2 (4.27)

and if m is odd:

Lm =

[
→ h̄2∀2

2M
→ pm+qm2

]
+n !

F=|m|+1,|m|+3,···2 f
gF (CF m

f ,0; f ,m)
2 (4.28)

Henceforth, we shall signify all summations over F simply as !F=|m|···20. Moving forward, it

shall be assumed that these summation will only take even values. Therefore, we shall in general

write

Lm =

[
→ h̄2∀2

2M
→ pm+qm2

]
+n !

F=|m|···2 f
gF (CF m

f ,0; f ,m)
2 (4.29)

L
↑

m =
1
2

n



!
F=0,2,··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


(4.30)

The full coupled equations for m ⇒= 0 are given by This gives us:

ih̄
∋∃m

∋ t
=

(
&um exp

(
→i&t

h̄

)
→&v≃m exp

(
i&t
h̄

))
e→iµt/h̄ +µ

(
um exp

(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))
e→iµt/h̄

(4.31)

= Lm

(
um exp

(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))
e→iµt/h̄ +L

↑
m

(
u≃→m exp

(
i&t
h̄

)
+ vm exp

(
→i&t

h̄

))
e→iµt/h̄

(4.32)

Now we can cancel e→iµt/h̄, and use (4.29) and (4.30) to get

(
&um exp

(
→i&t

h̄

)
→&v≃m exp

(
i&t
h̄

))
+µ

(
um exp

(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))
=

[(
→ h̄2∀2

2M
→ pm+qm2

)
+

n



!
F=|m|···2 f

gF (CF m
f ,0; f ,m)

2

(
um exp

(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))
+

n
2



!
F=0···2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m



(
u≃→m exp

(
i&t
h̄

)
+ v→m exp

(
→i&t

h̄

))
(4.33)
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We finally equate the coefficients of exp
(→i&t

h̄
)

and exp
( i&t

h̄
)
, which both need to be separately

equal. We also use (4.9) to get:

&um =


(k → pm+qm2 +n



!
F=|m|···2 f

gF (CF m
f ,0; f ,m)

2



→1
2

n



!
F=0··· ,2 f

gF


CF 0

f ,0; f ,0

2


um +
n
2



!
F=0··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


v→m (4.34)

(→&vm) =


(k → pm+qm2 +n



!
F=|m|···2 f

gF (CF m
f ,0; f ,m)

2



→ 1
2

n



!
F=0,2,··· ,2 f

gF


CF 0

f ,0; f ,0

2


vm +
n
2



!
F=0,2,··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


u→m (4.35)

where (k =→h̄2k2/2M. We can now finally write

&





u f

v→ f

u f→1

v1→ f
...

u→ f

v f





= M





u f

v→ f

u f→1

v1→ f
...

u→ f

v f





(4.36)

excluding the u0 and v0 terms since we have already dealt with them previously. We find that the

above matrix M is a block diagonal matrix consisting of 2 f 2↘ 2 matrices along the diagonal.

The general form of each block is

S =


S11 S12

S21 S22


(4.37)
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where we have:

S11 =


(k →mp+m2q+n



!
F=|m|,···2 f

gF (CF m
f ,0; f ,m)

2


→ 1

2
n



!
F=0··· ,2 f

gF


CF 0

f ,0; f ,0

2


(4.38)

S12 =
n
2



!
F=0··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


(4.39)

S21 =→n
2



!
F=0··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


(4.40)

S22 =→


(k +mp+m2q+n



!
F=|m|,···2 f

gF (CF m
f ,0; f ,m)

2


→ 1

2
n



!
F=0··· ,2 f

gF


CF 0

f ,0; f ,0

2


(4.41)

Where we have used the property of the Clebsch Gordan coefficients: CF m
10,0;10,m = CF →m

10,0;10,→m, as

well as the symmetry of the coefficients under exchange: CF 0
10,m;10,→m =CF 0

10,→m;10,m. Here m varies

from → f to f excluding 0, thereby giving us 2 f such matrices. The eigenvalue of the above matrix

is given in general as

Ek,m = sqrt

{
(k +m2q+n



!
F=|m|,···2 f

gF (CF m
f ,0; f ,m)

2


→ 1

2
n



!
F=0,··· ,2 f

gF


CF 0

f ,0; f ,0

2


+
n
2



!
F=0,··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


(k +m2q+n



!
F=|m|,···2 f

gF (CF m
f ,0; f ,m)

2


→

1
2

n



!
F=0,··· ,2 f

gF


CF 0

f ,0; f ,0

2

→ n

2



!
F=0,··· ,2 f


gF CF 0

f ,0; f ,0CF 0
f ,m; f ,→m


⇐mp (4.42)

The above expression gives us 2 f terms in the energy spectrum, with the final term being calculated

before in (4.18) as

Ek,0 =±

√(k


(k +n



!
F=0,··· ,2 f

gF


CF 0

f ,0; f ,0

2


(4.43)

We have therefore found the expression for all 2 f +1 modes for a general spin- f system.
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4.1.2 Ferromagnetic Phase

We shall follow a very similar approach to find the energy spectrum of the ferromagnetic phase,

which has the order parameter (1 , 0 , 0 , 0 · · · , 0)T , where all the population is in the m = + f

component. We shall use a similar proposition to simplify our calculations. The second term in

the GPE as before is given by (4.5), with the same condition: m1 +m↑
1 = m+m2. We once again

divide our problem into 2 parts

• m = f

For this GPE, 2 out of the 3 ∃ terms must be ∃ f to maintain linearity in w, and the condition

m1 +m↑
1 = m+m2 ensures that the remaining term will also be ∃ f .

• m ⇒= f

In this case again 2 terms have to be ∃ f . Now the three possibilities are:

– m1 = m↑
1 = f , we quickly see that this case will reduce to 0 due to the condition m1 +

m↑
1 =m+m2, since it would require m2 > f which is not possible for the spin- f system.

– m1 = m2 = f , clearly gives us m↑
1 = m

– m↑
1 = m2 = f gives m1 = m

Also, by making a similar argument as the previous section:

! f ! f !≃
→m =

(↗
n+u f exp

(
→i&t

h̄

)
+ v≃f exp

(
i&t
h̄

))2(
u≃→m exp

(
i&t
h̄

)
+ v→m exp

(
→i&t

h̄

))

= n
(

u≃→m exp
(

i&t
h̄

)
+ v→m exp

(
→i&t

h̄

))
(4.44)

neglecting the higher order terms as always. This can be easily extended to the other two cases

described above. Therefore, we have shown that um and vm are only coupled to themselves in the

dynamical equations. This actually differs from the polar phase, since in that case, they were also

coupled to the u→m and v→m parameters. We now proceed to the full calculation. We start by finding

the chemical potential of the system, for which we will use the m = f GPE and ∃ f =
↗

ne→iµt/h̄,
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which gives us:

↗
nµe→iµt/h̄ =→ f p+ f 2q+

1
2


g2 fC

2 f ,2 f
f , f ; f , f

2
∃ f ∃ f ∃≃

f (4.45)

µ =→ f p+ f 2q+
1
2

n


g2 fC
2 f ,2 f
f , f ; f , f

2
(4.46)

Now that we have the chemical potential, we can get into the calculation

m = f

ih̄
∋∃ f

∋ t
=

[
→ h̄2∀2

2M
→ f p+ f 2q

]
+

1
2


g2 fC

2 f ,2 f
f , f ; f , f

2
∃ f ∃ f ∃≃

f (4.47)

This gives us

ih̄
∋∃ f

∋ t
=

[(
&u f exp

(
→i&t

h̄

)
→&v≃f exp

(
i&t
h̄

))
+µ

(↗
n+u f exp

(
→i&t

h̄

)
+ v≃f exp

(
i&t
h̄

))]
e→iµt/h̄

=

[
→ h̄2∀2

2M
→ f p+ f 2q

]
+

1
2


g2 fC

2 f ,2 f
f , f ; f , f

2
∃ f ∃ f ∃≃

f (4.48)

Using our ansatz, we can expand this further to give:

ih̄
∋∃ f

∋ t
=

[(
&u f exp

(
→i&t

h̄

)
→&v≃f exp

(
i&t
h̄

))
+µ

(↗
n+u f exp

(
→i&t

h̄

)
+ v≃f exp

(
i&t
h̄

))]
e→iµt/h̄

=

[
→ h̄2∀2

2M
→ f p+ f 2q

](↗
n+u f exp

(
→i&t

h̄

)
+ v f exp

(
i&t
h̄

))
+

1
2


g2 fC

2 f ,2 f
f , f ; f , f

2

(
n3/2 +nu≃f exp

(
i&t
h̄

)
+nv f exp

(
→i&t

h̄

)
+2nu f exp

(
→i&t

h̄

)
+2nv≃f exp

(
i&t
h̄

))
(4.49)

But we also know that the following equation must be satisfied for the ferromagnetic order param-

eter: [
→ h̄2∀2

2M
→ f p+ f 2q

]
(
↗

n)+
1
2


g2 fC

2 f ,2 f
f , f ; f , f

2
(n3/2) = µ

↗
n (4.50)
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Therefore we can write

ih̄
∋∃ f

∋ t
=

[(
&u f exp

(
→i&t

h̄

)
→&v≃f exp

(
i&t
h̄

))
+µ

(↗
n+u f exp

(
→i&t

h̄

)
+ v≃f exp

(
i&t
h̄

))]
e→iµt/h̄

=

[
→ h̄2∀2

2M
→ f p+ f 2q

](
u f exp

(
→i&t

h̄

)
+ v f exp

(
i&t
h̄

))
+

1
2


g2 fC

2 f ,2 f
f , f ; f , f

2

(
nu≃f exp

(
i&t
h̄

)
+nv f exp

(
→i&t

h̄

)
+2nu f exp

(
→i&t

h̄

)
+2nv≃f exp

(
i&t
h̄

))
+µ

↗
n (4.51)

which simplifies to

ih̄
∋∃ f

∋ t
=

(
&u f exp

(
→i&t

h̄

)
→&v≃f exp

(
i&t
h̄

))
e→iµt/h̄+µ

(
u f exp

(
→i&t

h̄

)
+ v≃f exp

(
i&t
h̄

))
e→iµt/h̄

=

[
→ h̄2∀2

2M
→ f p+ f 2q

](
u f exp

(
→i&t

h̄

)
+ v≃f exp

(
i&t
h̄

))
+

1
2


g2 fC

2 f ,2 f
f , f ; f , f

2

(
nu≃f exp

(
i&t
h̄

)
+nv f exp

(
→i&t

h̄

)
+2nu f exp

(
→i&t

h̄

)
+2nv≃f exp

(
i&t
h̄

))
(4.52)

Now we can separately equate the exp
(→i&t

h̄
)

and exp
( i&t

h̄
)

parts of the equation, and insert (4.46)

for the expression of the chemical potential, to get

&u f =

[
(k +

1
2

n


g2 fC
2 f ,2 f
f , f ; f , f

2
]

u f +
1
2

n


g2 fC
2 f ,2 f
f , f ; f , f

2
v f (4.53)

and similarly, we get

→&v f =

[
(k +

1
2

n


g2 fC
2 f ,2 f
f , f ; f , f

2
]

v f +
1
2

n


g2 fC
2 f ,2 f
f , f ; f , f

2
u f (4.54)

where as before, (k =→h̄2k2/2M.

m ⇒= f

We have shown that um,vm couple only to themselves, meaning we can write

ih̄
∋∃m

∋ t
= Lm∃m (4.55)
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We have two potential cases to discuss. The first is m1 = m2 = f , and m↑
1 = m, and the second is

m↑
1 = m2 = f and m1 = m. It is very obvious that both the possibilities will give the same term

L̃m =
1
2 !

F=| f+m|,··· ,2 f


gF CF | f+m|

f , f ; f ,m CF | f+m|
f ,m; f , f ! f (r)!m(r

↑)!≃
f (r

↑)


(4.56)

We use the fact that the Clebsch Gordan coefficients are symmetric under particle exchange for

integer spins and ignore all terms quadratic in w or higher to give

Lm =

[
→ h̄2∀2

2M
→mp+m2q

]
+n !

F=| f+m|,··· ,2 f


gF CF | f+m|

f , f ; f ,m

2
(4.57)

where the summation over F takes only even values as always. Therefore the equations are given

by

ih̄
∋∃m

∋ t
=

(
&um exp

(
→i&t

h̄

)
→&v≃m exp

(
i&t
h̄

)
)e→iµt/h̄ +µ(um exp

(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))
e→iµt/h̄

=


→ h̄2∀2

2M
→mp+m2q+n !

F=| f+m|,··· ,2 f


gF CF ( f+m)

f , f ; f ,m

2
(

um exp
(
→i&t

h̄

)
+ v≃m exp

(
i&t
h̄

))

(4.58)

where the F summation only takes even values. Now we can equate the exp
(→i&t

h̄
)

and exp
( i&t

h̄
)

coefficients, and use (4.46) for the chemical potential to get

&um =


(k → (m→ f )p+(m2 → f 2)q+n !

F=| f+m|,··· ,2 f


gF CF ( f+m)

f , f ; f ,m

2

→1
2

n


g2 fC
2 f ,2 f
f , f ; f , f

2
]

um (4.59)
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and similarly for the exp
( i&t

h̄
)

coefficients

→&vm =


(k → (m→ f )p+(m2 → f 2)q+n !

F=| f+m|,··· ,2 f


gF CF ( f+m)

f , f ; f ,m

2

→1
2

n


g2 fC
2 f ,2 f
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where The eigenvalue equation now takes the following form:

&


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
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= M


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...
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



(4.61)

The matrix M is already block-diagonal. The top left block is a 2↘ 2 matrix, and the rest of the

matrix has only diagonal entries. The eigenvalues of M will be given by the 2 eigenvalues of the

topleft 2↘2 matrix, and the remaining diagonal entries.

The top left 2↘2 matrix is given by (4.53) and (4.54)


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1
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
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which has eigenvalue

Ek, f =



(k

(
(k +n


g2 fC

2 f ,2 f
f , f ; f , f

2
)

(4.63)
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This gives us the first term in the energy spectrum, and the remaining 20 terms can be found

directly from (4.59) and (4.60), and are given as

Ek,m =


(k → (m→ f )p+(m2 → f 2)q+n !

F=| f+m|,··· ,2 f


gF CF ( f+m)

f , f ; f ,m

2
→ 1

2
n


g2 fC
2 f ,2 f
f , f ; f , f

2


(4.64)

for m going from (→ f ) to ( f →1).

4.2 Spin-10 Spectrum

In the previous section we developed a method to derive the energy spectrum for the polar and

ferromagnetic phases of any general spin- f system. In this section, we shall consider the spin-10

spectrum

4.2.1 Polar Phase

We shall use the results derived in the previous section, specifically (4.42) and (4.43). The full

spectrum is written below
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(4.65)
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and so on until we get to:
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and the final term in the energy spectrum is given by:
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(4.69)
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Figure 4.1: Bogoliubov spectrum for the spin-10 Polar Phase. The parameters for this plot are
q = 3, p = 5. The values of gF have been sampled from a uniform random distribution between
(0,1).

The full spectrum is shown in fig(4.1). As expected, we have 20 gapped modes, represented by

Ek,m when m ⇒= 0, and 1 gapless mode represented by Ek,0. This completes our discussion for the

Bogoliubov spectrum for the spin-10 Polar phase.

4.2.2 Ferromagnetic Phase

We again use the derived results from the previous section, which is summarized in (4.63) and

(4.64). The full spectrum is listed below
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(4.71)
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Figure 4.2: Bogoliubov spectrum for the spin-10 Ferromagnetic phase. We can clearly see the
gapped Ek,0 mode, while the other 20 modes are gapped. The parameters for this plot are q =
3, p = 5. The values of gF have been sampled from a uniform random distribution between (0,1).
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and so on until

Ek,9 =
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and finally

Ek,10 =



(k

(
(k +n


g20C20,20

10,10;10,10

2
)

(4.74)

This is shown in fig(4.2), where we have 1 gapless mode(Ek,10), and 20 gapped modes(Ek,m where

m ⇒= 10)

This concludes our discussion for the spin-10 Ferromagnetic phase Bogoliubov spectrum.

To summarize, we performed an analytical calculation for finding the Bogoliubov spectrum
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for the polar and ferromagnetic phases of any general spin- f system. This always gives us one

gapless mode, and 2 f gapped modes. We then used our general spin- f results to derive the spin-10

spectrum for the two phases discussed, and plotted each of the modes against the wavevector k.
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Chapter 5

Conclusion and Outlook

In this thesis, we examined high spin Bose-Einstein Condensates, particularly the spin-10 BEC.

Due to a significant lack of prior literature on BECs with spins higher than 3, we attempted to

establish a foundation in this thesis for future studies in high spin systems. We started by finding

the full Hamiltonian of the spin-10 system, and the relations between the interaction coefficients cn

and the scattering lengths of the system. We used the Hamiltonian and the corresponding energy

functional to find the non-linear Gross-Pitaveskii equations. We also showed how the magnitude

of the nematic tensors change in a spin-10 system depending on their rank, and observed that

there is a very rapid increase with the rank of the nematic tensor. Furthermore, even for the same

rank, the magnitude of the nematic tensor increases with the spin of the system, which can have

numerous implications with respect to simulating higher spin systems, or for techniques such as

the single mode approximation(SMA). In the last section of our thesis, we analyzed the Bogoli-

ubov energy spectrum that governs elementary excitations in the spin-10 system for two important

phases, namely the polar and the ferromagnetic Phases. We first used the derived GPEs to show

how different components of the BEC couple under small perturbations in the system, which sig-

nificantly simplified our calculations. We performed the required analytical calculations to derive

full energy spectrum, and represented all the modes in a graph. We expect the work done in this

thesis to be useful for higher spin BEC studies, especially in the context of simulating the system,

or observing population dynamics akin to those observed in multi-level atoms. Furthermore, the
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energy spectrum calculation has been performed using the Clebsch Gordan coefficient represen-

tation of the Gross Pitaevskii equation, which makes it fairly straightforward to generalize to any

spin- f BEC. Using this, elementary excitations can be studied in a various systems, and the meth-

ods used here can be adapted for different ground state order parameters and phases, to further

increase the applicability of the work done in this thesis.
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