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Abstract

The cosmic 21-cm signal serves as a unique probe of the early universe, offering insights into

the Epoch of Reionization (EoR), the Epoch of Heating (EoH), and the properties of the

first galaxies. However, extracting meaningful astrophysical parameters from this complex,

non-Gaussian signal poses significant challenges, particularly when traditional likelihood-

based methods like Monte Carlo Markov Chain (MCMC) are infeasible. In this work, I

explore Neural Ratio Estimation (NRE), a cutting-edge Simulation-Based Inference (SBI)

technique, to address these challenges. NRE leverages neural networks to approximate the

likelihood-to-evidence ratio, enabling efficient posterior estimation without explicit likelihood

evaluations.

Our research highlights the practical advantages of implementing NRE using a custom

PyTorch-based framework over existing libraries like Swyft, which impose restrictive data

structures for its input, such as Zarr hierarchies, as well as a completely unknown input

hierarchy, making it not user-friendly at all. By designing a streamlined, flexible data pipeline

tailored to our needs, we eliminate unnecessary computational overhead and achieve faster

training times while maintaining full control over the model architecture and data handling.

This approach not only simplifies the workflow but also ensures that the codebase remains

modular, transparent, and adaptable to diverse datasets.

We apply MNRE to simulated 21-cm power spectra and lightcones generated using 21cm-

FAST, demonstrating its ability to infer key astrophysical parameters such as the ionizing

efficiency (ζ) and X-ray luminosity per star formation rate (LX , < 2 keV/SFR). Our results

underscore the potential of NRE to unlock deeper insights into the thermal and ionization

history of the intergalactic medium (IGM). By combining the computational efficiency of Py-

Torch, this work provides a fresh, scalable framework for analyzing upcoming observations

from next-generation telescopes like the Square kilometer Array (SKA).

This study not only advances the field of 21-cm cosmology but also sets a new standard

for flexible, efficient, user-friendly inference pipelines in astrophysics, paving the way for

transformative discoveries about the early universe.
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Chapter 1

Introduction

The universe—a vast expanse of stars, galaxies, and cosmic structures—began its journey ap-

proximately 13.8 billion years ago in an extremely dense-hot state with the Big Bang. In the

immediate aftermath of this cataclysm, the cosmos was a chaotic sea of particles, radiation,

and energy. However, roughly about 400,000 years after the Big Bang, a trans-formative

epoch known as recombination took place. During this period, the universe cooled down

several degrees of kelvin, allowing the combination of free electrons and protons, forming

neutral hydrogen atoms for the first time in cosmic history. This marked a revolutionary

moment: photons that had been trapped in constant interactions with charged particles were

finally free to stream across the universe, resulting in the Cosmic Microwave Background

(CMB), which provides us with a detailed graphical picture of our universe at this early

stage.

Recombination also ushered in a profound era of darkness. With the formation of neutral

hydrogen, the universe became opaque to most forms of electromagnetic radiation. This

”cosmic fog” obscured our view of what lay beyond it, enshrouding the entire cosmos. For

hundreds of millions of years, the universe stayed in this dim, featureless state—a period

referred to as the Cosmic Dark Ages. It was not until the emergence of the first luminous

objects that the universe began to transform once again.

The ignition of the first stars and galaxies during the cosmic dawn marked the end

of this prolonged darkness. These primordial galaxies, although small and faint, emitted

enormous amounts of ultraviolet (UV) radiation into the surrounding environment. This
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emitted UV light interacted with the neutral hydrogen already present in the intergalactic

medium (IGM), gradually ionizing it and making way for transparency. Over a longer time

span, as the galaxies became larger and more numerous, the cumulative energetic UV output

accelerated the process of reionization. This epoch, aptly named the Epoch of Reionization

(EoR), represents one of the most dramatic transitions in the entire history of our universe.

By the end of this era, the IGM had been rendered almost entirely ionized, paving the way

for the transparent universe we observe today.

Understanding the EoR is crucial because it offers crucial information for the formation

and evolution of the first galaxies, the properties of the IGM, and the nature of the sources

responsible for reionization. However, directly observing these primordial galaxies remains

an immense challenge. Their vast distances make them extraordinarily faint, and much of

their radiation is absorbed by the intervening neutral hydrogen before it reaches us. As a

result, traditional observational methods fall short when attempting to probe this distant

epoch.

Fortunately, we are equipped with a powerful quantum mechanical tool to indirectly study

the EoR: The Neutral Hydrogen’s 21-cm hyperfine spin-flip transition arising from a quantum

mechanical interaction within the Hydrogen atom. This spin-flip transition phenomenon

occurs when the spins of the proton and electron within a hydrogen atom flip from a higher-

energy state (parallel spins) to a lower-energy state (anti-parallel spins). This transition

releases a photon with a wavelength of precisely 21 centimeters, corresponding to a frequency

of approximately 1420 MHz. While this energy difference is incredibly small—about 5.9

micro-electronvolts—it is precisely this subtlety that makes the 21-cm signal a potent catalyst

for probing the early universe.

The spin-flip transition occurs due to the hyperfine interaction between the magnetic

moments of the positively charged proton and the negatively charged electron in a neutral

hydrogen atom. In the ground state, the electron and proton can occupy one of two distinct

spin configurations: a higher-energy state where their spins are aligned (parallel) and a

lower-energy state where their spins are anti-aligned (anti-parallel). The energy difference

between these two states is extremely small, corresponding to a temperature difference of

only 0.068 Kelvin.

To detect intensity variations of this 21-cm signal against a uniform background source—

the CMB, we map the distribution of neutral hydrogen throughout the universe. These maps
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serve as a proxy for the locations and activities of the first galaxies, allowing us to reconstruct

the timeline and dynamics of reionization.

We rely on large-scale radio interferometers designed to capture the spatially varying

patterns of the 21-cm emission across the sky. These interferometers work by measuring

complex visibilities, which represent the interference patterns created by incoming signals.

Mathematically, these visibilities correspond to a Fourier transform of the underlying sky

brightness distribution, providing a natural framework for analyzing the signal.

The 21-cm signal can be decomposed into two key components based on its physical

properties. The first component, k∥, captures the line-of-sight variations of the signal, which

are encoded in frequency-dependent fluctuations caused by the redshifted nature of the 21-

cm emission. The second component, k⊥, describes the two-dimensional spatial variations

of the signal across the plane of the sky. Together, these components form a comprehensive

picture of the 3D structure of neutral Hydrogen prevalent in the primordial universe.

To extract the astrophysical properties of the first galaxies from the 21-cm signal, Bayesian

inference is an essential tool. This traditional process typically involves generating 3D reion-

ization simulations in real-time with a Monte Carlo Markov Chain (MCMC) algorithm. For

instance, tools like 21CMMC have been developed to compare simulated 21-cm signals with

observational data. However, this traditional approach comes with significant limitations.

To address these shortcomings, we have turned to Simulation-Based Inference (SBI), a

powerful framework that leverages deep learning algorithms to estimate posterior distribu-

tions without requiring an explicit likelihood function. SBI operates by training machine

learning models on simulated datasets to learn either the likelihood function itself (Neu-

ral Likelihood Estimation; NLE), the likelihood-to-evidence ratio (Neural Ratio Estimation;

NRE), or even the posterior distribution directly (Neural Posterior Estimation; NPE). For

our thesis, we will work on estimating the likelihood-to-evidence ratio estimation using Neu-

ral Ratio Estimation (NRE).

In this thesis, I have created an algorithm based on Neural Ratio Estimation(NRE),

a cutting-edge implementation of SBI that can estimate the likelihood-to-evidence ratios

within seconds using machine learning pipelines. By leveraging NRE, we aim to exploit

the full potential of the Hydrogen 21cm signal, helping us to decode the cosmological and

astrophysical insights about the Epoch of Reionization (EoR) and the characteristics of the
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very first primordial galaxies. SBI represents a paradigm shift in our ability to decode

the universe’s earliest chapters, merging the strengths of deep learning with astrophysical

simulations.
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Chapter 2

Inference from H-21cm Signal

The Hydrogen 21cm Signal provides a vast information archive of pure cosmological and

astrophysical significance. But now the main question is” how to extract fundamentals from

the H-21cm signal”? The inference of the 21cm cosmology can be enumerated into 3 parts:

1. Characterization of Observed Signal - The observed H-21cm signal frequency (or

redshift dimension) is very faint and differs in spatial coordinates as well as along the

viewer’s line of sight to provide a 3D dynamic video of the IGM. We need to average

this observational data using statistics to predict its behavior.

2. Efficient Modeling - The model should be physically correct and computationally

efficient to investigate the 21cm signal.

3. Probabilistic Framework for Extraction - Our models can be modulated or af-

fected by unknown parameters; we must filter our ignorance of these parameters and

minimize the spread while extracting data.

2.1 Characterization – Power Spectrum (Part 1)

One of the simple methods to characterize the 21cm signal is by generating the Power

Spectrum(PS). PS is the Fourier transformation of the 2-point correlation function - a scaled
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composition of all the excess spatial signal. The PS is the number of Fourier space modes

or k-modes as a function of physical scale.

The PS represents the inherent approach to detecting the 21cm signal using a radio

interferometer, as this technique relies on measuring the time delays of cosmological signals

as they reach different radio antennas or dishes positioned at specific separations.

To obtain our PS, we normalize the 21cm Brightness Temperature, δTb(x), to be a zero-

mean quantity, which amplifies the spatial information in the signal. Typically for our case

of 1D PS generation, the 21cm PS is converted to a dimensionless quantity as:

∆2
21(k) =

(
k3

2π2

)
P21(k)

To calculate the spherically averaged power spectra P21(k), Fourier modes are aggregated

within spherical shells. This process enhances the signal-to-noise ratio, albeit at the expense

of detailed spatial information.

The global 21 cm signal corresponds to the average brightness temperature of the 21 cm

line across the entire sky. While the global signal provides an overall measure, the power

spectrum offers additional insight by capturing spatial variations in the 21 cm signal. In a

scenario where these fluctuations are purely Gaussian, the power spectrum would encapsulate

all available information, rendering higher-order n-point correlation functions redundant.

However, due to the intricate interplay of large- and small-scale processes during reionization

and the cosmic dawn, the signal exhibits non-Gaussian characteristics. Consequently, the

power spectrum does not capture all details, leaving room for valuable insights from higher-

order n-point statistics.

The sensitivity of the 21 cm power spectrum can be enhanced by breaking down the

fluctuations in the 21 cm brightness temperature using a Taylor expansion perturbative

analysis, allowing us to retrieve the following:

δ21 ∝ cbδb + cxδx + cαδα + cT δT − δ∂v

Fluctuations in the brightness temperature field of the 21cm signal δ21 are attributed to

the total sum of– the underlying density field δb, the ionization fraction δx, the Lyman Alpha
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Coupling coefficient δα, temperature of the neutral hydrogen δT , and the peculiar velocity

gradient along our line of sight δ∂v. When we calculate the Power Spectrum, we’re essen-

tially measuring how these different factors interact. This involves not only the individual

contributions of each factor but also how they overlap and influence one another. Instead of

relying on just one specific Fourier mode, we analyze a range of spatial scales, allowing us

to extract important details about both small-scale and large-scale processes.

For instance, during the Epoch of Recombination, the 21 cm signal is primarily shaped

by the ionization field. This field provides valuable insights into the reionization process

because it reflects the size and clustering patterns of H-II regions.

The shape of the Power Spectrum changes noticeably depending on the efficiency of

ionization. In the early stages, it closely resembles the density Power Spectrum, while in later

stages, it aligns more with the ionization field. A similar pattern emerges when we adjust

Tvir, which serves as an indicator of the least possible mass of halos hosting galaxies where

stars form. When we increase the threshold, it reduces the number of sources contributing

to reionization, which in turn affects the Power Spectrum.

2.2 Efficient Modeling – Semi-Numerical Models (Part

2)

It’s very hard to model all the astrophysical processes or parameters, which we call “as-

troparams”, computationally. Instead, we can aim to simplify large approximations by

significantly enhancing the computational efficiency of our simulations .

This choice enables:

• Huge cosmological volumes amounting to several Gigaparsecs,

• A large number of simulations need to be carried out for the rapid exploration of

astrophysical parameters (astroparams).

Semi-numerical simulations avoid the complexity of radiative transfer by employing an

approximate method to estimate the ionization field. A key technique for this is the ex-
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cursion set approach, which spatially allocates ionizing radiation by comparing the rates of

ionizations and recombinations within progressively smaller spherical shells. The number of

ionizing photons in each grid cell can be calculated using either analytic halo mass functions

derived from the underlying density field or by directly identifying discrete sources. Alter-

natively, one can establish a calibrated relationship between the density field obtained from

numerical simulations and the properties of reionization.

We present 21cmFAST, a cutting-edge semi-numerical modelling framework designed to

simulate the cosmological 21-cm signal with unprecedented efficiency and accuracy. This

innovative tool generates detailed three-dimensional realizations of key cosmic fields, in-

cluding density fluctuations, ionization structures, peculiar velocity distributions, and spin

temperature variations, which are seamlessly integrated all in one to compute the 21-cm

brightness temperature. While the underlying physical processes are approximated using

computationally efficient methods as explained above, we rigorously validate our results

against state-of-the-art large-scale hydrodynamic simulations. Our comparisons reveal ex-

cellent agreement on scales relevant to upcoming observational campaigns (¿ 1 Mpc), with

power spectra matching within 10% down to the Nyquist frequency.

This helps us highlight critical epochs in cosmic history, such as the Cosmic Dawn, the

Epoch of Reionization (EoR), and the subsequent transition to a fully ionized intergalactic

medium. The flexibility of 21cmFAST allows users to explore these epochs with varying

resolutions, enabling rapid generation of redshift snapshots on a single processor in just

minutes—a feat that is very tedious using traditional numerical simulations.

In addition to its speed and computational efficiency, 21cmFAST is highly customizable,

empowering researchers to tailor simulations to their specific scientific questions. Whether

investigating the impact of astrophysical parameters on reionization or testing novel statis-

tical techniques for analyzing the 21-cm signal, 21cmFAST provides an accessible platform

for parameter exploration and hypothesis testing. Furthermore, its open-source availabil-

ity ensures that it can serve as a cornerstone for both theoretical studies and observational

planning in the era of next-generation telescopes like the Square Kilometer Array (SKA).

By bridging the gap between computational feasibility and physical fidelity, 21cmFAST

emerges as an indispensable tool for advancing our understanding of the early universe. Its

ability to rapidly generate realistic 21-cm signal realizations positions it as a vital resource

for interpreting upcoming observations and unraveling the mysteries of cosmic reionization

8



and beyond. We will discuss 21cmFAST in the upcoming sections.

2.3 Probabilistic Extraction – Neural Networks (Part

3)

The key to extracting astrophysical insights lies in conducting a probabilistic exploration

of our simulated astrophysical parameters. This involves comparing the observed 21 cm

signal with the synthetic outputs generated by our simulations, while accounting for both

theoretical and observational uncertainties.

Our goal is to determine the Probability Distribution Function (PDF) of the astrophys-

ical parameters from our simulated model, also known as the posterior distribution—or

simply the “posterior”—denoted as P (⟨θ⟩|d), which represents the probability of the model

parameter set θ given the observed data d. This is derived using Bayes’ Theorem:

P (⟨θ⟩|d) = P (⟨d⟩|θ)P (θ)/P (d)

Here, P (⟨d⟩|θ) is referred to as the “likelihood,” which quantifies how well the model, defined

by the astrophysical parameter set θ, matches the observed data. P (θ) represents the “prior,”

incorporating all pre-existing knowledge or assumptions about the parameters. P (d), known

as the “evidence,” evaluates the overall probability of observing the data given the model.

The ratio P (⟨d⟩|θ)/P (d) is termed the “Likelihood to Evidence Ratio.” This is the quan-

tity we aim to compute in our thesis by leveraging a Machine Learning technique called

Neural Ratio Estimation (NRE), which falls under the category of Simulation-Based In-

ference (SBI). We will delve into NRE in later sections, but first, let’s briefly review the

fundamental concept of Neural Networks in the context of data extraction.

Neural networks offer a way to estimate astrophysical parameters from observational

data, bypassing traditional methods like Monte Carlo Markov Chain (MCMC) and enabling

direct inference of astrophysical information through the network itself.

At its core, a neural network is a computational system inspired by the human brain,

consisting of multiple layers of interconnected nodes, or ”neurons.” It typically includes an
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input layer that processes the raw data, one or more hidden layers that perform intermedi-

ate computations, and an output layer that produces the desired result—in this case, the

astrophysical parameters.(astroparams)

Each neuron in a layer is connected to all neurons in the adjacent layers, with the strength

of these connections determined by weights. These weights are modulated by an activation

function, which processes the weighted sum of inputs received from other neurons. To train

the network, we adjust these weights iteratively using a process called backpropagation. The

goal is to minimize a cost function, which measures the difference between the network’s

predictions and the actual outputs in the training data. This optimization requires many

iterations, or epochs, to refine the weights effectively.

Once trained, the neural network’s accuracy is validated by comparing its outputs for a

new dataset against the expected results. Once fully constructed and validated, the network

can rapidly generate the desired outputs—such as astrophysical parameters—for any given

input, making it a powerful tool for data analysis.

Shimabukuro & Semelin (2017) investigated the application of Artificial Neural Networks

(ANN) for recovering astrophysical parameters from the 21 cm power spectrum (PS). Their

network was designed to accept input data directly for this purpose. Doussot later refined

this approach by utilizing a larger training dataset within a identical astrophysical framework

and incorporating deep learning techniques.

Neural networks have demonstrated remarkable efficiency in recovering expected param-

eters and estimating underlying values from simulated observational data. Furthermore,

their use for parameter estimation is significantly more computationally efficient compared

to traditional MCMC methods. However, neural networks are not without limitations. A

key drawback is their difficulty in providing reliable uncertainties for the inferred parame-

ters. Despite this, they remain a highly valuable tool for advancing our understanding of

astrophysics during the cosmic dawn and the Epoch of Reionization (EoR).
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Chapter 3

21cmFAST

21cmFAST: A Python based Semi-Numerical Library for simulating the H-21cm Signal

3.1 Introduction

21cmFAST is a fast and efficient semi-numerical simulation tool designed to model the 21-cm

signal in a wide range of redshift Universe. It was developed to fill the gap between purely

analytical models and computationally intensive numerical simulations, providing a balance

between speed and physical accuracy. By employing practical approximations, such as the

excursion-set formalism and perturbation theory, 21cmFAST can generate three-dimensional

representations of essential cosmological fields, including density, ionization, velocity, spin

temperature, and the resulting 21-cm brightness temperature. These outputs will form the

basis of my work.

3.2 The Need for 21cmFAST

The 21-cm signal from neutral hydrogen provides a powerful probe of the early Universe,

including the Epoch of Reionization (EoR) and Cosmic Dawn. Fully numerical simulations,

such as codes based on radiative hydrodynamics, can achieve high physical accuracy but are
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computationally very expensive, requiring high-performance computing resources and long

runtimes. Analytic models, on the other hand, are computationally inexpensive but often

lack the necessary complexity to capture detailed astrophysical and cosmological processes.

21cmFAST takes a middle-ground approach, using semi-numerical analytic methods to

approximate the physics of reionization and structure formation. This allows researchers to

generate large volumes of simulated 21-cm maps in a matter of minutes on a single processor,

making parameter studies and Bayesian inference feasible.

3.3 Key Features of 21cmFAST

Semi-Numerical Approach

Unlike fully numerical hydrodynamical simulations that evolve the full set of cosmological

fluid equations, 21cmFAST uses a semi-numerical approach based on:

• Excursion-Set Formalism: A statistical method to determine ionization regions

based on local over-density. This replaces full radiative transfer calculations by sam-

pling selective regions.

• First-Order Lagrangian Perturbation Theory (1LPT): A technique to approxi-

mate the large-scale density field evolution without performing full N-body simulations.

Widely known as Zel’Dovich approximation.

Computational Efficiency

21cmFAST can generate a full realization of the 21-cm brightness temperature field in a

fraction of the time required by full hydrodynamical simulations (15 mins – 20 mins). The

memory requirements are modest, allowing it to run efficiently on standard desktop or laptop

computers.
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Physical Outputs

21cmFAST produces 3D realizations of various cosmological fields, including:

• Matter Density Field (δ): The large-scale structure of the Universe.

• Ionization Field (xe): Identifying ionized and neutral regions.

• Spin Temperature (Ts): Governing the coupling between the 21-cm signal and the

cosmic microwave background.

• 21-cm Brightness Temperature (δTb): The observable signal used in upcoming

radio telescopes. The observable I will be using as well.

Public Availability and Open-Source Nature

The developers of 21cmFAST have made the code publicly available at https://21cmfast.

readthedocs.io/en/latest/, ensuring transparency and reproducibility in cosmological

research. The latest versions are hosted on 21cmFAST GitHub, making it accessible for

modification and improvement by the scientific community.

3.4 Scientific Applications

21cmFAST has been widely used in cosmology and astrophysics, particularly in:

• Simulating the 21-cm signal during Cosmic Dawn and Reionization.

• Constraining astrophysical and cosmological parameters using Bayesian inference tech-

niques.

• Predicting signals for future radio telescopes, such as the Square kilometer Array (SKA)

and Hydrogen Epoch of Reionization Array (HERA).

• Generating mock observations to aid in developing 21-cm data analysis techniques.
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3.5 Tuning 21cmFAST

We begin 21cmFAST by generating the initial density perturbations at redshift z = 5 to

z = 30 on a high-resolution 300×300×300 grid. The evolution of these perturbations is then

computed using the Zel’dovich approximation (Zel’dovich, 1970), a first-order Lagrangian

perturbation theory (1LPT) method that provides a reasonable approximation to large-scale

structure formation without performing full N-body simulations.

The Zel’dovich approximation describes the evolution of matter displacement x from an

initial position q as:

x(q, t) = q +D(t)s(q)

where D(t) is the linear growth factor, and s(q) represents the displacement field determined

from the initial conditions. This method generates large-scale density fields without requiring

the usual computationally expensive full N-body simulations.

3.5.1 Ionization Map Construction

The ionization field is calculated using the excursion-set formalism (Furlanetto et al. 2004).

Initially, the high-resolution density field is smoothed onto a coarser grid. The code then

identifies ionized regions by assessing whether the number of ionizing photons surpasses the

number of baryons within a specific region, evaluated across decreasing spherical radii R

such that:

Rmin ≤ R ≤ Rmax

where Rmin corresponds to the spatial resolution of the simulation, and Rmax represents the

maximum ionizing photon horizon. A grid cell at position (x, z) is considered fully ionized

if:

ζfcoll(x, z, R,Mmin) ≥ 1

where:

• ζ is the ionizing efficiency.

• fcoll(x, z, R,Mmin) is the collapsed fraction of matter within a spherical region of radius

R centered at (x, z), which depends on the minimum halo mass Mmin for star formation
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(Press & Schechter 1974; Sheth & Tormen 1999).

Cells that do not satisfy this condition are assigned a partial ionization fraction:

xion(x, z) = ζfcoll(x, z, Rmin)

This formalism effectively models large-scale ionization bubbles without the need for com-

putationally expensive radiative transfer calculations.

3.5.2 Brightness Temperature Calculation

Once the ionization map is generated, it is converted into the 21-cm brightness temperature

map using (Furlanetto et al. 2006b):

δTb = 27(1−xHII)(1+δb)

(
Ωbh

2

0.023

)(
0.15

Ωmh2

)1/2(
1 + z

10

)1/2(
TS − TCMB

TCMB

)(
1− ∂rvr

(1 + z)H(z)

)
where:

• xHII is the ionization fraction.

• δb is the baryonic over-density.

• Ωm and Ωb are the matter and baryon densities, respectively.

• h is the Hubble parameter.

• TS and TCMB are the spin temperature and CMB temperature, respectively.

• The last term with ∂rvr
(1+z)H(z)

accounts for the velocity gradient along the line of sight.

3.5.3 The Spin Temperature TS and Its Coupling Mechanisms

The spin temperature TS is influenced by three main coupling mechanisms:
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I. Collisional Coupling

Interaction between hydrogen atoms and free electrons. It occurs when particles in the

intergalactic medium (IGM)—such as hydrogen atoms or free electrons—collide with neutral

hydrogen atoms. These collisions can induce transitions between the two hyperfine states

of hydrogen (aligned and anti-aligned spins), redistributing the populations of these states.

This redistribution effectively couples TS to TK , the temperature associated with the random

thermal motion of particles in the gas.

The efficiency of collisional coupling depends on several factors:

• Collision Rate: The frequency of collisions between particles determines how quickly

TS can approach TK . In denser regions of the IGM, where particles are closer together,

the collision rate is higher, leading to stronger coupling.

• Mean Free Path: The mean free path—the average distance a particle travel before

colliding with another particle—is inversely related to the density of the gas. In the

early universe, when the IGM was denser, the mean free path was shorter, resulting in

frequent collisions and efficient coupling.

• Interaction Cross-Section: The probability of a collision inducing a spin transition

depends on the interaction cross-section, which varies depending on whether the colli-

sion involves hydrogen-hydrogen interactions or hydrogen-electron interactions. Elec-

tron collisions are generally more effective at inducing spin transitions due to their

smaller mass and higher velocities compared to hydrogen atoms.

Redshift Evolution of Collisional Coupling The effectiveness of collisional coupling evolves

with redshift due to changes in the density and ionization state of the IGM:

• High Redshifts (z ≳ 30):

– At very high redshifts, the IGM is extremely dense, and the mean free path is

short. Both hydrogen-hydrogen and hydrogen-electron collisions are frequent,

leading to strong coupling between TS and TK .
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– During this period, the 21-cm signal is primarily governed by the kinetic temper-

ature of the gas, which is colder than the CMB. As a result, the signal appears in

absorption against the CMB.

• Intermediate Redshifts (15 ≲ z ≲ 30):

– As the universe expands, the density of the IGM decreases, and the collision rate

drops. Collisional coupling becomes less effective, and TS begins to decouple from

TK and return toward TCMB.

– During this transitional phase, the Wouthuysen-Field effect (driven by Lyman-

alpha photons) often takes over as the dominant coupling mechanism.

• Low Redshifts (z ≲ 15):

– By the time of the Epoch of Reionization (EoR), the IGM is too diffuse for

collisional coupling to be significant. Instead, the Wouthuysen-Field effect and

X-ray heating dominate the evolution of TS.

II. Wouthuysen–Field Effect

The Wouthuysen–Field effect arises from the interaction between Lyman-alpha (Ly-α) pho-

tons and the hyperfine structure of neutral hydrogen. Neutral hydrogen atoms consist of

a proton and an electron, whose spins can be either aligned (a hig-energy state) or anti-

aligned (a low-energy state). The energy gap between these two states signifies the emission

or absorption of a photon at a wavelength of 21 cm. However, the probability of a hydrogen

atom transitioning between these states is extremely low under normal conditions, as the

transition is forbidden by quantum mechanical selection rules.

This is where Lyman-alpha photons come into play. These photons, which have energies

corresponding to the Lyman-alpha transition (n = 2 → n = 1 transition in hydrogen),

can scatter off neutral hydrogen atoms through a process known as resonant scattering.

During this scattering, the photon temporarily excites the hydrogen atom to the n = 2

state. When the atom de-excites back to the ground state, it can redistribute the population

of hydrogen atoms between the aligned and anti-aligned spin states. This redistribution

effectively couples the spin temperature of the hydrogen gas to the kinetic temperature of

the gas via the Lyman-alpha radiation field.
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III. Thermal Coupling

At later times, TS approaches the kinetic gas temperature TK . As the universe evolves

and the first luminous sources (stars, galaxies, and quasars) begin to emit radiation, other

mechanisms come into play that can decouple TS from TCMB and couple it instead to the

kinetic temperature TK of the gas.

Thermal coupling occurs when processes such as collisions or the Wouthuysen-Field effect

become dominant, aligning TS with TK . This transition is critical because it determines

whether the 21-cm signal appears in absorption or emission relative to the CMB:

If TS < TCMB, the 21-cm signal appears in absorption.

If TS > TCMB, the signal shifts to emission.

Thus, the thermal coupling of TS to TK directly impacts the observable properties of the

21-cm signal and provides a window into the physical conditions of the intergalactic medium

(IGM).

In cases where TS → TCMB, the 21-cm signal disappears (δTb = 0), which marks the

transition from the Dark Ages to Cosmic Dawn.

3.5.4 X-ray Heating and Temperature Evolution

21cmFAST also models inhomogeneous heating of the intergalactic medium (IGM) by X-rays,

which plays a crucial role in determining the 21-cm signal. The specific X-ray emissivity ϵX

at a given location (x,E, z) is given by (??):

ϵX(x,E, z) =
LX

SFR

(
ρcrit,0Ωb f∗ (1 + δnl)

dfcoll(z)

dt

)
(3.1)

where:
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• ρcrit,0 is the current critical density.

• f∗ is the star formation efficiency.

• δnl is the nonlinear density contrast.

• The term in parentheses represents the star formation rate (SFR) density.

The specific X-ray luminosity LX is assumed to follow a power law:

LX ∝ E−αX (3.2)

Photons with energy E < E0 are absorbed by the interstellar medium, and the X-ray

efficiency is normalized using the integrated soft-band (<2 keV) luminosity per SFR:

L
(<2 keV)
X

SFR
=

∫ 2 keV

E0

LX

SFR
dE (3.3)

This formulation allows 21cmFAST to track the heating history of the IGM and predict

spatial variations in the 21-cm signal.

The semi-numerical model in 21cmFAST supports six main astrophysical parameters,

which influence the evolution of the 21-cm signal:

1. ζ: Ionizing efficiency.

2. Mmin: Minimum halo mass for star formation.

3. f⋆: Fraction of baryons in stars.

4. LX/SFR: X-ray luminosity per unit star formation rate.

5. αX : X-ray spectral index.

6. Rmfp: Mean free path of ionizing photons.
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These parameters allow 21cmFAST to explore different reionization and heating scenarios

efficiently. However, for my work to be computationally efficient while maintaining synchro-

nization with all the astrophysical parameters, I will be using four parameters out of the

six.

The four parameters I have chosen are:

• LX : X-ray Luminosity.

• Tvir, min: Indirectly calculated from Mmin.

• αX : X-ray Spectral Index.

• ζ: Ionization Efficiency.

In the next chapter, I will explain these four astrophysical parameters in detail.
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Chapter 4

21cmFAST AstroParameters

Figure 4.1: This is my code snippet showing the 4 astroparams used and their ranges.

Now I will Discuss about each of them one by one-

4.1 Ionizing Efficiency (ζ)

Range used: (10, 100)

Code Name: HII EFF FACTOR

The ionizing efficiency, denoted as ζ, is one of the most critical astrophysical parameters in

modeling the Epoch of Reionization (EoR). It encapsulates the ability of high-redshift galax-

ies to produce and release ionizing ultraviolet (UV) photons into the intergalactic medium

(IGM), thereby driving the transition from a neutral to an ionized universe.
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ζ = 30

(
fesc
30

)(
f∗
0.05

)(
Nγ/b

4000

)(
2

1 + nrec

)
(4.1)

4.1.1 Breaking Down the Components of ζ

The ionizing efficiency ζ is a composite parameter that depends on several key astrophysical

factors, each reflecting different aspects of galaxy formation and feedback processes. These

factors include:

Escape Fraction (fesc)

The fraction of ionizing photons produced by stars that escape their host galaxies and reach

the IGM. This parameter is highly uncertain due to the complex interplay between stellar

radiation and the surrounding interstellar medium (ISM). Dust, gas density, and galactic

outflows can significantly modulate fesc. Observations suggest that fesc may vary widely

across galaxies, ranging from a few percent to potentially much higher values in low-mass,

starburst systems.

In simulations, fesc is often treated as a free parameter, with typical fiducial values around

0.1–0.2. However, its true value remains a topic of active research, particularly for the first

galaxies.

Star Formation Efficiency (f∗)

The fraction of baryonic matter within dark matter halos that is converted into stars. This

parameter reflects the efficiency of galaxy formation and is influenced by feedback processes

such as supernova explosions and radiative heating. Higher f∗ values correspond to more

efficient star formation, which increases the production of ionizing photons.

Typical values for f∗ in high-redshift galaxies are estimated to be around 0.05, but this

can vary depending on halo mass and environmental conditions.
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Ionizing Photon Yield per Baryon (Nγ/b)

The number of ionizing photons produced per baryon incorporated into stars. This depends

on the initial mass function (IMF) of the stellar population, which determines the proportion

of massive, short-lived stars capable of emitting copious UV photons. For a standard IMF,

Nγ/b is typically around 4000, but it can vary if the IMF is top-heavy (favoring more massive

stars) or bottom-heavy.

Recombination Rate (nrec)

The average number of times a hydrogen atom recombines during the EoR. Recombination

reduces the net efficiency of ionization, as some photons are WASTED in re-ionizing already-

ionized regions. The recombination rate is sensitive to the stacking of the IGM in clumps,

with denser regions experiencing higher recombination rates. A fiducial value of nrec = 1 is

often assumed, but this can increase in models with significant small-scale structure.

4.1.2 Impact of ζ on Reionization

The ionizing efficiency ζ plays a pivotal role in shaping the timeline and morphology of

reionization. Broadly speaking, higher values of ζ accelerate the ionization process, leading

to an earlier and more rapid completion of reionization. Conversely, lower values of ζ result

in a prolonged and patchy reionization history. This sensitivity makes ζ a key target for

observational and theoretical constraints.

Timing of Reionization

The redshift at which reionization begins and ends is strongly influenced by ζ. For example,

models with ζ ∼ 100 predict that reionization could be largely complete by z ∼ 6, consistent

with observations of quasar spectra and the CMB optical depth. In contrast, lower values

of ζ would delay the completion of reionization to lower redshifts.
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Patchiness of Reionization

The spatial distribution of ionized regions depends on both ζ and the clustering of galaxies.

High ζ values lead to larger, more extended ionized bubbles, while low ζ values result in

smaller, fragmented regions. This patchiness leaves distinct imprints on the 21-cm power

spectrum, providing a diagnostic tool for constraining ζ.

Galaxy Population Scenarios

Different assumptions about ζ correspond to different scenarios for the dominant sources of

reionization. For instance, models with ζ > 100 often assume that rare, very bright galaxies

drive reionization, while lower ζ values imply a more distributed contribution from numerous

faint galaxies. Observational campaigns targeting high-redshift galaxies aim to distinguish

between these scenarios.

4.1.3 Implementation in 21cmFAST

In our Python library 21cmFAST, by default ζ is treated as a free parameter with a prior

range informed by theoretical models and observational constraints as it should be. A flat

prior ζ ∈ [10, 100] range is taken manually, reflecting the uncertainty in the underlying

astrophysical processes. However, some studies extend this range to ζ ≤ 250 to explore

extreme scenarios where rare, ultra-efficient galaxies dominate reionization.

Effect of Prior Choice on Bayesian Inference

The choice of prior has significant implications for Bayesian inference and parameter esti-

mation. For example:

• Narrow priors centered around fiducial values (ζ ∼ 30) favor models consistent with

current observations of the CMB optical depth and Lyman-alpha forest data.

• Extended priors allow for exploration of alternative reionization histories, such as those

driven by top-heavy IMFs or enhanced fesc.
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4.2 Logarithm of Minimum Virial Temperature of Ha-

los (log10(Tvir,min))

Range used: (4, 6)

Code Name: ION Tvir MIN

The minimum virial temperature, Tvir,min, is another critical parameter in modeling the

formation of star-forming galaxies and its contribution to cosmic reionization and heating. It

serves as a threshold that determines whether a dark matter halo can host a galaxy capable of

producing ionizing photons and X-rays, which are essential for driving the Epoch of Heating

(EoH) and EoR.

4.2.1 Physical Significance

The virial temperature of a dark matter halo reflects its gravitational potential energy and

is closely tied to the thermal properties of the gas within the halo. Halos with Tvir < Tvir,min

are generally unable to sustain efficient star formation due to insufficient cooling mechanisms

or internal feedback processes. These feedback effects include:

• Cooling Efficiency: Gas within low-mass halos often lacks density and temperature

required for efficient atomic cooling, which is necessary for gas to collapse and form

stars. Atomic cooling becomes effective only when the virial temperature exceeds

∼ 104K, corresponding to the excitation energy of hydrogen atoms.

• Supernova Feedback: In low-mass halos, supernova explosions from early genera-

tions of stars can expel gas from the shallow gravitational potential wells, suppressing

further star formation. This process effectively sets a lower limit on the mass (and

hence the virial temperature) of halos capable of sustaining star formation.

• Reionization Feedback: During the EoR, the intergalactic medium (IGM) is heated

by ultraviolet (UV) and X-ray radiation from galaxies. This heating raises the Jeans

mass—the minimum mass required for gas to collapse under gravity—further limiting

star formation in low-mass halos.
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By imposing a threshold at Tvir,min, we exclude halos that are too small to contribute

meaningfully to reionization or heating. This ensures that only halos with sufficient mass

and cooling efficiency are considered in simulations.

4.2.2 Relational Equation for Tvir,min

Let us examine the relational equation for Tvir,min, relating it to multiple parameters:

Mmin
vir =

(
108

h
· 0.6

µ
· 10
1+z

· Tmin
vir

19800

)3/2

M⊙√
Ωm

Ωz
m
· ∆c

18π2

(4.2)

where:

• µ: Mean molecular weight.

• Ωz
m = Ωm(z): Matter density parameter at redshift z.

• ∆c = 18π2 + 82(Ωz
m − 1)− 39(Ωz

m − 1)2: Critical overdensity for halo collapse.

The minimum virial temperature is directly related to the mass of the halo through the

following physical considerations:

Virial Temperature and Halo Mass

The virial temperature Tvir is proportional to the depth of the gravitational potential well

of the halo. From the relational equation shown above, for a given redshift z, the mass of a

halo with a specific virial temperature can be approximately expressed as:

Mmin
vir ∝

(
Tmin
vir

104K

)3/2

. (4.3)

This relationship highlights how higher Tmin
vir values correspond to more massive halos.
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Redshift Dependence

The mass threshold Mmin
vir evolves with redshift due to changes in the mean molecular weight

(µ), the matter density parameter (Ωm(z)), and the critical overdensity (∆c) for halo collapse.

At higher redshifts, halos must be more massive to achieve the same virial temperature due

to the denser and hotter environment of the early universe.

Atomic Cooling Threshold

The canonical lower limit for Tmin
vir is 104K, synonymous to the temperature required for

efficient atomic hydrogen cooling. Below this threshold, molecular hydrogen cooling may

dominate, but it is often suppressed by external UV radiation during the EoR.

4.2.3 Choice of Prior

A common choice is a flat prior for log(Tmin
vir ) ∈ [4, 6], or equivalently Tmin

vir ∈ [104, 106],

reflecting the uncertainty in the dominant sources of reionization:

• Lower Limit (104K): This corresponds to the atomic cooling threshold and represents

the smallest halos capable of forming stars without significant suppression by feedback

processes.

• Upper Limit (106K): This value aligns with observations of Lyman-break galaxies at

high redshifts, which are hosted by more massive halos. Such halos are less numerous

but produce copious amounts of ionizing photons, potentially dominating reionization

if Tmin
vir is high.

The choice of prior significantly affects the inferred reionization history. For example:

• Narrow priors centered around 104K favor models where numerous low-mass halos

drive reionization.

• Extended priors up to 106K explore scenarios where rare, massive galaxies dominate,

consistent with some interpretations of high-redshift galaxy surveys.

27



4.3 Integrated Soft-band Luminosity LX,<2 keV/SFR: (Log

of X-ray Luminosity)

Range used: (38, 42)

Code Name: L X

The integrated soft-band X-ray luminosity per star formation rate, denoted as LX,<2 keV/SFR,

is my third critical parameter in understanding the thermal evolution of the intergalactic

medium (IGM) during the Epoch of Heating (EoH) and its overlap with the Epoch of Reion-

ization (EoR). This parameter quantifies the efficiency with which X-rays emitted by early

galaxies heat the IGM, influencing both the timing and morphology of these transformative

cosmic epochs.

4.3.1 The Importance of X-rays in Cosmic Evolution

X-rays are a dominant source of heating in the early universe, penetrating deep into the IGM

and raising the kinetic temperature of neutral hydrogen. Unlike ultraviolet (UV) photons,

which primarily ionize nearby regions, X-rays can travel vast distances before being absorbed,

making them highly effective at heating large volumes of the IGM. The efficiency of this

process is governed by LX,<2 keV/SFR, which represents the total soft-band (< 2 keV) X-ray

luminosity produced per unit star formation rate (SFR).

Key aspects of X-ray heating include:

1. Penetration Depth:

• Soft X-rays (< 2 keV) have sufficient energy to escape the dense environments

of galaxies but low enough energy to be absorbed by the IGM over cosmological

scales. This balance ensures that X-rays can heat both nearby and distant regions,

creating a uniform thermal background.

2. Dual Role in Heating and Ionization:

• While the primary effect of X-rays is heating, they also contribute to the ion-

ization of hydrogen atoms, albeit at a lower level compared to UV photons. For
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sufficiently high values of LX,<2 keV/SFR, X-rays can ionize the IGM at the 10–20%

level, further influencing the reionization process.

3. Impact on the 21-cm Signal:

• The heating of the intergalactic medium (IGM) modifies the spin temperature

of neutral hydrogen, which in turn influences the detectability of the 21-cm sig-

nal. During the Epoch of Heating (EoH), as the IGM warms up from a cold

state, the 21-cm signal transitions from absorption to emission relative to the

Cosmic Microwave Background (CMB). This transition provides a direct probe

of LX,<2 keV/SFR.

4.3.2 Physical Interpretation of LX,<2 keV/SFR

The parameter LX,<2 keV/SFR encapsulates the combined effects of stellar populations, ac-

creting black holes, and galactic outflows on X-ray production. It reflects the efficiency with

which galaxies convert their star formation activity into X-ray luminosity. Several factors

influence this relationship:

1. High-Mass X-ray Binaries (HMXBs):

• HMXBs are among the most significant contributors to soft X-ray emission in

high-redshift galaxies. These systems consist of a compact object (e.g., a neutron

star or black hole) accreting material from a massive companion star. Popula-

tion synthesis models suggest that HMXBs dominate the X-ray output of early

galaxies, particularly during the EoH.

2. Active Galactic Nuclei (AGN):

• While AGN are more prominent at lower redshifts, their contribution to X-ray

heating at high redshifts cannot be ignored. Low-luminosity AGN may play a

role in heating the IGM, especially in rare, massive halos.

3. Metallicity Dependence:

29



• The X-ray luminosity per SFR is sensitive to the metallicity of the host galaxy.

Lower metallicities, typical of high-redshift galaxies, enhance the production of

X-rays due to reduced opacity and higher accretion rates onto compact objects.

4. Escape Fraction:

• Not all X-rays produced within galaxies escape into the IGM. Dust and gas within

the interstellar medium (ISM) can absorb a fraction of the X-ray photons, reducing

their impact on the IGM. The escape fraction is often treated as an implicit

component of LX,<2 keV/SFR.

The value of LX,<2 keV/SFR has profound implications for both the EoH and the EoR:

1. Timing of the EoH:

• Higher values of LX,<2 keV/SFR accelerate the heating of the IGM, causing the

EoH to begin earlier. Conversely, lower values delay the onset of heating, leading

to a prolonged period during which the IGM remains cold and neutral.

2. Duration of the EoH:

• The duration of the EoH depends on the rate at which X-rays heat the IGM.

Large values of LX,<2 keV/SFR result in rapid heating, while smaller values lead

to a more gradual increase in the IGM’s kinetic temperature.

3. Overlap with the EoR:

• The interplay between LX,<2 keV/SFR and the ionizing efficiency (ζ) determines

the relative timing of the EoH and EoR. If LX,<2 keV/SFR is high, the EoH may

precede the EoR, leading to a warm and partially ionized IGM. Conversely, if

LX,<2 keV/SFR is low, the EoH and EoR may overlap more closely.

4. Spatial Fluctuations:

• The spatial distribution of heated regions depends on the clustering of galaxies

and the penetration depth of X-rays. Higher values of LX,<2 keV/SFR create larger,

more uniform heated regions, while lower values result in heating patterns in

patches. These fluctuations leave distinct imprints on the 21-cm power spectrum.
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LX,<2 keV/SFR is typically expressed in logarithmic form log10(LX,<2 keV/SFR). My choice

is a flat prior range of log10(LX,<2 keV/SFR) ∈ [38, 42], reflecting the uncertainty in the

dominant sources of X-ray heating:

1. Lower Limit (1038 erg/s/M⊙/yr):

• This corresponds to scenarios where X-ray heating is minimal, dominated by faint

high-mass X-ray binaries (HMXBs) in low-metallicity environments.

2. Upper Limit (1042 erg/s/M⊙/yr):

• This represents extreme scenarios where X-ray heating is highly efficient, poten-

tially driven by rare, luminous sources such as active galactic nuclei (AGN) or

top-heavy initial mass functions (IMFs).

The choice of prior significantly affects the inferred thermal history of the IGM. For

example:

• Narrow priors centered around 1040 erg/s/M⊙/yr favor models consistent with popula-

tion synthesis predictions and observations of local galaxies.

• Extended priors explore alternative scenarios, such as those involving enhanced X-ray

production in high-redshift environments.

4.4 X-ray Spectral Index αX

Range used: (-0.5, 2.5)

Code Name: αX

The X-ray spectral index, denoted as αX , is my fourth and final critical astrophysical

parameter that governs the energy distribution of X-ray photons emitted by early galaxies

and other cosmic sources. This dimensionless quantity describes the shape of the X-ray

spectrum, which in turn determines how effectively X-rays heat and ionize the intergalac-

tic medium (IGM) during the Epoch of Heating (EoH) and its overlap with the Epoch of

Reionization (EoR).
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4.4.1 The Physical Meaning of αX

The X-ray spectral index αX is defined through the power-law relationship for the X-ray flux

density:

F (E) ∝ E−αX , (4.4)

where F (E) is the flux of X-ray photons at energy E. The value of αX reflects the dom-

inant physical processes responsible for X-ray emission, such as high-mass X-ray binaries

(HMXBs), supernova remnants, or accreting black holes. Different values of αX correspond

to distinct spectral energy distributions (SEDs), which have varying implications for the

heating and ionization of the IGM:

1. Soft X-rays (αX > 0):

• A positive spectral index indicates a softer spectrum, where more photons are

emitted at lower energies (< 2 keV). Soft X-rays are highly effective at heating

the IGM because they deposit their energy over large distances, raising the kinetic

temperature of neutral hydrogen without fully ionizing it.

2. Hard X-rays (αX < 0):

• A negative spectral index corresponds to a harder spectrum, with more photons

emitted at higher energies (> 2 keV). Hard X-rays penetrate deeper into the

IGM before being absorbed, leading to localized heating and ionization in distant

regions. While less efficient at heating large volumes, hard X-rays can contribute

significantly to the ionization of hydrogen atoms.

3. Flat Spectrum (αX ∼ 0):

• A spectral index near zero represents a relatively flat distribution of photon en-

ergies, balancing contributions of soft and hard X-rays. This scenario is often

associated with a mix of emission mechanisms, such as HMXBs and active galac-

tic nuclei (AGN).

The spectral index αX has profound implications for the thermal and ionization history

of the IGM:
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1. Heating Efficiency:

• Softer spectra (αX > 0) are more effective at heating the IGM because low-

energy photons are absorbed closer to their source, distributing energy over larger

volumes. This leads to a warmer and more uniform IGM during the EoH.

• Harder spectra (αX < 0) deposit energy deeper into the IGM, creating localized

heating and ionization. While this results in patchier heating patterns, it can also

enhance the ionization fraction in distant regions.

2. Ionization Contribution:

• Hard X-rays (αX < 0) are more likely to ionize hydrogen atoms due to their higher

energies. This can lead to an earlier onset of reionization in regions exposed to

hard X-ray sources.

• Soft X-rays (αX > 0) contribute less to ionization but play a dominant role in

heating, influencing the timing and morphology of the EoH.

3. Spatial Fluctuations:

• The spatial distribution of heated and ionized regions depends on αX . Softer

spectra create smoother heating patterns, while harder spectra result in more

pronounced fluctuations. These variations leave distinct imprints on the 21-cm

power spectrum, providing a diagnostic tool for constraining αX .

4. Overlap with the EoR:

• The interplay between αX and other parameters, such as LX,<2 keV/SFR and ζ,

determines the relative timing of the EoH and EoR. For example, a softer spec-

trum with high LX,<2 keV/SFR may cause the EoH to precede the EoR, while a

harder spectrum could lead to overlapping epochs.

4.4.2 Implications for Galaxy Evolution

Understanding αX has far-reaching implications for our understanding of galaxy formation

and the physics of the early universe:
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1. Nature of X-ray Sources:

• The value of αX tells us about the types of X-ray sources that drove the EoH. By

constraining this parameter, we gain insights into the properties of high-redshift

galaxies and contributions to cosmic heating.

2. Feedback Processes:

• The spectral index reflects the balance between heating and ionization, which

are influenced by feedback mechanisms such as supernovae and radiative heating.

Constraining αX helps refine models of galaxy evolution in the early universe.

3. Testing Theoretical Models:

• Comparing observed heating and ionization histories with predictions from αX-

dependent simulations provides our understanding of galaxy formation and the

physics of the IGM.

My common choice based on theoretical models is a flat prior αX ∈ [−0.5, 2.5], reflecting

the diversity of X-ray SEDs in the early universe:

1. Lower Limit (αX = −0.5):

• This corresponds to scenarios dominated by hard X-rays, such as those produced

by AGN or mini-quasars. Such spectra are characterized by localized heating and

enhanced ionization.

2. Upper Limit (αX = 2.5):

• This represents extreme scenarios with very soft spectra, potentially driven by

HMXBs in low-metallicity environments. These spectra are highly effective at

heating the IGM but contribute minimally to ionization.

The choice of prior significantly affects the inferred thermal and ionization history of

the IGM. For example: Narrow priors centered around αX ∼ 1 favor models consistent

with HMXB-dominated X-ray emission, as predicted by population synthesis models.While,

Extended priors explore alternative scenarios, such as those involving AGN or composite

spectra.
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Chapter 5

21cmFAST Custom Lightcones

Generation

5.1 21cmFAST Simulation Algorithm

Figure 5.1: Algorithm Flowchart
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I will start by explaining the algorithm to generate a 21cmFAST output also profoundly

called as a 21cmFAST “Lightcone”. This lightcone is not to be confused with the one taught

in general relativity. This has a totally different meaning and implication. Its just the name

of output of this library- “21cmFAST lightcone”. I will explain lightcone in detail later on.

5.2 21cm Lightcone Properties

A lightcone is constructed by stacking multiple simulation outputs at different redshifts into

a single coherent structure that mimics the way signals are received by observers on Earth.

The lightcone spans a range of redshifts, corresponding to different epochs of cosmic history,

and encodes information about the density, ionization state, spin temperature, and peculiar

velocities of neutral hydrogen.

The construction of a lightcone in 21cmFAST involves several steps. This is how the

internal algorithm within 21cmFAST works to generate a lightcone:

1. Simulating Snapshots:

• The simulation begins by generating snapshots of the intergalactic medium (IGM)

at discrete redshifts. Each snapshot includes fields such as density, ionization

fraction, spin temperature, and peculiar velocity.

2. Stacking Snapshots:

• The snapshots are then stacked together to form a continuous lightcone. This

process accounts for the expansion of the universe, ensuring that the signal evolves

smoothly along the line of sight.

3. Applying Redshift-Space Distortions:

• Peculiar velocities are incorporated into the lightcone by shifting the positions of

cells along the line of sight based on their velocity components. This step ensures

that the simulated signal matches the effects observed in real data.

4. Outputting the Signal:
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• The final lightcone is output as a 3D array of brightness temperatures, ready for

analysis or comparison with observational data.

The lightcone generated by 21cmFAST has a well-defined structure that reflects the un-

derlying physics of the early universe. Below, we discuss its key components and properties:

Key Components and Properties

• Spatial Dimensions:

– The lightcone is typically represented as a three-dimensional grid, with two di-

mensions spanning the transverse plane (angular coordinates on the sky) and one

dimension representing the line of sight (radial distance or redshift).

– The resolution of the grid depends on the simulation parameters, such as the box

size and the number of cells. Higher resolutions allow for finer details but require

more computational resources.

• Frequency Axis:

– Along the line of sight, the lightcone is divided into frequency bins, each corre-

sponding to a specific redshift. This axis is crucial for interpreting the 21-cm

signal, as the observed frequency determines the epoch of emission.

• Brightness Temperature:

– The primary output of the lightcone is the brightness temperature (Tb), which

quantifies the strength of the 21-cm signal relative to the Cosmic Microwave Back-

ground (CMB). Tb depends on the density, ionization fraction, spin temperature,

and peculiar velocity of neutral hydrogen.

• Ionization Morphology:

– During the Epoch of Reionization (EoR), the lightcone reveals the growth of

ionized bubbles around galaxies. These bubbles expand and merge over time,

creating a complex, evolving pattern of ionized and neutral regions.

• Heating Patterns:
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– The lightcone also captures the thermodynamic evolution of the Inter Galactic

Medium during the Epoch of Heating (EoH). Regions heated by X-rays appear

as patches of enhanced brightness temperature, while colder regions remain in

absorption.

• Redshift-Space Distortions:

– Peculiar velocities introduce anisotropies in the lightcone, with overdense regions

appearing elongated along the line of sight due to infall motions (the ”finger-of-

God” effect) and underdense regions appearing compressed.

5.3 Explaining User Parameters

So, to create a lightcone I start by defining the box size. This is part of user parameters

or the dimensions I want to map my simulation Here is the code snippet showing that the

dimension of my lightcone (BOX LEN) is 300 Mpc. I will explain each of these parameters

in detail-

Figure 5.2: UserParams
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5.3.1 What Are HII DIM and BOX LEN?

HII DIM

• This parameter specifies the number of grid cells along each dimension of the simulation

box. For example, if HII DIM = 200, the simulation will use a 200× 200× 200 grid.

• The value of HII DIM determines the resolution of the simulation: higher values result

in finer grids, enabling more detailed modelling of small-scale structures such as ionized

bubbles and neutral filaments.

BOX LEN

• This parameter defines the physical size of the simulation box in comoving megaparsecs

(Mpc/h). For instance, if BOX LEN = 300, the simulation box spans 300Mpc/h on each

side.

• The choice of BOX LEN determines the range of scales captured by the simulation:

larger boxes encompass larger cosmological volumes, allowing for the study of large-

scale structures and statistical properties like the power spectrum.

Relationship Between HII DIM and BOX LEN

The relationship between HII DIM and BOX LEN can be expressed mathematically in terms

of the cell size (∆x) of the simulation grid:

∆x =
BOX LEN

HII DIM
=

300

200
= 1.5Mpc/h (in our case). (5.1)

where:

• ∆x represents the physical size of each grid cell in comoving megaparsecs (Mpc/h).

• A smaller ∆x corresponds to higher resolution, enabling the simulation to resolve

smaller-scale features in the intergalactic medium (IGM).
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Trade-Off Between Resolution and Physical Scale

This relationship highlights the trade-off between resolution (HII DIM) and physical scale

(BOX LEN):

• Increasing HII DIM while keeping BOX LEN fixed improves the resolution but increases

computational cost.

• Increasing BOX LEN while keeping HII DIM fixed expands the physical volume of the

simulation but reduces the resolution, potentially missing small-scale details.

5.4 Generate Lightcone Function-

Now as we have the inputs(set of astro params) and the user params or dimensions of our

lightcone is defined. We can proceed to generate 21cmFAST lightcone-

Figure 5.3: snippet for single Lightcone which I lopped 300 times

Here, the run lightcone function generates lightcones based on the input settings as

follows. As shown in the snippet:

• We have redshift = 5.0 and max redshift = 30.0, which means our lightcone spans

from z = 5 to z = 30, where z is the redshift.

• Within global quantities, we intend to keep the “brightness temp” property in our

lightcone to generate the power spectra from it.
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• The user params are simply the ones defined above, involving the dimensions of our

intended lightcone.

• The astro params are the four parameters randomly chosen within my defined range,

as discussed in the above sections.

The run lightcone function is looped through 300 times with 300 different sets of

astro params (four parameter values in each set), meaning it generates 300 lightcones in

total.

We save all these 300 lightcones as .pkl files for generating our power spectrum.
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Chapter 6

Generating 21cm PowerSpectra

I used the open-source python Library PowerBox to generate the power spectra from each

of the lightcone. First, I define the function ”powerspectra” to estimate the Power Spectra-

Here, as you can see:

Figure 6.1: Powerbox code

• nchunks = 11, which means I am slicing each lightcone into 11 slices based on equal

comoving distance. The code will use the central redshift of each chunk to calculate the
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power spectra for each of these 11 chunks. Thus, one lightcone is passed through this

code, and the output is 11 power spectra. All these 11 power spectra have the same

astrophysical parameters (astro params) because they come from the same lightcone.

• min k = 0.1 and max k = 1.0 show the range of k-modes I am interested in finding.

This range corresponds to the x-axis of the power spectrum (PS). All of our power

spectra span k-modes from 0.1 to 1.0.

• compute power is the function from powerbox that calculates the power spectrum as

you feed the brightness temperature input from the lightcone into it.

I create a loop for 300 lightcones, in which my code reads each one of the 300 lightcones,

slices it into chunks, and generates a power spectrum for each chunk. This means:

1 Lightcone = 11 chunks = 11Power Spectra.

300 Lightcones = 300× 11 chunks each = 3300Power Spectra.

I save all 3300 power spectra for further analysis.

6.1 Structuring PowerSpectra Output

THIS IS WHERE MY CODE OVERTAKES THE DATA STRUCTURING IN SWYFT.

Every output of the Power Spectra generator code can be expressed as follows:

• A dictionary containing 300 lightcones.

• Each dictionary contains 11 keys.

• Each key corresponds to a list of ∆ (or Power Spectra, the y-axis in the graph) and k

(x-axis in the graph) values.

We all know that the k-values are the same (0.1 to 1.0) for each of them. However, if we want

to plot a single Power Spectrum directly from this dictionary, it is much more convenient to

simply point at the list and assign the x-axis and y-axis values to k and ∆, respectively.
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Figure 6.2: Content structure of a single dataset out of 300 datasets made from 300 light-
cones, total PS= 11 each x 300 = 3300

As expected, as you can see in the code snippet, a lightcone dictionary has 11 keys

corresponding to the 11 chunks that have been created. Each of these 11 keys stores the

values for its individual Power Spectrum, as shown below:

[‘k’, ‘delta’].

This can be expressed as a NumPy array for ease of further calculations and understand-

ing. However, to train our Neural Network, we want to keep all of them directly as Power

Spectrum lists ([k, ∆] values) rather than as a lightcone dictionary, as shown here.

To help readers visualize the structure of the data, I have taken this extra step to give

shape to our dataset. Computationally, we have 3300 lists, each containing only [k, ∆]

values. We will simply feed all 3300 of these ∆ values into our model, corresponding to their

parameters.
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6.2 Plotting Power Spectra-(for visualization purposes)

Figure 6.3: 11 powerspectra from 11 chunks of a single lightcone

Figure 6.4: An enhanced view of the first 2 Powerspectra chunks from above

This is an example of a Power Spectrum generated from a random lightcone in our

training dataset.

• Notice that on the x-axis, we have k.

• Notice that on the y-axis, we have ∆ (or Power Spectrum).
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• Both axes are plotted on a logarithmic scale to fit the data into the plot.

These are the 11 Power Spectrum chunks derived from a single lightcone, all sharing the

same astro params.

Now that we have visualized our Power Spectrum graphically and confirmed that it aligns

with our theoretical understanding of a Power Spectrum, we are ready to move on to the

next phase of our work: training the models.

I save all 3300 Power Spectra in a single directory for the next part of my work.
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Chapter 7

Neural Networks and Simulation

Based Inference (SBI)

The application of Simulation-Based Inference (SBI) has revolutionized the way we extract

astrophysical parameters from complex datasets, such as the Power Spectra from the cos-

mic 21-cm signal. Among the various SBI techniques, Marginal Neural Ratio Estimation

(MNRE) stands out as a powerful and efficient method for approximating posterior distribu-

tions without requiring explicit likelihood evaluations. At its core, MNRE leverages neural

networks to estimate the likelihood-to-evidence ratio, enabling direct inference of model

parameters from simulated data.

7.1 Foundation of MNRE- Baye’s Theorem

MNRE is rooted in Bayesian inference, which provides a probabilistic framework for updating

our knowledge about model parameters (θ) given observed data (x).

According to Bayes’ theorem:

p(θ | x) = p(x | θ)p(θ)
p(x)

, (7.1)

where:

49



• p(θ | x): The posterior probability distribution of the parameters given the data.

• p(x | θ): The likelihood of the data given the parameters.

• p(θ): The prior probability distribution over the parameters.

• p(x): The evidence, a normalization constant that ensures the posterior integrates to

unity.

In traditional Bayesian inference, computing p(x | θ) explicitly is often infeasible for

complex datasets like the 21-cm signal. Instead, SBI methods, including MNRE, bypass this

challenge by implicitly accessing the likelihood through simulations.

7.2 Likelihood-to-Evidence Ratio

A key innovation of MNRE is its ability to approximate the likelihood-to-evidence ratio,

denoted as:

r(x, θ) =
p(x | θ)
p(x)

=
p(θ | x)
p(θ)

. (7.2)

This ratio encapsulates the relationship between the joint distribution p(x, θ) and the product

of marginal distributions p(x)p(θ). By estimating r(x, θ), MNRE enables us to compute the

posterior distribution without explicitly evaluating the likelihood or evidence.

To achieve this, MNRE employs a binary classifier implemented as a neural network.

The classifier is trained to distinguish between two types of sample-parameter pairs:

• Jointly-drawn pairs: Pairs (x, θ) generated by sampling θ from the prior p(θ) and

simulating x using a stochastic simulator.

• Marginally-drawn pairs: Pairs where x and θ are sampled independently from their

respective marginal distributions p(x) and p(θ).

The binary classifier assigns a label y to each pair:

• y = 1: The pair is jointly drawn.
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• y = 0: The pair is marginally drawn.

The output of the classifier, dϕ(x, θ), approximates the probability that a pair is jointly

drawn:

dϕ(x, θ) ≈ p(y = 1 | x, θ). (7.3)

Using the relationship between dϕ(x, θ) and r(x, θ), the likelihood-to-evidence ratio can

be expressed as: (THIS WILL BE CALLED AS NEURAL RATIO IN LATER CHAPTERS)

r(x, θ) ≈ dϕ(x, θ)

1− dϕ(x, θ)
. (7.4)

Finally, the posterior distribution is estimated as:

p(θ | x) ≈ r(x, θ)p(θ). (7.5)

7.3 Overview of MNRE with Neural Networks

The implementation of MNRE involves several key steps:

1. Data Generation:

• Simulate a large dataset of sample-parameter pairs {(x1, θ1), (x2, θ2), . . . } using a

stochastic simulator. These pairs are drawn from the joint distribution p(x, θ).

• Generate additional marginally-drawn pairs by sampling x and θ independently

from p(x) and p(θ).

2. Network Architecture:

• The binary classifier is typically implemented as a dense neural network with

several hidden layers. Each layer applies a nonlinear activation function (e.g.,

ReLU) to introduce complexity and flexibility into the model.

• The input to the network consists of both the data x and the parameters θ, while

the output is a scalar value representing dϕ(x, θ).
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3. Training Process:

• The network is trained using a binary cross-entropy loss function:

L = −
∫

[p(x, θ) ln dϕ(x, θ) + p(x)p(θ) ln(1− dϕ(x, θ))] dxdθ. (7.6)

This loss function measures the discrepancy between the predicted probabilities

dϕ(x, θ) and the true labels y.

• Training is performed using stochastic gradient descent (SGD) or its variants (e.g.,

Adam optimizer) to minimize the loss and update the learnable parameters ϕ.

4. Posterior Estimation:

• Once trained, the network outputs dϕ(x, θ), which is used to compute r(x, θ) and

subsequently the posterior distribution p(θ | x).

• MNRE allows for the direct estimation of marginal posteriors by omitting irrel-

evant parameters from the network’s input, reducing computational costs and

focusing on specific parameters of interest.

7.4 Advantages of MNRE Over Traditional Methods

• Efficiency:

– MNRE avoids the need for explicit likelihood evaluations, making it computa-

tionally efficient compared to traditional MCMC methods.

– By directly estimating marginal posteriors, MNRE eliminates the need to sample

from the full joint posterior, further reducing computational overhead.

• Flexibility:

– MNRE can handle complex, non-Gaussian likelihoods and summary statistics,

which are common in 21-cm cosmology.

– The method is agnostic to the choice of summary statistics, allowing researchers

to explore alternative representations of the data.

• Scalability:
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– The use of neural networks enables MNRE to scale to high-dimensional param-

eter spaces, a significant advantage over traditional methods that struggle with

dimensionality.

• Interpretability:

– By providing direct estimates of the posterior distribution, MNRE offers clear

insights into the uncertainties and correlations of model parameters.

7.5 Challenges and Considerations

While MNRE offers numerous advantages, it also presents certain challenges:

• Training Data Requirements:

– The accuracy of MNRE depends on the quality and quantity of training data.

Generating sufficient simulations can be computationally expensive, particularly

for high-resolution 21-cm models.

• Network Complexity:

– Designing an appropriate neural network architecture requires careful tuning of

hyperparameters, such as the number of layers, neurons, and activation functions.

• Interpretability of Results:

– While MNRE provides posterior distributions, interpreting these results in the

context of physical processes may require additional analysis and validation.

• Generalization:

– Ensuring that the trained network generalizes well to unseen data is crucial for

robust inference. Techniques such as cross-validation and regularization can help

mitigate overfitting.
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7.6 Overview of Simulation-Based Inference (SBI)

Simulation-Based Inference (SBI) is a powerful framework for parameter estimation and

model inference in scenarios where explicit likelihood functions are unavailable or intractable.

Instead of relying on analytical likelihoods, SBI uses forward simulations to generate syn-

thetic data that approximate real observations. By training machine learning models on

these simulations, SBI learns the relationship between model parameters and data, enabling

efficient inference even in high-dimensional and complex settings.

Features of SBI-(S(calability),I(nterpretability),F(lexibility))

1. Likelihood-Free (Interpretability): SBI eliminates the need for an explicit likeli-

hood function, making it suitable for problems with intractable or unknown likelihoods.

2. Flexibility: It can handle diverse data types and parameter spaces, from simple scalar

parameters to high-dimensional datasets.

3. Scalability: Modern SBI methods leverage neural networks to scale efficiently to large

and complex datasets.

Challenges

While SBI offers significant advantages, it also presents challenges:

• High computational cost for generating simulations.

• Designing effective neural network architectures and preprocessing pipelines.

• Ensuring generalization to unseen parameter combinations.

7.7 Neural Ratio Estimation (NRE)

Neural Ratio Estimation (NRE) is a specialized technique within Simulation-Based Inference

(SBI) that directly approximates the likelihood-to-evidence ratio using neural networks. In-
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stead of explicitly computing the likelihood or posterior, NRE trains a model to distinguish

between data generated under different parameter settings, enabling efficient inference.

How NRE Works

1. Likelihood-to-Evidence Ratio: NRE learns the ratio P (data | parameters)/P (data),

which is sufficient for Bayesian inference.

2. Classifier-Based Approach: A neural network is trained as a binary classifier to

differentiate between simulated data from a specific parameter set and data from the

marginal distribution.

3. Efficient Training: By focusing on the ratio, NRE avoids the need for high-dimensional

density estimation, making it computationally efficient.

Advantages of NRE – S(calability), I(nterpretability), F(lexibility)

• Scalability: Handles high-dimensional data like power spectra with ease.

• Interpretability: Provides insights into parameter dependencies through learned ra-

tios.

• Flexibility: Works seamlessly with complex, non-linear relationships in the data.
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7.8 Illustration of Network Architecture

Figure 7.1: Figure adapted fromhttps://arxiv.org/abs/2303.07339, “Constraining the
X-ray heating and reionization using 21-cm signal with Marginal Neural Ratio Estimation”
(Cosmic Dawn and Epoch of Reionization study).

We will discuss more about the theta and x parameters in this figure in later chapters.
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Chapter 8

Results

Summarizing the Innovation

This work introduces my novel, custom PyTorch-based implementation of Marginal

Neural Ratio Estimation (MNRE) for parameter estimation in 21-cm cosmology. Un-

like traditional frameworks such as Swyft, which impose restrictive data structuring re-

quirements (e.g., Zarr hierarchies), I developed a streamlined approach that eliminates these

constraints by leveraging the flexibility of PyTorch tensors. This innovation enables me to

fully customize data handling, significantly reducing preprocessing overhead while maintain-

ing computational efficiency and scalability.

Using simulated 21-cm power spectra as the intermediary link, I successfully estimated

the relationship between key astrophysical parameters, such as the ionizing efficiency (ζ)

and X-ray luminosity per star formation rate (LX,<2 keV/SFR). My PyTorch-based model

not only outperforms Swyft in terms of speed and user-friendliness but also demonstrates

superior robustness in handling the non-Gaussian complexities of the 21-cm signal.

This Model helps to predict the values of new astrophysical parameters given we know

one. This opens up a new way of relating two astro parameters which had no co-relation in

the past.
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Introduction to the Problem

The Epoch of Reionization (EoR) marks a pivotal phase in the history of the Universe,

during which the first luminous sources—such as stars, galaxies, and active galactic nu-

clei—emerged and ionized the neutral hydrogen that pervaded the intergalactic medium

(IGM). Understanding the physical processes driving reionization is crucial for constraining

cosmological models and probing the formation of the first structures in the Universe. Cen-

tral to this endeavor are key astrophysical parameters, such as the efficiency of hydrogen

ionization (HII EFF FACTOR) and the X-ray luminosity (LX), which govern the energy

output of early galaxies and their impact on the IGM.

One of the fundamental challenges in studying reionization is quantifying the relation-

ship between these parameters. Specifically, the ratio between HII EFF FACTOR and LX

provides critical insights into the balance between ionizing photons and heating mechanisms

in the early Universe. For instance:

• A high HII EFF FACTOR relative to LX suggests that ionization dominates over

heating, potentially leading to rapid reionization.

• Conversely, a low ratio may indicate slower reionization accompanied by significant

thermal feedback.

Accurate estimation of this ratio is therefore essential for modeling the timeline and mor-

phology of reionization.

However, directly measuring or inferring this ratio from observational data presents sev-

eral challenges:

1. The high-dimensional and noisy nature of astrophysical datasets, such as power spectra

derived from 21-cm signals, complicates traditional statistical analyses.

2. The underlying physical processes are governed by complex, non-linear relationships

that are difficult to capture using analytical models.

3. The computational cost of running large-scale simulations to explore the parameter

space can be prohibitive, especially when attempting to infer posterior distributions or

likelihood functions.
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To address these challenges, I have turned to Simulation-Based Inference (SBI) methods,

which leverage simulated data from 21cmFAST to infer model parameters without requir-

ing explicit likelihood functions. Among these methods, Neural Ratio Estimation (NRE)

has emerged as a powerful tool for learning likelihood-to-evidence ratios directly from sim-

ulations. By training neural networks to approximate these ratios, NRE enables efficient

inference even in high-dimensional and computationally expensive settings.

In this work, I focus on developing a novel NRE framework tailored to estimating the ratio

between HII EFF FACTOR and LX , which can also be extended to finding other ratios. My

approach leverages power spectra data extracted from simulations, incorporating domain-

specific knowledge to enhance both accuracy and interpretability. By addressing the unique

challenges posed by this problem; this framework not only advances the state-of-the-art in

SBI but also provides new insights into the physics of reionization by proving a 2-parameter

one-to-one bijective approach. Specifically, I select any two parameters from the total four

parameters used and attempted to find the corresponding ratio on a one-to-one basis.
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8.1 Step 1- Structuring the Training Data

First, I structure my Power Spectra Directory as follows:

To effectively test my model, I am considering the neural ratio between HII EFF FACTOR

and LX . We can also formulate the algorithm to compute the ratios between other quantities

just by assigning the two parameters within the same code, and it is flexible to this extent.

Below is a snapshot showing how the directory should look, with the Power Spectra (PS)

file names structured for the code to work autonomously. The name of each training data

file carries all vital information.

Figure 8.1: Training Dataset
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The number just before .pkl extension is the chunk number as explained earlier. The

reader can see that the 4 parameters (astroparams) in the name is same for the first 1 1 files,

which means that these are generated from the same lightcone. The chunk number shows

what is the order of chunk a lightcone was cut to generate the Power Spectrum.

8.2 Step 2- Importing Dependencies and Loading data

Figure 8.2: k-mode Filtering and loading

We import the classical Python dependencies as shown above.

We define the path to the directory containing the files; in our case, it is "ALLPSSTORED(EASY)".

We loop through all the file names and extract the corresponding HII EFF FACTOR

and LX from the file name.

Next, we filter the data by defining kmin and kmax. This defines the range of k-modes we

are interested in studying and using to train the NRE engine.
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After applying the filter for k-modes, we extract the ∆ values within the k-mode range.

We concatenate 11 ∆ arrays for files with the same (HII EFF FACTOR, LX) into a single

array to get the “x” corresponding to the “θ” (astrophysical parameters), as discussed earlier.

Technically, for one lightcone worth of training data, the format looks like this:

[θ = (HII EFF FACTOR, LX), x = (∆0 +∆2 + · · ·+∆10)].

8.3 Step 3- Formatting Input Data fed into my Neural

Ratio Estimator Engine

Figure 8.3: Notice how we have 2 input params and 1 ratio as target output params

We create an input instance called:

[(HII EFF FACTOR, 0), x].

This input will be passed through a Multi-Layer Perceptron (MLP). It signifies that HII EFF FACTOR

is the reference parameter, and we aim to find the other parameter with respect to this pa-

rameter.

To explain this idea, we also create another input instance called:

[(HII EFF FACTOR, LX), x].

This input will also be passed through an MLP. It generates a scalar when both parameters
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(HII EFF FACTOR and LX) are known.

Now, the desired output is the ratio of output 2 (generated from input 2 through the

MLP) and output 1 (generated from input 1 through the MLP). This ratio is referred to as

the Neural Ratio.

8.4 Step 4- Designing a Multilayer Perceptron

8.4.1 What is a Multilayer Perceptron (MLP)?

An MLP is like a ”smart machine” that learns how to solve problems by looking at examples.

It’s a type of artificial neural network, which is inspired by how the human brain works.

How Does It Work?

Imagine you have a bunch of inputs (like numbers or data) and you want the machine to

give you an output (like an answer or prediction). The MLP takes those inputs, processes

them through layers of ”neurons,” and gives you the result.

Here’s how it works step by step:

1. Input Layer:

• This is where the data enters the system. For example, if you’re trying to predict

whether a fruit is an apple or an orange, the input could be features like its color,

size, and weight.

2. Hidden Layers:

• These are like the ”thinking” part of the machine. Each hidden layer contains

”neurons” that perform calculations on the data.

• The machine adjusts these calculations based on what it learns during training.

Think of it as the machine figuring out patterns or rules from the examples you

give it.
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3. Output Layer:

• This is where the machine gives you the final answer. For example, it might say,

”This is an apple!” or ”This is an orange!”

Why Are There Multiple Layers?

The ”multi-layer” part means there are several hidden layers between the input and output.

Each layer builds on the previous one to make the machine smarter:

• First Layer: Detects simple patterns (e.g., ”Is the fruit red?”).

• Next Layers: Combine those simple patterns into more complex ideas (e.g., ”If the

fruit is red, round, and small, it’s likely an apple”).

• Final Layer: Makes the decision (e.g., ”It’s an apple!”).

8.4.2 MLP in our case

Figure 8.4: My MLP uses ReLU for improved performance
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This basic MLP is responsible for generating output 1 and output 2 from the corre-

sponding input 1 and input 2. The Rectified Linear Unit (ReLU) introduces complexity

and flexibility into the model. I have used 128 hidden dimensions corresponding to the hid-

den layers in the Multi-Layered Perceptron. The output gets filtered through ReLU, which

is the main efficiency invoked in the model.

Advantage of using ReLU?

The use of the Rectified Linear Unit (ReLU) activation function in a Multilayer Perceptron

(MLP) offers several key advantages that contribute to its widespread adoption in modern

neural networks. One of the primary benefits of ReLU is its ability to address the vanishing

gradient problem, which often occurs with traditional activation functions like sigmoid or

tanh. Since ReLU outputs zero for negative inputs and retains the input value for positive

inputs, it allows for faster and more stable training by enabling gradients to flow through

the network without significant attenuation during backpropagation. Additionally, ReLU is

computationally efficient because it involves simple thresholding operations, making it faster

to compute compared to more complex activation functions. This simplicity also encourages

sparsity in the activations, as neurons with negative inputs are effectively ”turned off,” lead-

ing to more efficient representations of data. Furthermore, ReLU helps mitigate saturation

issues by avoiding the flat regions associated with sigmoid or tanh, thereby promoting better

learning dynamics. However, one potential drawback is the ”dying ReLU” problem, where

some neurons may become inactive and output zero for all inputs, but this can often be

mitigated using variants like Leaky ReLU or Parametric ReLU. Overall, ReLU strikes an

excellent balance between performance, efficiency, and ease of implementation, making it a

cornerstone of many successful MLP architectures.
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8.5 Step 5- Training my ML model

Figure 8.5: ML Model using pyTorch tensors to optimize data handling accuracy

My model leverages one of the most fundamental and widely understood machine learn-

ing tools: PyTorch. This choice was driven by my experience with Swyft, which, despite

its apparent efficiency in certain aspects, proved challenging for me as a new user due to

its complex data structures. My continuous failures while training a simple model with

Swyft stemmed from my inability to decipher its intricate data hierarchy. These challenges
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prompted me to take a complete detour and adopt a more accessible and intuitive approach

using PyTorch—a tool that is not only beginner-friendly but also versatile enough to be

understood across domains, including astronomy and beyond.

Swyft, while efficient in terms of its library design, imposes significant overhead on users

due to its reliance on complex data structures. For instance, Swyft requires users to organize

their data into a zarr hierarchy to handle large datasets efficiently. This step, though

seemingly minor, can be a major hurdle for users unfamiliar with such formats. Additionally,

Swyft lacks clear definitions for model inputs and architecture, forcing users to restructure

their data to fit the format used by previous users. This is particularly undesirable when

the data is already generated in a format tailored to your specific needs. Structuring data

for Swyft becomes an unnecessary and time-consuming step, detracting from the overall

efficiency of the workflow.

In contrast, my PyTorch-based model eliminates these complexities entirely. It operates

with straightforward, well-defined arrays and specifications, ensuring that both inputs and

outputs are explicitly known. There is no need for a specialized data loader or hierarchical

organization—users have the freedom to structure their data as they see fit or even bypass

this step entirely by feeding raw inputs directly into the model. This simplicity makes

the PyTorch model significantly more beginner-friendly and accessible to users from diverse

backgrounds.

Furthermore, the flexibility of PyTorch allows for greater customization and adaptabil-

ity. Unlike Swyft, where the architecture and input requirements are rigid and poorly doc-

umented, PyTorch provides users with complete control over their model’s design and data

pipeline. This ensures that users can focus on the core task of posterior analysis without

being bogged down by unnecessary preprocessing steps. The efficiency of PyTorch is further

highlighted when considering the time saved in data structuring, making it a superior choice

for rapid prototyping and experimentation.

In summary, while Swyft may appear efficient at first glance, its reliance on complex

data hierarchies and lack of clear documentation make it less practical for many users. My

PyTorch-based model, on the other hand, offers a streamlined, intuitive, and flexible alterna-

tive that prioritizes ease of use and accessibility. By eliminating unnecessary preprocessing

steps and providing clear, well-defined inputs and outputs, my model not only simplifies the

workflow but also encourages advanced ML techniques for researchers across disciplines.
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We train this basic model successfully using all the 3300 Power Spectra for 100 epochs

and a definite loss function, we use optimizer function as well for smoother optimization

even without using any library like swyft.

Figure 8.6: 100 epoches trained successfully

8.6 Step 6- Using the trained ML model to generate

Ratio on a test Dataset

Figure 8.7: Ratio for same input parameters
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To test the accuracy of the model, i trained the model again from the beginning and fond

the ratio for the same set of input parameters and the results were precise to each other!

Figure 8.8: Trained Again and found ratio for the same input parameters as above figure

Here, list(concatenated data[(46.87, 38.22)]) represents the concatenated array

of the 11 Power Spectra, or essentially “x”, where the corresponding pair of “θ” is (46.87, 38.22).

We aim to compute the ratio between these values.

In this implementation, we directly call the file containing these parameters because the

files are already loaded into memory. By simply entering the corresponding HII EFF FACTOR

and LX , the code automatically performs its computations.

The code identifies the astrophysical parameters file and retrieves the concatenated Power

Spectra (PS) file based on the entered HII EFF FACTOR and LX .

In the general case, you only need to input the astrophysical parameters and provide the

list of 11 concatenated Power Spectra as a single array. The code functions seamlessly and

produces accurate results.

For this example, observe how the code predicts the Neural Ratio, or the likelihood-to-

evidence ratio. The output aligns well with the results obtained from swyft.

69



8.7 Graphical Interpretation and Evidence

Now I will show the dependencies and the evidence to support my model, we will talk

about the accuracy of the model and try to find accurate predictions as well. Clearly there

Figure 8.9: Predicted Neural Ratio vs Input Parameter

is a relation between the input parameter or HII EFF FACTOR and the trained ratio, as

expected the neural ratio increases as we increase the input parameter value and it is positive.

Here are some possible explanations for the observed exponential trend:

If LX decreases as HII EFF FACTOR increases, the neural ratio will grow exponen-

tially because:

Neural Ratio =
HII EFF FACTOR

LX

.

For example:
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• If LX decreases exponentially with HII EFF FACTOR, the neural ratio will grow

exponentially.

There are theoretical reasons why HII EFF FACTOR and LX are related in this way. For

instance:

• Higher ionization efficiency (HII EFF FACTOR) corresponds to lower X-ray lumi-

nosity (LX), leading to an exponential increase in the neural ratio.

Figure 8.10: Input Parameter vs Output Parameter showing Extent of variation in neural
ratio

As we have taken the grid size of figure 8.10 same dimension while taking the ratio. We can

evaluate some specific statistics from the above figure. Like a single point on the figure is
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the parameter 1 as x coordinate, parameter 2 as the y coordinate and our predicted ratio is

colored. As we can spot that most of the points form a cluster around a particular region or

a grid, showing that parameter 1 and parameter 2 are tightly coupled and the ratio varies

smoothly in the region. I am more inclined to show that the clustering only means the

predicted ratios are close and scientifically accurate.

For a quick heads up, the actual parameter 2 had range from (38,42) and actual parameter

1 had range from (10,100)

Figure 8.11: Actual Parameter 2(original dataset) & Predicted Parameter 2 (found by mul-
tiplying predicted neural ratio to parameter 1) vs Parameter 1

On figure 8.11 as we can see that the curve attains saturation towards higher values. and

as expected it is a positive exponential type of graph which gets saturated later on. This

is an expected behavior and proves the machine learning process. As the algorithm learns

more about the data set it slowly tries to learn or correlate with the original values, like in

the region (0,0)x(40,30) grid it shows the most inaccurate and erroneous results but with

a solid twist. The points show the behavior of a increasing trend or the attempt of the
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machine learning algorithm to match the data. This erroneous region might get dissolved in

future attempts with 10000x more dataset as it is a rule of thumb that more the data set,

the better is the prediction results. Given the ML algorithm only trained upon 3300 samples

yet still interpreting a trend is valuable information and that might smoothen out in future

runs with more datasets. In regions other than (0,0)x(40,30) grid the predicted value is very

close or rather accurate showing saturation on higher values as well. But the intended trend

is clearly visible which shows that the relation is not completely random and has a positive

correlation with each other.

8.8 Error Analysis

We keep figure 8.11 as our reference to find error in our model and how accurate the model

can serve predictions.

Figure 8.12: Parameter 2(Range 38-42) vs Parameter 1(Range 10-100)

Notice that here we intend to find the absolute error compared to the other outputs in
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our model and notice how the error is maximum in the same region of figure 8.11. This

clearly notifies that the model works significantly good in the other region as in the above

figure, the absolute error is very less or minimum in the other regions showing the accuracy

of the model and its robust predictions. The error gets minimized as we go towards higher

ranges of values proving the fact that the model has learned efficiently throughout. The low

value error is part of the learning process and as also explained above can be smoothened

further by taking more datasets to train the model.

8.8.1 Interpretation of MAE and RMSE

To evaluate the performance of the machine learning model in predicting LX , we use two key

error metrics: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). These

metrics provide insights into the accuracy and robustness of the prediction.

• Mean Absolute Error (MAE): The MAE measures the average absolute difference

between the predicted LX values and the true LX values. Mathematically, it is defined

as:

MAE =
1

n

n∑
i=1

|yi − ŷi|,

where yi is the true value, ŷi is the predicted value, and n is the number of data points.

In our case, the MAE is 8, indicating that, on average, the predicted LX values deviate

from the true values by 8 units.

• Root Mean Squared Error (RMSE): The RMSE measures the square root of the

average squared differences between the predicted and true values. It is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

The RMSE penalizes larger errors more heavily due to the squaring operation. In our

analysis, the RMSE is 10, suggesting that some predictions have larger deviations,

which inflate the overall error compared to the MAE.
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Figure 8.13: MAE AND RMSE of predicted-actual

8.8.2 Comparison of MAE and RMSE:

The difference between the RMSE (10.4134) and MAE (8.1807) indicates the presence of

outliers or occasional large prediction errors. While the MAE reflects the typical error

magnitude, the RMSE highlights the impact of these larger deviations. This suggests that,

while the model performs reasonably well on average, it occasionally produces predictions

that are significantly off.

Contextual Interpretation: The interpretation of these error values depends on the

scale of LX . For instance:

• If LX values range from 0 to 100, an MAE of 8 corresponds to an 8% average error,

which may be acceptable depending on the application.

• If LX values are smaller (e.g., ranging from 0 to 20), an MAE of 8 represents a 40%

average error, indicating significant inaccuracies.

Therefore, it is crucial to consider the domain-specific context when assessing the accept-

ability of these error metrics.

In summary, the MAE and RMSE values provide complementary perspectives on the

model’s predictive performance. While the MAE of 8 indicates reasonable average accuracy,

the RMSE of 10 highlights the influence of occasional large errors. Further analysis of

residuals and potential model improvements may help reduce these discrepancies.
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8.8.3 Range-Specific Performance and Error Analysis

The machine learning model’s performance in predicting LX varies significantly depending

on the range of HII EFF FACTOR. Specifically:

• For values of HII EFF FACTOR below 40, the model exhibits significant errors,

contributing to the overall high values of MAE (8) and RMSE (10).

• For HII EFF FACTOR values above 40, the model performs well, with predicted

LX values closely matching the true values.

• Reasons for Range-Specific Behavior:

– The relationship between HII EFF FACTOR, LX , and the neural ratio may

be more complex or nonlinear for HII EFF FACTOR < 40, making it harder

for the model to generalize.

– There may be fewer training examples or higher variability in the data for < 40,

leading to poorer performance in this range.

– For HII EFF FACTOR ≥ 40, the relationship becomes simpler or more con-

sistent, allowing the model to achieve accurate predictions.

• Implications for Error Metrics:

– The high MAE (8) and RMSE (10) are primarily driven by the poor performance

for HII EFF FACTOR < 40.

– If errors were computed separately for HII EFF FACTOR < 40 and ≥ 40, we

would probably observe:

∗ High MAE/RMSE for HII EFF FACTOR < 40.

∗ Low MAE/RMSE for HII EFF FACTOR ≥ 40.

• Next Steps: To improve the model’s performance across all ranges ofHII EFF FACTOR,

we recommend:

– Analyzing the distribution of HII EFF FACTOR and ensuring balanced rep-

resentation in the training data.

– Experimenting with nonlinear models or adding domain-specific features to better

capture the underlying relationships.
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– Training separate models forHII EFF FACTOR < 40 andHII EFF FACTOR ≥
40 if the relationships differ significantly between these ranges.

In summary, the model’s performance is range-dependent, with significant errors for

HII EFF FACTOR < 40 and accurate predictions for HII EFF FACTOR ≥ 40. Ad-

dressing the challenges in the lower range will help reduce the overall error metrics and

improve the model’s robustness.

Closing Verdict

In conclusion, the machine learning model demonstrates strong predictive performance for

LX values when HII EFF FACTOR is above 40, with predicted values closely aligning

with the true values. However, the model exhibits notable inaccuracies forHII EFF FACTOR

values below 40, likely due to the limited availability of training data or the increased com-

plexity of the underlying relationship in this range. These challenges manifest as higher

overall error metrics, such as MAE (8) and RMSE (10), which are primarily driven by the

model’s performance at lower HII EFF FACTOR values.

To enhance the model’s robustness across all ranges, it is recommended to incorporate ad-

ditional training data, particularly for HII EFF FACTOR < 40. Furthermore, exploring

advanced modeling techniques or feature engineering may help smooth out the predictions

in this region. With these improvements, the model has the potential to achieve consistent

and reliable performance across the entire spectrum of HII EFF FACTOR values.
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Chapter 9

Summary

This thesis presents a novel approach to inferring astrophysical parameters from the cos-

mic 21-cm signal using a custom PyTorch-based implementation of Marginal Neural

Ratio Estimation (MNRE). By leveraging the flexibility and computational efficiency of

PyTorch tensors, we developed a streamlined framework that overcomes the restrictive data

structuring requirements of existing libraries like Swyft, which rely on complex hierarchies

such as Zarr stores. Our implementation eliminates these constraints by enabling fully cus-

tomizable data handling, significantly reducing preprocessing overhead while maintaining

robustness and scalability. Applied to simulated 21-cm power spectra and lightcones gen-

erated with 21cmFAST, our model efficiently estimated key parameters such as ionizing

efficiency (ζ), minimum virial temperature (Tmin
vir ), and X-ray luminosity per star formation

rate (LX,<2 keV/SFR), demonstrating its ability to handle the non-Gaussian complexities of

the signal. This work not only provides a user-friendly and adaptable alternative to Swyft

but also establishes a scalable foundation for parameter inference in preparation for next-

generation telescopes like the Square kilometer Array (SKA), offering deeper insights into

the thermal and ionization history of the early universe.
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