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Abstract

Many topological spaces exist as the total spaces of real vector bundles over some base spaces.
Topological properties like Hausdorffness, connectedness, the first axiom of countability, path
connectedness, local connectedness of the total space of a vector bundle can be studied by
knowing these topological properties of the base space. We want to classify vector bundles up
to vector bundle isomorphism. It is very difficult to classify vector bundles using topological
properties. We would be using algebraic topology concepts like singular homology and
singular cohomology of base space to classify vector bundles. We have used axioms of

Stiefel-Whitney classes to classify some vector bundles.
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Chapter 1

Smooth manifold

1.1 Some problems from smooth manifold
Let M be a smooth manifold. We will denote the set of all smooth functions from M to R
by C*(M,R).

Exercise 1. Show that C*°(M,R) can be made into a ring, and for each x € M, we will get
a ring homomorphism C®(M,R) — R whose kernel is a mazimal ideal in C*(M,R). If M
is compact, show that every mazximal ideal in C*°(M,R) is the kernel of some homomorphism

mentioned above.

Solution. For any f,g € C*°(M,R), define

f+g: M —R
x> f(z) + g(z)

and

fg: M — R
x> f(z)g(x)

With the addition and multiplication defined above, C*°(M,R) is a ring.
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For x € M, define

¢: C°(M,R) = R
fef)

Then ¢ is a ring homomorphism and is also surjective. Therefore, C*°(M,R), kernel(¢) is

isomorphic to R.

Since R is a field, Kernel(¢) is a maximal ideal. If ¢ is defined for € M, we will denote
kernel(¢) by m,. Suppose m is a maximal ideal in C*°(M,R) such that m # m, for all
x € M. Since m # m, for all € M, there exists a f, € C*(M,R) for each x € M such
that f.(z) # 0. Since f, # 0, there exists a neighborhood U, of x such that f,(y) # 0 for

all y € U,. Since M = U U, and M is compact, M = U U,, for some natural number n.
rxeM i=1

Define f = f2 + ... + f2. Then f e mand f #O0forallz e M. f#0forallz e M

implies f is invertible. Therefore m = C*°(M,R) . This is a contradiction.



Chapter 2

Vector bundle

2.1 Vector bundle

Let E and B be topological spaces. Let A, I and J be index sets. Let R and Z denote the

real numbers and ring of integers respectively.

Definition 2.1.1. An n-dimensional vector bundle over B is a surjective continuous

map 7: E — B satisfying the following conditions,

1. For each x € B, 7~ () is an n-dimensional vector space over R.

2. For each x € B, there exists a neighborhood U, of x and a homeomorphism hy: U, X
R" — 7= Y(U,) such that for each y € Uy, the restriction of he on {y} x R™ is a linear
isomorphism of {y} x R™ with 7~ (y).

FE is known as total space of the vector bundle, B is known as its base space, 7 is known as
its projection, 7! (x) is known as fiber over x and (U,, h,) is known as local trivialization at

x.

he, will denote the restriction of h, on {y} x R™.

Example 1. B x R" is an n-dimensional vector bundle over B. It is called trivial bundle.

We will denote the n-dimensional trivial vector bundle over B by ™
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Example 2. Let M be an n-dimensional smooth manifold. Then the tangent bundle of M

is an n-dimensional vector bundle of M.

Example 3. Let E be the tangent bundle of S™ for n > 1. We have E = {(z,v) €
S x R | < x,0v >= 0} where <,> is the dot product on R""1. Here m: E — S™ is
gwen by (x,v) — x. Let Uy = {x € S™ | x; #0} for 1 <i <n+1. Then h;: U; x R —
7Y U;) is given by (z,v) — (z, filv)— < z, fi(v) > x) where f;: R™ — R™™ is given by
(X1, ooy Tiy ooy p) = (21,000, 221,0, 24, ... xy). Therefore E is an n-dimensional vector
bundle of S™

Remark 2.1.1. Let 7: E — B be an n-dimensional vector bundle with a local trivialization
{(Ua, ha)}aen- Define g, and gs as the restriction of hy and hg respectively on U, N Ug x
R"™ whenever U, NUg # ¢. Then g, gz are homeomorphism and restriction of go,gs on
{a} x R™ is a linear isomorphism of {a} x R™ with 7=*(a) for each a € U, N Ugs. Therefore

—1

9
the following composition U, NUg x R" SELEN 7 (U, N Up) L ,U,N Ug x R™ will give a
homeomorphism g/glga: UsNUg xR* = U, NUg x R™. We will denote it by ggo. Since the
restriction of ggo on {a} x R™ is a linear isomorphism of {a} x R™ with itself, we can write

9Ba GS

gﬁaZUaﬂU5XRn—>UaﬂUﬁXRn

(a,7) = (a, 7gala)r)

where Tgo: UsNUg = GL,(R) is a continuous map. If U,NUzNU, # 0, we get a commutative

diagram

-1
9s

U, NUsNU, x R* L 7= (U, N U NU,) —— U, NUs N U, x R
Iva lg; ' 9B

Us NUs N U, X R"

This implies that g,5 © gaa = Gya ANd Tz © Tga = Tya. Tga 1S known as transition function.
Exercise 2. Let B be a topological space. For a given open cover {Uy}aen of B satisfying
the following conditions,

1. If U, NUg # ¢, then there is a homeomorphism hag: U, NUg x R — U, N Ug x R"

with hyg 0 hgo(x,7) = hyo(z,7) for (x,7) € U, N Uz N U, x R™.
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2. Pi(hop(z,1)) = 2, where (x,r) € U, NUs x R™ and P, is the projection map on the

first coordinate.

3. For each x € U, N Ug, the restriction of hag on {x} x R™ is a linear isomorphism of

{x} x R™ with itself; i.e. there exists a transition function.

There ezists a vector bundle m: E — B for which {hag}apen are the transition functions.

Solution. Let ' = I_l U, x R". For each U,, define h,, = I, where I, is the identity

a€cl
function on U, x R". Define an equivalence relation on F' by (z,v) ~ (z,w) if and only if

there exists an h,g such that hos(z,v) = (z,w). Let E be the quotient space resulting from

the equivalence relation.

Define

. F— B

(z,v) = x
and

fyi Vo X R* = 77 Y(V,)

(z,v) — [z,0]

where V, is an element of the open cover {U,}aea of B and [z,v] is the equivalence class of

(x,v). Then we can define the inverse map of f by

[ (V) =V x R”
[z, 7] — (z,5)

where (z, s) is an element of V., xR™ that belongs to the equivalence class [z, r|. If U,NUg # 0,

—1

then the composition (7 N 7, x R” imr_l(Ua NU;s) fL) U, N Uz x R* 18 the map fqg.
Therefore 7: E — B is a vector bundle with the transition functions {hag}ta gen- O
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2.1.1 Bundle map

Definition 2.1.2. A bundle map between two n-dimensional vector bundles 1 : F1 — B
and 7y : Ey — By is a continuous map F': E1 — Es for which there exist a continuous map
f: By — By such that the below digram is commutative and restriction of F' on 77 (b) is a

linear isomorphism of 7, 1(b) with w5 *(f(b)).

f is called @ map covered by a bundle map from E; to Fs

Definition 2.1.3. Two vector bundles m: E1 — B and my: E5 — B are said to be tsomorphic

if there exists a bundle F': Ey — FEo which is a homeomorphism and f is the identity map
of B.

Example 4. Forn > 1, let E = {(z,v) € S" xR" | v = rz,r € R}. Thenn: E — S™
given by (x,v) — x is a 1-dimensional vector bundle. It is called normal bundle over S™.
h: E— 58" xR giwen by (z,v) — (z, < x,v >) is a homeomorphism. h|z-1: 7' () = R
given by v —< x,v > is a linear isomorphism for all x € X. Therefore normal bundle of S™

18 1somorphic to the trivial bundle for all n > 1.

Lemma 2.1.1. Let m: E; — B and my: E5 — B be two vector bundles. If f: E1 — FEy is
a continuous map which maps ;' (b) linearly isomorphic to w7y ' (b) for each b € B, then f

1s a homeomorphism.

Proof. f is a bijective map. Let f~!': B/ — FE be the inverse of f. We need to show that
f~1 is continuous. Let {(Uy, ha)}aea and {(V;, gi) }ier be local trivializations of 7 and
respectively. For e € E with m(e) = b and f(e) = ¢, choose U, and V; for « € A and
i € I such that b € U, NV;. Define f' = flr—1unvpy: @ (U NV;) = 71U N V). f'

is continuous and bijective as f maps 7~!(b) linearly isomorphic to 7/~!(b). Then we get a
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commutative diagram

T U, N V) L e (U, N V)

| |1

UaﬂVixRZiofl—ohgyaﬂV;xR”

We can write h; o f' o h ! explicitly as

hiof’ohgl:UaﬂUixR"%UaﬁUixR"

(a,7) — (a, Tia(a)r)
where 7;,(a) € GL,(R). Then we can define

(hio floh, ) Uy NU; x R" - U, NU; x R”

(a,7) = (a, Tig(a)"'r)

(hio f'ohy')~! is continuous because the inverse map from GL, (R) to GL, (R) is a continuous
map. Therefore f'~! = h 1o (h;o f' o h ')~ o h; is continuous. This implies that f~! is

continuous on a neighborhood of ¢’ for each ¢’ € E’. Therefore f~! is continuous. O

Corollary 2.1.2. Let m: E — B be an n-dimensional vector bundle with a local trivializa-
tion {(Ua, ha) Yaen- If a vector bundle ': E' — B is constructed with {(Uy, ha)}aca using

exercise 2, then the vector bundles m: E — B and 7': E' — B are isomorphic.

Proof. Define

h:E— E
e [hg'(e)]

where e € 771(U,) for some a € A and [h;!(e)] is the equivalence class of h_'(e). h is
well defined because of the transitivity of transition function. h also maps 7 '(b) linearly

isomorphic to 7/~1(b) for each b € B. Let q: |_| U, x R" — E' be the quotient map. For
aEA
any open set U’ of E', ¢71(U’) is open and ¢~ }(U’) = |_| V, x R, with V, x R, open subset
aEA

U, x R™ for each ae € A. Therefore h™1(U’) = Uperha(Va X Ry). h=H(U’) is open as each hy,
is a homeomorphism. This implies that A is continuous. Using lemma 2.1.1, we get that h

is a homeomorphism. O



Corollary 2.1.3. Let m: E — B be an n-dimensional vector bundle with a local trivialization
{(Ua, ha)}aen- If all the transition functions of {(Ua, ha)}aen map to the identity element
of GL,(R), then m: E — B is isomorphic to the trivial vector bundle.

Proof. Define h: E — B by h(e) = h '(e) if e € #7'(U,). Then h|,—1y,) = ha and
hoc|7r71(UaﬂUﬁ) = h5|r1(UamUﬁ). Therefore h is continuous. Lemma 2.1.1 implies that h is a

vector bundle isomorphism. O

2.1.2 Section of a vector bundle

Definition 2.1.4. A section of a vector bundle m: E — B is a continuous map S: B — E
with S(b) € 7=1(b) for each b € B.

Section of the tangent bundle of a smooth manifold M is called a vector field on M.

Example 5. S: B — E given by x — h,(z,0) is a section of vector bundle m: E — B where

h, is a local trivialization defined for a neighborhood of x. It is called zero section.

Definition 2.1.5. A section S of vector bundle 7: E — B is called nowhere zero if S(b)

is a non-zero vector of w*(b) for all b € B.

Definition 2.1.6. k sections Si,...,S, of a vector bundle 7: E — B is called nowhere
dependent if Sy(b), ..., Sk(b) are linearly independent for each b € B.

Theorem 2.1.4. An n-dimensional vector bundle w: E — B is isomorphic to the trivial vec-
tor bundle if and only if there exist n sections Sy, . .., S, such that the set {S1(b), Sa(b), ..., Sn(b)}
is a basis of m1(b) for each b € B.

Proof. An n-dimensional vector bundle 7: F — B is isomorphic to the trivial vector bundle.

Then there exists an isomorphism h : B x R" — E.

Define

b h(b,(0,...,1,0,...,0))



where 1 is at i"* position. Then S, ..., S, are nowhere dependent sections.

Conversely, let 51, S5, ..., 5, be n sections such that the set {S;(b), S2(b), ...
,Sn(b)} is a basis of 771(b) for each b € B.

Define

h: BxR"— FE
(b, (1,...,2,)) — (b, S1(b)x1 + -+ - + Sp(b)zy)

h is continuous because s;’s are continuous. From lemma 2.1.1, we get that h is a homeo-

morphism. Therefore h is a vector bundle isomorphism. O]

2.1.3 Subbundle of a vector bundle

Definition 2.1.7. A wvector bundle w: E1 — B is called a subbundle of a vector bundle
7m: E— Bif By C E and 7 *(b) is a vector subspace of m*(b) for each b € B.

Exercise 3. For a given vector bundle 7: E — B, show that the projection map 7: £ — B

1s a homotopy equivalence.

Solution. We need to show that there exists a map f: B — E such that wo f is homotopic to
I and fom is homotopic Iz where Ig and I are the identity maps of B and E respectively.
Let {(Ua, ha)}aca be a local trivialization of 7: E — B. Take f to be the zero section. We
will get o f = I. Define

H:[0,1]xE = E
(t,€) = ha(b, (1 = t)v))
whenever 7(e) = b € U, and h,(b,v) = e. The function H is defined because R™ is a convex

set. H is continuous because each h, is a continuous function. Therefore H is a homotopy

between I and f o . [

Exercise 4. If 7: E — S™ is an 1-dimensional vector bundle over S, then it is either

1somorphic to Mobius bundle or trivial bundle.
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Solution. Let {(Uy, ha)}aca be a local trivialization of m: £ — S'. From the open cover

{Uq}aen, we will always get an open cover {V;};c; such that V;’s are connected and for each

1€ 1, V; C U, for some a. If V; C U, for more that one «, then fix an o and define g; = hq|v;.
Therefore we get a local trivialization {(V;, g;) }ies of m: E — S1. Since S! is compact, the
open cover {V;}ic; has a finite subcover. Let {V;}}_, covers S*. Then {(V}, f;)}}_, is a
local trivialization of 7: E — S*. Choose Vi from {V;}7_, with Vi € V; for k # j. Let

A= U V;. Using exercise 2 and {(V}, f;)}1>j<n.jzk, We get an 1-dimensional vector
1>5<n,j#k
bundle 7 : E; — A with the local trivialization {(V}, f;)}1>j<n.jzk- Since A is contractible,

711 By — Ais a trivial bundle. Let h: m;'(A) — A x R be a vector bundle isomorphism.
Now we have {(A,h), (Vk,hx)} as a local trivialization of 7: £ — S1. AV = NiUN,
where N; and N, are disjoint open sets. There are following four possibilities of the transition

function 7: Ny | N2 — GL1(R) = (R\{0})

T(a) =1V aec NN, (2.1)

7(a) = -1V ae N JN, (2.2)
1f e N

ra)=4 T (2.3)
—1 for a € Ny
—1forae N

() = eras (2.4)
1 for a € Ny

as 7 is continuous. The first two cases implies that m: E — S! is trivial and the last two

cases implies that 7: £ — S is the Mobius bundle. O

2.2 Constructing new vector bundles

2.2.1 Restriction of a vector bundle on a subspace of the base

space

Let m: E — B be an n-vector bundle and A be a subspace of B. Let {(Ua,, ha)}acn be a
local trivialization of 7: E — B. Define £} = 7 1(A), m = o=ty Va = AN Uy and g =

ho|v, xrn for each o € A. Since the restriction of h, on {a} x R™ is isomorphic to 7~*(a) for
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eacha € Vy, go: Vo XR" = 7 1(Va) is well defined and is also a homeomorphism. Therefore

m: E1 — Ais an n-dimensional vector bundle with a local trivialization {(V,, ga) faeca-

2.2.2 Induced vector bundle

Let m: E — B be an n-dimensional vector bundle and f: A — B be a continuous map. Let
{(Uas ha) taea be a local trivialization of 7: ' — B. Define Ey = {(a,e) € AX E | f(a) =
w(e)}. Define m: E — B as mi((a,e)) = a. Let V,, = f~1(U,). Define

Go: Vo x R* = 774(V,)
(a,v) = (a, ha(f(a),v))

Then ¢! is given by

g;lz a (V) = Vo x R”
(a,e) = (a,p(hy'(e)))

where p: U, x R — R" is defined as p(b,v) = v.

go and g ! are continuous because these maps are compositions of continuous maps. There-
fore m: By — A is an n-dimensional vector bundle with a local trivialization {(V4, ga) }aca-
f*m: f*E — A will denote the induced bundle m: E; — A. This vector bundle is known as
the vector bundle induced by f.

Lemma 2.2.1. Let m1: By — A and 7y: Ey — B be two n-dimensional vector bundles and
F:. Ey — Es5 be a bundle map. If f: A — B be a map covered by the bundle map F, then
the induced bundle f*my: f*FEy — A and 7 : Ex — A are isomorphic.

Proof. Define

¢: By — [TEy
e (m(e), F(e))

¢ is continuous because 7; and F are continuous. Since restriction of ¢ on 7, *(a) is a linear
isomorphism of 77 ' (a) with ({a} x 75, ' (f(b))) = (f*m1)~*(a) for each a € A, F is a vector

11



bundle isomorphism. The previous statement follows from the lemma 2.1.1. O]

2.2.3 Cartesian product of vector bundles

Let m1: 4 — A and my: E5 — B be two vector bundles of dimensions m and n respectively.
Let {(Ua, ha)taea and {(Vi, g:) }ier be local trivializations of m: Fy — A and my: By — B

respectively. Define

7T2E1XE2—>AXB

(e1,e9) = (m1(e1), ma(e2))
and

Hui: Uy X Vi x R™ x R" = 771 (U,) x 75 ' (Vi)
(a,b,v1,v2) = (ha(a,v1), hi(b,v2))

Then 7: Ey X Ey — AX B is an (m+n)-dimensional vector bundle with a local trivializations
{(Ua x Vi, Ha,i)}aeA,ieI-

Whitney sum

Let m: F1 — B and my: Fy — B be two vector bundles. Let 7 = {(a,b) € B x B | a = b}.
Let n': By x E5 — B x B be the Cartesian product of vector bundles m: F;y — B and
my: By — B. Since 7 C B x B, we get the restriction vector bundle 7”: £/ — 7 of
' Fy X By - Bx B. Amap f: 7 — B given by f(b,b) = b is a homeomorphism.
Therefore fon”: E' — B is a vector bundle. The vector bundle fo7n”: E' — B is known as
the Whitney sum of m;: F4 — B and my: Es — B and is denoted by my @ me: E1 B FEy — B.
We can write Ey @ Ey and 7 &y explicitly as E1®Ey = {(v1,v5) € Ey X Ey | m1(v1) = ma(v2)}

and

T Py BB Ey — B

('Ul, UQ) —> 7'['1(1)1) = 7T2(112)

Lemma 2.2.2. Let my: E1 — B and my: E5s — B be two subbundles of a vector bundle
7: E — B. If the direct sum of w; ' (b) and w5 " (b) is equal to 7=1(b) for each b € B, then

12



m Dy By & Ey — B is isomorphic ton: E — B.

Proof. Define

hZElEBEQ—)E

(61, 62) = e] + eg

h is well defined because m(e1) = ma(es) = m(ey + €2). h is also continuous. Lemma 2.1.1

implies that h is a vector bundle isomorphism. O

2.2.4 FEuclidean vector bundle

Definition 2.2.1. Let m: E — B be a vector bundle. If there exists a continuous map
v: E® E — R such that restriction of v over (m @ w)~'(b) is a symmetric, positive definite,

bilinear form for each b € B, then m: E — B is called euclidean vector bundle.

v is called euclidean metric on w: E — B. If B is a smooth manifold, then a euclidean
metric on the tangent bundle of B is called Riemannian metric and B is called Riemannian

manifold.

Example 6. Let m: B x R" — B be the trivial bundle over B. Define

v:BxR"®@BxR" =R

((a,r1), (a,r3)) =< 11,79 >

where <, > 1s the dot product on R". Then w: B X R" — B 1is a euclidean vector bundle

with a euclidean metric v.

Lemma 2.2.3. If 7: E — B be an n-dimensional trivial vector bundle with a euclidean
metric v, then there are n sections {Si,...,S,} such that v(S;(b),S;(b)) = d;; for each
b € B, where 0;; is the Kronecker delta function.

Proof. From theorem 3.1.3, we know that there are n nowhere dependent sections s1, ..., s,.
After applying the Gram-Schmidt process to {s1(b), ..., s,(b)}, we will get a normal orthog-
onal basis {S1(b),...,S,(b)} of 7~1(b) for each b € B. Since v is continuous, Si,...,S, are

continuous map. ]

13



Lemma 2.2.4. Let m: 1 — B be a subbundle of a euclidean vector bundle n: E — B
with a euclidean metric v. Define (771 (b))t = {e € 771(b) | v(e,e1) = 0 Ve, € Ei} and

Ef = |_| (m71(b))*F. Then ni: Ei- — B given by 71 (e) = w(e), is a vector bundle.
beB

Proof. Let dimensions m: F1 — B and w: F — B be m and n respectively. We want to
construct a local trivialization of 7i-: Ei- — B. For x € B, let U be a neighborhood b on
which 7y: £y — B and 7: E — B are trivial bundle. There are m normal orthogonal local
sections Si,...,S5,, and n normal orthogonal local sections si,...,s, of m;: Ey — B and
7m: E — B respectively. Define an m x n matrix 7'(b) = [V(Si(b)sj(b))}. Let M, xn(R)
denote the set of all m x n matrices with real entries. Define ¢: U — M,,«,(R) given
by ¢(b) = T'(b). ¢ is a continuous map as S;’s and s;’s are continuous maps. Let M be
the set of m x n matrices with first m columns linearly independent. Then M is open in
Mxn(R). ¢1(M) is open in U as ¢ is continuous. Since U is open in B, ¢~ (M) is open
in B. Then first m columns of T'(b) are linearly independent for each b € ¢~'(M). Then
S1(b), ... Sp(b), Sma1(D), ..., 5,(b) are linearly independent for each b € ¢~(M) because if
not, we can write S;(b) for some i, in terms of $,,11, ..., s, and the i column of T'(b) will be
0. After applying the GramSchmidt process to S1(b), ..., Sm(b), Sms1(b), ..., sn(b), we will
get a normal orthogonal basis S;(b), ..., S,(b) of 771(b) for each b € ¢~*(M). Define

h: 7' (M) x R™™ — (7)o (M)
(n—m)

(b, (Pt -5 70)) = D Tk Sk ()

k=1

Then h is a homeomorphism and restriction of i on {b} x R(™™™) is a linear isomorphism.
Therefore 7i-: E{ — B is a locally trivial bundle at each x € B. O

Corollary 2.2.5. If m: B4y — B is a subbundle of a euclidean vector bundle 7: E — B,

then w: E — B is isomorphic to my @ i By ® Ef — B.

Proof. From lemma 3.2.4, we get that i : E{- — B is a subbundle of 7: F — B and the
direct sum of 771 (b) and (71 )~!(b) is equal to 7! (b) for each b € B. Therefore lemma 3.2.2
implies that 7: F — B is isomorphic to m & 7i-: B} & Ef — B. ]

Definition 2.2.2. The vector bundle ni: E{ — B is known as the normal bundle of
m:Fy—>Binnt: E— B.
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2.2.5 Hom-vector bundle and tensor product of vector bundles

Let m: By — B and my: Ey — B be vector bundles. Define Hom(FEy, Fy) =

|_| Hom(7;'(b), 75, ' (b)) and B, ® By = |_| 77 (b) @75t (b) where Hom(mr; (D), w5y 1(b)) is the
beB beB

set all linear transformation from 7, 1(b) to my 1(b) and 7 1(b) ® Ty 1(b) is the tensor product

of 77 1(b) and 75, (b).

Let C be a category in which objects are all finite dimensional vector spaces over R and
morphisms are all isomorphism between such vector spaces. Since GL,(R) has a natural
topology for n > 0, the set of all isomorphisms between two finite dimensional vector spaces
has a natural topology. A functor T: C' x ... x C' — C in m variable is called continuous if

T is continuous map of morphisms.

Letm: By — B,...,7m: B, — Bbemvector bundles. Let F(b) = T(7;'(b),...,m1(b)).
Let E = |_|F(b) Define a map 7: E — B by w(e) =bif e € F(b).

beB

Theorem 2.2.6. There exists a topology on E such that m: E — B is a vector bundle.

Proof. For x € B, let (U, hy),..., (U, hy) be local trivializations of my: Ey — B, ..., 7, En,

respectively at x. Then h;: R™ — 7 1(b) is linear isomorphism for 1 < i < m. Define

h:UxT(R™,... ,R"™) = 7 (U)
(b, ’U) —> T(hlb, ey hmb)(v)

Then h is a bijective map. Define quotient topology on 7~1(U) induced by h. Let V be an
open subset of B with VNU nonempty and with local trivialization function g;: V xR"™ — B
for 1 <4 < m. Define a map g: V x T(R™,... ,R"™) — 7= (V) using gi,...,gmn same
as we defined h. Then 7 !(V) also has a quotient topology induced by g. We have
7 U)N7 Y V) =7"YUNV). The composition

UNV x T(R™, .. R™) "L (U A V)L U NV x T(R™, ... R) is continuous be-
cause T is a continuous functor. Since g~!o h is continuous, the quotient topologies induced
by g and h on 7~ '(U N'V) are same. Now we take these 77'(U)’s as a basis of a topol-
ogy of E. With respect to the topology defined on F, 7 is a continuous map and h is a

homeomorphism. Therefore 7: ' — B is a vector bundle. O
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Define Hom: C' x C' — C by (V1,V2) — Hom(V4, V,) for finite dimensional vector spaces
Vi, Vo If f: Vi — V4 and g: Wp — Wy are isomorphisms, then Hom(f, g): Hom(V;, W;) —
Hom(Va, W3) is given by ¢ + go ¢ o f~!. Hom is a continuous functor as Hom(f,g) is
multiplications of matrices. Therefore 7: Hom(F;, Fy) — B is a vector bundle constructed
from m: By — B and my: By — B. w: Hom(FEy, Fy) — B is known as the dual vector
bundle of m;: Ey — B and my: Fy — B.

Define the tensor product functor ®: C' x C — C by (Vi,V3) — Vi ® V; for finite
dimensional vector spaces Vi, Vo and (f,g) — f ® g for isomorphisms f,g. If f: V} — V,
and g: Wy — Wy are linear maps, then f®g: Vi x W) — Vo @ Ws is given by f®g(v1,w,) =
f(v1) ® g(wy). ® is also a continuous functor. Therefore w: E} ® Fy — B is a vector bundle
constructed from m;: £ — B and my: By — B. 7: E; ® 5 — B is known as the tensor
product vector bundle of m: By — B and me: Ey — B. A local trivialization {(Nj, f;)}jes
for the tensor product vector bundle is constructed from local trivializations {(Ua, ha) }aca
and {(V;,9:)}ier of m: By — B and my: Fy — B respectively. The transition functions of
{(N;, fj)}jes are given by {Ta,a, @ Tiis Far,anehiinsisel Where {Ta 0, tar,asen and {044, by iser

are transition functions of {(Uy, ha)}aca and {(V;, gi) }ier respectively.

Exercise 5. If m: E — B is an 1-dimensional vector bundle, then m: Hom(E, F) — B is

a trivial bundle.

Solution. We will show that there exists a nowhere zero section. Let {(Ua, ha)}aca be a
local trivialization of m: F — B. A local trivializations of m;: Hom(E, F) — B is given by
{(Us,Hom(hy)) }aea where

Hom(hy): Uy x Hom(R, R) — 77 (U,,)
(ZL’, gb) = Hom(hax)(¢) = ha o gb © hc:I

We can observe that Hom(ha)(z,idr) = id, -1, where idp and id -1, are the identity

homomorphisms of R and 7, ' (z) respectively. Define

s: B — Hom(E, E)

T +—r idﬁ—l(z)

16



and

f: Uy, = U, x Hom(R, R)

x> (z,idg)

Then Hom(h,) o f = s|y, where sy, is restriction of s on U,. Since Hom(h,) and f are
continuous, s|y, is continuous. s is continuous as s is continuous on each U, for a € A.

Therefore s is a nowhere zero section of the vector bundle 7: Hom(E, F) — B. ]

Exercise 6. If an n-dimensional vector bundle m: E — B has a euclidean metric, then
7: E — B is isomorphic to the dual bundle 71: Hom(FE, ') — B where my: e — B is the

trivial vector bundle.

Solution. Let v be a euclidean metric on 7: E — B. For v € 7~1(b), define ¢,: 7~1(b) — R
by ¢,(u) = v(v,u). Then ¢, is a linear map. Define ¢: 71 (b) — Hom(n~*(b),b x R) by
¢(v) = (b,¢,). Then ¢ is also a linear map. ¢ is an isomorphism because v is positive

definite and dimensions of vector spaces 7~1(b) and Hom(7~1(b), b x R) are equal. Define

h: E — Hom(E,e")
v = (b, ¢y)

Restriction of h on fibers is a linear isomorphism. Let {(Uy, ha) }aea be a local trivialization
of m: E — B. Since Hom(R", R) is isomorphic to R", we can also give quotient topology on
71 '(Uy) using the map q: U, x R* — 71 (U,) given by q(b,v) = (b, ¢p. (). In the topology
defined on Hom(FE, '), m1: Hom(E, ') — B is a vector bundle and h a is continuous map.

It follows from lemma 2.1.1 that A is a vector bundle isomorphism. n

Exercise 7. Let A and B be smooth manifolds of dimensions m and n respectively. If
f: A— B is a submersion and Ky = |_| kernel(Df,), then m: K — A given by w(e) = z if

x€A
x € kernel(Df,), is an (m — n)-dimensional vector bundle.

Solution. Since Ky C T'A, K has the subspace topology of T'A. Using Implicit function
theorem, we will get coordinate charts {(Ua, ¢a)taea and {(V;,9;) }icr of A and B respec-

tively such that the composition ba(Uy) da U, 4 Vv Vi ;i (Vh) is given by v; o f o

(2

O N1, Ty g1y -+ T) = (21, ..., 1,) for some a and i. Let g = ¢; 0 f o ¢;'. Then
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Dgpz) = (Dwi)f(x)Dfx(D(p;l)%(x) = |:In><n O(m—n)xn:| for each z € U,, where I, and
O(m-n)xn are the n x n identity matrix and (m — n) X n zero matrix respectively. Then
ker(Dgg. ) = {(0,..., 0,741, ..., 1) € R™} 2 R for each x € U,. The map

q: Uy x RM™) |_| kernel(Dgyg,, (2))

€Uy,

(@, (Pag1y - sTm)) = (0,0 0,70 g1, oy 7o)
is a homeomorphism. Define

ho: Uy x R — 7741,
(2,0) = (Do) guiw (a(z,v))

and

ht: N (UL) — Uy x R®
e ¢ ((Dga)a(e))

if e € kernel(Dfx). h and h™' are well defined because D f, = (D¥; ") t2) D9, () (DPa )z
and Dy, ) = (DU:) ) D fo(Dd ) go(w)- h and h™' are continuous because h and h™*
are composition of continuous functions. Restriction of h, over {z} x R(™™™ is a linear
isomorphism with 77(z) because kernel(Df,) = {z} x R("™. Therefore 7: K; — A is a

vector bundle with a local trivialization {(Ua,, ha) }aea- O

18



Chapter 3

Singular homology theory

3.1 Singular theory

Take g = (0,...,0,...),e; = (1,0,...,0,...),...,e, =(0,...,1,0,...,0,...) i.e. for ¢ >0,

1 is at ¢'* place and all other entries are 0.

Definition 3.1.1. The standard n-simplex is defined as the set /\,, = { Z ae; | a;>0
i=0

VL zi:aizzl}.

i=0
Definition 3.1.2. For any topological space X, a continuous map o: /N, — X is defined as

a stngular n-simplex.

For n > 0, define

erilln41 — an

n

n—1 n—1

> aiei— > aif(e)
0 0

where f(e;) =e;,0<i<j—1land f(e;) = €1, <i<n-—1

Definition 3.1.3. Let X be a topological space and o be a singular n-simplex in X. The
ith-face of o is defined as o) = oo FJ.
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It means that ¢® is a singular (n-1)-simplex.

For a commutative ring R with unity, we will denote the free R-module generated by the

set of all singular n-simplexes in X by S,,(X).
Definition 3.1.4. An element of S, (X) is known as a singular n-chain.

Definition 3.1.5. Forn > 0, the boundary of a singular n-simplex o, is defined as

(o) = Z(—l)ia(i). For a singular 0-simplex o, define 0(o) = 0.

1=0

We can also define the boundary of a singular n-chain, ¢ = Zajaj by 8(2 ajo;) =
j=1 j=1

Z a;0(0;). So, we get a homomorphism
j=1

By Sn(X) = Su1(X)

m m
> ajoi > a0(o))
P =1

We have a sequence of homomorphisms ... S,1(X) Ont, Sp(X) O, Sn—1(X) ...

Proposition 3.1.1. 9,0,.1 = 0
Proof. See proposition 9.2 of [1] O

From above proposition, we will get image(0,+1) C kernel(d,).

Definition 3.1.6. Z,(X) = kernel(d,) and B, (X) = image(On + 1).

Definition 3.1.7. An element of Z,(X) is called n-cycle and an element of B, (X) is called
n-boundary.

Since B, (X) C Z,(X), we can define quotient module H, (X) = Z,(X)/B.(X).
Definition 3.1.8. H,(X) is defined as the n'" singular homology module of X.
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Example 7. For a single point x, H,(z) = 0 for all n > 0 and Hy(xz) = R. There is
a unique singular n-simplex for all n > 0. Therefore S,(x) = R for all n > 0. Let x,,
denotes the singular m-simplex for all m > 0. If q is even, O,(z,) = x4—1 # 0. This
implies that Z,(x) = 0. Therefore Hy(x) = 0. If n is odd, then 0,(z,) = 0. This implies
that Z,(x) = Sp(x). Since n + 1 is even, we have O,i1(xni1) = x,. This implies that
Bn(xz) = Sp(x). Therefore Hy(x) = 0. Since the boundary of a 0-chain is defined to be 0,
Zo(x) = So(x). 01(x1) = 0 implies that By(x) = 0. Therefore Ho(z) = So(z) = R.

Proposition 3.1.2. H,(X) = &, H,(Xx) where (X},) is the family of path connected com-
ponents of X.

Proof. See proposition 9.5 of [1]. O
Proposition 3.1.3. If X is path connected, then Ho(X) = R.

Proof. See proposition 9.6 of [1]. ]

Given a continuous map f: X — Y between two topological spaces X and Y, we get a

homomorphism
Sn(f): Sn(X) = Su(Y)
ZCLjO’j — Zajf 00;
j=1 j=1

If g: Y — Z is a map, then S, (fg) = S,(f)Sn(g). Since (foo)o FJ = fo (oo F?), we will
get that 0,5,(f) = Sp-1(f)0n. If ¢ € Z,(X), then 0,,5,(f)(¢c) = Sp-1(f)0n(c) = 0. This
implies that S, (f)(c) € Z,(Y). Therefore we will get a homomorphism

H,(f): Ha(X) = H,
¢

Sn (f)c

3.2 Chain complexes

Definition 3.2.1. A chain complex over R is a sequence M = {M,,d,} where {M,} is

a sequence of free R-modules and {d,,: M, — M, _1} is a sequence of homomorphisms with
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dy_1d, = 0.

Example 8. For a topological space X, the sequence S = {S,(X),d,} is a chain complex.
Define Z,(M) = kernel(d,) and B,(M) = image(d,,1+1). dnd,+1 = 0 implies that B, (M)

is a submodule of Z,(M). Therefore we can define H,, (M) = Z,(M)/B,(M).

Definition 3.2.2. H,(M) is called n'* homology module of M.

Definition 3.2.3. A chain map is a sequence h = {h,} where {h,: M, — M)} is a
sequence of homomorphisms between chain compleres M = {M,,d,} and M’ = {M! d }
with & hy = ho_1d,.

Example 9. If f: X — Y is a continuous map between topological spaces X and Y, then

the sequence S(f) = {S.(f)} is a chain map.

Since d,h,, = hy,_1d,, h, sends Z,(M) into Z,,(M') and B, (M) into B, (M’). Therefore

we get a homomorphism

H,(M)

) —
m — h,(m

~—

Definition 3.2.4. Two chain maps {fn,: M, — M|} and {g,: M, — M} are said to be
chain homotopic if there exists a sequence of homomorphisms {D,,: M, — M]_} with
d;1+1Dn + Dn—ldn - fn — On-

Proposition 3.2.1. If two chain maps f = {f.} and g = {g,} are chain homotopic, then
H,(f) = H,(g) for alln > 0.
Proof. See proposition 10.6 of [1]. ]

Theorem 3.2.2. For a topological space X, the two chain maps S(ig) and S(i1) are chain

homotopic where iy and i1 is given by

t0: X = X x 1T

x> (x,0)
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and

11: X = X x1I

r— (z,1)

Proof. See proposition 11.4 of [1]. O

Theorem 3.2.3. If f and g are homotopic maps between topological spaces X and Y, then
S(f) and S(g) are chain homotopic.

Proof. Since f and g are homotopic maps, there is a homotopy H: X x I — Y between f
and g. We have f = H o4y and ¢ = H o1i; where iy and 4; are the same maps defined in
previous theorem. From previous theorem, we get a chain homotopy {D, } between S(i¢)
and S(¢). Define D), = S, 11(H)D,,. Then d,,,, D), + D,,_,d, = S,(H)(d}, ;1 Dy, + Dy,_1d,,) =
Sn(H)(Sp(ig) — Sn(i1)) = Su(H o ip) — Sp(H o i1) = Su(f) — Su(g). Therefore the sequence
{D. } is a chain homotopy between S(f) and S(g). O

Definition 3.2.5. A topological space X is aspherical if every continuous map f: S™ — X
can be extended to F': E" — X for allm > 0. S™ is the unit sphere in R"™ and E" is

the unit ball in R™1,

If X is aspherical, then X is path connected. We have S° = {—1,1} and E' = [-1,1]. For
x,y € X, define

f:8° =X
—1l—ux

11—y

Then f is continuous and therefore it can be extended to continuous F': [—1,1] — X with
F(=1) =z and F(1) =y.

Example 10. A convex subset of R™*! is aspherical. A contractible space is also aspherical.

Theorem 3.2.4. If X is aspherical, then H,(X) =0 for alln >0 and Ho(X) = R.

Proof. See theorem 10.13 of [1]. O
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Theorem 3.2.5. If X is path connected, then Hy(X,Z) is the Abelianization of m(X).

Proof. See theorem 12.1 of [1]. O

3.3 Relative homology

Let X be a topological space and A be a subspace of X. We see that S;(A) is a submodule
of S,(X) Vg > 0. We get a chain complex {C, = S,(X)/S,(A), 9,} where

5‘1: Sg(X)/Sg(A) = S4-1(X)/Sg-1(A)

Z — 0qz mod Sy_1(a)

Definition 3.3.1. ¢'" relative homology module of X mod A, H,(X, A) is defined as

kernel(9,)/ image(Oy+1)-

If 9,c € Sy—1(A) for ¢ € Sy(X), then ¢ € kernel(9,). Define Z,(X, A) = {c € S,(X) |
dqc € Su—1(A)}. Elements of Z,(X) are called relative g-cycles on X mod A. Define
By(z,A) = {c € Sy(X) | ¢ — ca = Dg11(2) for some ¢, € Sy(A) and z € S;11(X)}. An el-
ement of B, (X, A) is called relative g-boundary on X mod A.

Lemma 3.3.1. H,(X,A) = Z,(X,A)/B,(X, A)

Proof. Kernel(0,) = Z,(X,A)/S,(A) and Image(0,) = B,(X,A)/S,(A). By the third
isomorphism theorem, H, (X, A) = Z,(X, A)/B,(X, A).

]

Proposition 3.3.2. If X is path connected and A is nonempty subset of X, then Ho(X, A) =
0.

Proof. 1t ¢ = > v,z € So(X), then 01 (> v,0.) = ¢ — > v,z for zp € A and o, is a path
joining x and . Therefore ¢ € By(X, A). O
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Let A C X and A" C X’. We will denote a continuous map f: X — X’ with f(A) C
A" by amap f: (X,A) — (X', A"). Given a map f: (X,A) — (X', A’), the chain map
Sq([f): Sg(X) — Sy(X') takes Z,(X, A) to Z,(X', A’) and B,(X, A) to B,(X', A"). Therefore
we will get a homomorphism H,(f): H, (X, A) - H, (X', A").

3.4 The exact homology sequence

Let A be a subspace of a topological space X, i: A — X be the inclusion map and ix: X —
X be the identity map.

Corollary 3.4.1. 9,: H,(X,A) — H, 1(A) is a homomorphism.

Proof. If z € Hy (X, A), then z € Z,(X,A). From definition of Z,(X, A), d,z € S,—1(A).
0g—10, = 0 implies 0,z € Z,(A) and 5q2 € H,_1(A). If 1 = Z,, then z; — 2z, = 0. We have
21 — 29 € By(X, A). From definition of B,(X, A), 21 — 22 = ¢4 + Oy41¢ for some ¢, € S,(A)
and ¢ € Sy11(X). 9,(z1 — 22) = O,ca € By(A) implies 9,2, = 9,%5. Therefore 9, is well

defined and 5q is a homomorphism because J, is a homomorphism. O

We get an infinite sequence of homomorphisms

o H1(A) 2 g x0) By xA) H, (A)

Theorem 3.4.2.

Hq (i)

e H S 2 (A2 H (A ——s -

18 an exact sequence.

Proof. Since the composition H,(ix)H,(i) = Hy(ixi): Hy(A) = H,(X, A) is induced by the
inclusion map and Z,(A) C S,(A) C By(X, A), Hy(ixt) is the zero homomorphism. It gives
image(H, (7)) C kernel(H,(ix)). For z € kernel(H,(ix)), z € Z,(X) and z € B,(X,A). We
have z = ¢4+ 0y41¢ for some ¢, € S,(A) and ¢ € Sy41(X). Since Jygy1c € By(X) and 9,2 = 0,
Z is the image of ¢,. We have z € image(H,(i)). Therefore kernel(H,(ix)) C image(H,(i)).
It implies that image(H,(i)) = kernel(H,(ix)). The sequence is exact at H,(X).
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For 0,H,(ix): Hy(X) — H, 1(A), 9,2 = 0 for all z € H,(X). Therefore 9,H,(ix) = 0.
It gives image(H,(ix)) C kernel(d,). If z € kernel(d,), then z € Z,(X,A) and 9,z €
B,—1(A). Therefore 0,z = 0,¢, for some ¢, € S,(A). Since 9,(z —¢,) =0, z — cq € Zy(X).
ca € S,(A) implies ¢, € B,(X,A). Therefore 9,H,(ix)¢c, = 0. It implies that Z is the

image of Z — ¢, under the map Hy(ix). It gives kernel(d,) C image(H,(ix)). Therefore

kernel(0,) = image(H,(ix)). It is exact at H, (X, A).

For H, 1(i)0,: H,(X,A) — H, 1(X), it is the zero homomorphism because 9, takes ele-
ments of S,(X) to B,_1(X). We have image(9,) C kernel(H,_1(i)). If z € kernel(H,_1(i)),
then z € Z,1(A) and z € B, 1(X). Therefore z = 0,c for some ¢ € S, (X). Z is the
image of ¢ under the map 0,. It gives kernel(H, 1(i)) C image(9,). Therefore image(9,) =
kernel(H,—1(7)). It is also exact at H,_;(A). Hence the sequence of homomorphisms is

exact.
O

Five lemma 3.4.3. The diagram given below is a diagram of R-modules and homomor-

phisms with all rectangles commutative.

M, f1 M, f2 M, f3

O O N
Ny —— Ny — Ny — N,

1 2 hs

If the rows are exact at joints 2, 3, 4 and «, B, §, € are isomorphism, then 7 is an isomor-

phism.

Proof. We will show that 7 is injective. Take a € kernel(y). Then v(a) = 0. Since
rectangles are commutative, ¢ f3(a) = hyy(a) = 0. Since § is injective, f3(a) = 0. Therefore
a € kernel(f;) = image(fs). We have a = f5(b) for some b € My. Now hy3(b) = v fa(b) =
v(a) = 0 implies that 5(b) € kernel(hy) = image(hy). We have B(b) = hy(c) for some
¢ € Np. Since « is surjectve, ¢ = a(a’) for some o’ € M;. Now we have 5(b) = hi(c) =
hia(a’) = Bfi(a’). Therefore 5(b — fi(a’)) = 0. B is injective implies that b — fi(a’) = 0.
fa(b) = a, fafi =0 and fo(b— fi(a’)) = 0, implies that a = 0. Therefore kernel(y) = 0.

Now we will show that 7 is surjective. Take m € Nj. hs(m) € N, and § is surjective
implies that hs(m) = §(m') for some m’ € M. We have 0 = hyhg(m) = hyd(m') = e fy(m/).
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Since ¢ is injective, fy(m’) = 0. Then m' € kernel(fs) = image(f3). Therefore m’ = f3(m”)
for some m” € Mj. Applying § to previous equation, 6(m') = ¢ f3(m”). hs(m) = é(m’) and
dfs = hgy implies that hg(m) = hgy(m”). Since m — y(m”) € kernel(hs) = image(hs),
m —~(m") = hy(m™) for some m"” € N,. Since f3 is surjective, m"” = [(u) for some u € M,.
Therefore m — y(m") = ha(m") = hafB(u) = vfa(u). We have m = y(m” — fao(u)) where
m” — fo(u) € Mj. Therefore v is surjective. O

Definition 3.4.1. A short exact sequence is an exact sequence of R-modules of the form

0 My ——s M, —2— M 0-

Proposition 3.4.4. If M, —— M, J M 0 5 a short exact sequence, then

the following statements are equivalent:

1. There is a homomorphism p: My — My such that pi = idyy, .

2. There is a homomorphism q: Ms — My such that jq = idyy,.

Proof. See proposition 14.11 of [1]. O

Definition 3.4.2. A short exact sequence | M, — M, J M; 0 s split if it

satisfies either statement 1 or statement 2 of the previous proposition.

Direct sum lemma 3.4.5. Given below is a diagram of R-modules. All triangles are

commutative with kernel(f;) = image(g;) and hy is an isomorphism fort = 1, 2.

\/
/\

f1®f2

Then the compositions
My® My——=M DM M
M P M@Mgl@gZM{EBMé

are isomorphisms where ¢(m,m') = m +m’ and Y (m) = (m,m).
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Proof. If my € kernel(f1), then hy(m) = gofi1(my) = 0. Since h; is an isomorphism, m = 0.
This implies that kernel(f;) = {0}. Therefore f; is injective. For m} € M), there is a
my € M such that mi = hy(my) = gafi(my). Therefore gy is surjective. Similarly, f5 is

injective and ¢, is surjective.

If (m1,mg) € kernel((fi @ f2)), then ¢(f1 @ fa)(mi,m2) = fi(mi) + fa(mz) = 0.
Applying g, to the previous equation, gs f1(mq)+go fo(me) = 0. Since go fo = 0 and hy = g2 f1,
we have hy(m;) = 0. h; is an isomorphism implies that m; = 0. After applying g; to the same
equation to which we applied go, we will get mo = 0. Therefore kernel(¢(f1® f2)) = {(0,0)}.
For m € M, g2(m) € M. Since h; is surjective, go(m) = hi(my) = gafi(my) for some
my € M. Therefore m — f1(mq) € kernel(ga) = image(fz). Since m — fi(my) € image(fa),
m — fi(my) = fa(ms) for some my € My. Therefore m = f1(mq) + fo(msg) =
&(f1 @ f2)(mq,me). This implies that ¢(f1 @ f2) is surjective. We showed that the first

composition is an isomorphism.

For m € kernel((g1 @ g2)v), (g1(m), go(m) = (0,0). This implies that g;(m) = 0 and
g2(m) = 0. Since kernel(g1) = image(f1), m = fi(my) for some m; € M;. We have
0 = go(m) = gofi(my1) = hi(my). Since hy is an isomorphism, m; = 0 and therefore
m = fi(my) = 0. We have kernel((¢g1 @ ¢g2)¢) = {0}. Take (m/,m}) € M| & M. Since
my € M, and g is surjective, m} = g;(m’) for some m' € M. kernel(g;) = image(f1)
implies that m| = g;(m’ + fi(my)) for all my € M;. Applying g» to m' + f1(my), we
will get go(m') + gafi(m1) = g2(m’) + hy(mq). Since hy is surjective, there is n; € M,
such that m} = go(m') + hi(n;). Therefore we can write n; = hy'(m}) — hi'ga(m'). For
m = m' + fi(n), fr(m) = my and fo(m) = my. We have (g1 @ g2)ip(m) = (my, m5).
Therefore (g1 @ g2)1(m) is surjective. We showed that the second composition is also an

isomorphism.

O

Example 11. Given a split short exact sequence ( My —~ M, J M; o- If
p: My — My with pi = idyy, 1S given, then we can construct q: My — My with jq = idyy,.
From the proof of proposition 3.4.4, q is defined as q(ms) = mq — ip(my) where mg = j(my)
for some my € Msy. When we apply p to q(ms), we will get pg(ms) = p(ma) — pip(ms).
Since pi = idy,, we will get pg(ms) = 0. This implies that image(q) C kernel(p). Take
m € kernel(p). Then qj(m) = m — ip(m) = m implies that m € image(q). Therefore
kernel(p) C image(q). We have kernel(p) = image(q). Similarly given q: My — My with

28



Jjq = idys, we can construct p: My — My with pi = id,,, and kernel(p) = image(q).

Therefore we get a diagram satisfying previous proposition.

\/

idar, tdnig

/\

We have My = M@ Ms; for a split short exzact sequence ( M, —— M, J M, 0 -

Proposition 3.4.6. If A is a retract of X, then H,(X) = H,(A) ® H,(X, A).

Proof. We have ri = ids where ¢ is the inclusion map of A and r is a retraction map.
H,(r)H,(i) = H,(id4) implies that H, (i) is injective. Therefore the exact sequence

Ha (7)

s Hy (X, A) 2 g (4) 2 iy

H,(X) =5 H, (X, A) -2 H, o (A) — -

gives a split short exact sequence

0 —— H,(A) " Ho(X) S H, (X, 4) —0
Hy(r)
for all n > 0. Using the previous example, we get H,(X) = H,(A) @ H,(X, A). O

3.5 The excision theorem

Let B C A C X. Wesay that U can be excised if the inclusion map i: (X\B, A\B) — (X, A)
induces an isomorphism H,(7): H,(X\B, A\B) — H,(X, A) for all n > 0.

Theorem 3.5.1. If the closure of B is contained in the interior A, then A can be excised.

Proof. See theorem 15.1 of [1]. O
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Theorem 3.5.2. Let U C B C A. If U can be excised and (X\B, A\B) is deformation
retract of (X\U, A\U), then B can be excised.

Proof. See theorem 15.2 of [1]. O

Let Ef ={z € S" | zpy1 >0} and E, = {z € S™ | zp,41 < 0}.

Theorem 3.5.3. If U = {z € 5" | 41 < 0}, then U can be excised from (S™, E,) for all
n>1.

Proof. See theorem 15.3 of [1]. O

Corollary 3.5.4. Forn > 1, H,(S") & H, 1(S™") for all ¢ > 2.

Proof. From the previous theorem, we have H,(E, S"') =~ H (S", E;) for all ¢ > 0. Since
E, is contractible, H,(E, ) =0 for all ¢ > 1. We get a exact sequence
0— H, (5™ Hq(in) H,(S", E;) — 0 for all ¢ > 2. Therefore H,(S™) = H,(S", E,) for all

q > 2. Since the unit ball E™ is a convex set, H,(E™) = 0 for all ¢ > 1. The exact sequence

[

0—— H,(E™, S 1) LHq,l(S”_l) . pegives that H (E™, S" 1) = H, ;(S"!) for all
q > 2. (Ef,S"!) is homeomorphic to (E™, S"~') implies that H,(E,", S*') = H,(E", S !)
for all ¢ > 0. Therefore we get H,(S") = H,(S™,E,) = H,(E},S"') = H,(E", S" 1) =
H, 1(8"1) for all ¢ > 2. O

For g =1andn > 1, we have o —, f,(E», 5n1) %HO(S”A) Ho(E") — 0

For n > 1, S ! and E™ are path connected. Therefore Hy(S" ') & R, Hyo(E") = R and
Hy (i) is an isomorphism. We get Hy(E™, S"') = Kernel(Hy(i)) = 0. For n = 1, S° has two
path components. Therefore Hy(S°) & R @ R. We get H,(E',S%) = kernel(Hy(i)) = R.

Ho (i)
—

0 n>1
R n=1

I

Hl(En, Sn—l)

We have H,(S",E,)) & H,/(E}, 5" ') and H,(E} ,,5" ") = H,(E",S™!) for all ¢ > 0.

This implies that H,(S™, E;) = H,(E",S"!) for all ¢ > 0. We have the exact sequence
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0—— Hi(S™) Mﬁ]dgg E>) LHO(E;) Ho_(i)>H0(Sn) — 0. Ho(i) is isomorphism

n

implies that 9; = 0. We get H,(S') = H,(S™, E;). Therefore

0 n>1
Hy(S") =
R n=1
Corollary 3.5.5. Forq>1 andn > 1,
oo JB og=n
Hq(S ):
0 qg#n
Proof. Tt comes from H,(S") = H, (5" ') ...~ [, (S"~@-D), O

3.6 Mayer-Vietoris sequence

Barratt- Whitehead Lemma 3.6.1.

hn n n
Cn—l—l ik An ! Bn ! Cn

Chor = Ay — By ——

If the rows of the given diagram are long exact sequences of R-modules and =, are isomor-

phisms, then there exists a long exact sequence given by

Pn
Anfl

i Ay A @ B,

B,
where ¢, (a) = (a, & f)(a,a), ¥,(a,b) = —f!(a) + B,(b) and 6,(b) = h, o7, o gl (b)

Proof. Firstly we will show the exactness at A),. ForV/ € B, |, $,08,41(V) = ¢,0h, 107,110
1 (V) = (000 hny109, 4101 (V) fa© hni1 0751 0 g1y (V). Since a0 gy = By iy 0%
and f, o hpy1 = 0, we get ¢, 0 0,51(0') = (0,0). Therefore image(d,1) C kernel(¢y,).
For a € kernel(¢,), ay(a) = 0 and f,(a) = 0. Since the rows are exact, there exists

¢ € Cpy1 such that hy,y1(c) = a. Commutativity of the diagram implies that A, ., 0v,41(c) =
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!/

ap © hypi(c) = an(a) = 0. Ypyi(c) € kernel(h], ;) implies that there exists ' € B,
such that g,41(V) = Yui1(c). Applying hyy1 07,5 on both side of the previous equation,
we get hy,.q 0 %;11 0 gnt1 = ap(c) = a. Therefore a € image(d,41). This implies that

kernel(¢,,) C image(d,+1). Therefore image(d,+1) = kernel(¢,,).

Now we will show the exactness at A, & B,,. Since 1, 0¢,(a) = —f/ oan(a)+ Bnfn(a) =0,
we get image(¢,,) C kernel(¢,,). For (a/,b) € kernel(v,,), f/(a’) = B,(b). Applying ¢/, on the
previous equation, g/, o f/(a') = gl, 0 Bn(b) = 7n © gn(b) = 0. Since 7, is an isomorphism, we
get g,(b) = 0. Therefore there exists © € A,, such that f,(x) = b. After applying 5,, we
get B, o fulz) = fl oan(x) = Bu(b) = fl(a'). We get (¢’ — a,(x)) € kernel(f!). Therefore
a — ap(x) = h;, () for some ¢ € C) ;. Since y,41 is an isomorphism, ¢ = 7,41(c)
for some ¢ € Cpyi. Therefore o' — a,(x) = Rl © Yug1(c) = a4 0 hyya(c). Then for
a = x — hpyi1(c), dn(a) = (a’,b). This implies that kernel(t,) C image(¢,). Therefore
image(¢,) = kernel(¢,).

Now we will show the exactness at B!. Since §, o ¢,(a’,b) = —h, 0oy, o gl o f'(a') +
hpov,togloBu(b) =0+h,ov oq 0g,(b) =0, we get image(,) C kernel(d,). For
v € kernel(d,), 7, ! o ¢/, (/) € kernel(h,,). Therefore v, o g/ (b') = g,(b) for some b € B,.
After applying 7, we get ¢/, (b') = v, 0 gn(b) = ¢, 0 B,(b). Since ,(b) — V' € kernel(q,,),
Bn(b) = b = fl(a') fro some a’ € A!. This implies that b’ = —f/ (a’) + B,(b) € image(t),,).
Therefore kernel(d,,) C image(),,). O

Let X; and X, be a subspaces of a topological space X. If the homomorphisms of
homology modules induced by the inclusion maps i;: (X3, X7 N X3) — (X7 U Xo, X7) and
io: (X1, X1NXs) — (X7UXy, Xy) are isomorphisms, then (X7, X3, X) is called exact triad.
If a triple (X7, X5, X) is an exact triad, then it means that we can excise X; — X; N X, from
(X1U Xy, X7) and Xy — X5 N X from (X7 U X, Xp). Let A=X;NXsand Y = X; U X,
We know from the theorem 3.4.2 that the rows of the below diagram are exact,

Hq 7 Hq(in Bq
s Hy(A) 2 b () 2 (0, A) - H (A ——s

Hq(i)l Hq(i)l lHq(Q) lHq—l(i)
0,

Hq (i) Hq(iy) q
o —— H (X)) ——= H,(Y) —= H,(Y, X5) — Hy 1 (Xo) — - -

If (X4, X5, X) is an exact triad, then H,(i3) is an isomorphism for ¢ > 0. Therefore we will

get an exact sequence using Barrat-Whitehead lemma for a given exact triad.
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Chapter 4

Cohomology

Let M = {M,,d,} be a chain complex over R and G be an R-module. Let M} denote

Hom(M,,G). M} is known as chain module We get a homomorphism

A M, — M
[ fod,

d; is known as coboundary map. d; is a module homomorphism. d;_ , od; = 0 as

n+1
dp 0 dny1 = 0. We obtain a sequence ... s pp LMn MMTZH — ...of chain
modules and coboundary maps. We will denote the sequence by M* = {M}, d}.

Definition 4.0.1. The sequence M* = {M},d’} is called cochain complex of the chain
complex M = {M,,d,}.

Definition 4.0.2. H"(M, G) is defined as kernel(d¥)/image(d}). H"(B,G) is called the n'h
cohomology module of M.

For a topological space X, take M = {S,(X, R),0,}. Then M* is denoted by S* =
{S"(X,G),0"} and H*(M, Q) is denoted by H*(X,G). H*(X, Q) is called n'" cohomology
module of X.
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4.0.1 Cup product

See chapter 24 of [1].

Y 0 = 0 be exact sequence of R-modules A, B, C, then the dual

< 0 s also exact.

Exercise 8. If A

% B
sequence A* <+~ B* «+ (C

Solution. First we will check exactness at C*. We need to show that kernel(y*) = 0. If
f € kernel(¢*), then fo(b) = 0 for all b € B. Since v is surjective, f(c) = 0 for all
¢ € C. This implies that f = 0. Therefore, kernel(¢)*) = 0. We showed that the sequence
is exact at C*. Now we will check exactness at B*. If g € image(1)*), then g = f o ¢ for
some f € B*. Since kernel(v)) = image(¢), ¢*(9) = go ¢ = foro¢p = 0. Therefore,
image(1*) C kernel(¢*). Finally, we will show that kernel(¢*) C image(¢*). For showing
this, we will take g € kernel(¢*) and show that g = f o4 for some f € C*. Since ¢ is

surjective and kernel(¢)) = image(¢),

: B/image(¢) — C
b= (b)

is an isomorphism. For any g € kernel(¢*), define
g: B/image(¢) — C
b g(b)
B/ image(9)
/ \
C 7 R

From the above diagram, we got a homomorphism f = go (E)_l such that g = f o4 and
[ € C*. Therefore kernel(¢*) C image(¢*), and hence kernel(¢*) = image(1)*). This implies

that the sequence is also exact at B*. O
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Chapter 5

Stiefel-Whitney classes

Let A, I and J be index sets. Let R and Z denotes the real numbers and ring of integers

respectively.

We will first state the four axioms of Stiefel-Whitney classes. Then we will see the

consequences and application of the four axioms.

Followings are the four axioms of Stiefel-Whitney classes

Axiom 1

Axiom 2

Axiom 3

Axiom 4

For an n-dimensional vector bundle 7: £ — B, there is a sequence of cohomology
classes wo(m), wy(m), ..., wy(7),... with w;(w) € H(B,Z/27Z) for i > 0, wy(r) is the
identity element of H°(B) and wg(m) = 0 for k > n. The sequence of cohomology
classes wo(m), wy(m), ..., w,(7),... is called Stiefel-Whitney classes of the vector
bundle 7: £ — B.

If f: A— B be a map covered by a bundle map from the total space of n': £/ — A
to the total space of 7: E — B, then w;(7’) = f*w;(r) for i > 0.

k
For vector bundles m;: Ey — B and mo: Fy — B, wy(m & ) sz i) Uwg_;(ma)

where w;(m;) U wy_;(ms) is the cup product of w;(m;) and wk,i(m).

For the line bundle 71 : 4 — RP', w;(7}) # 0.

Proposition 5.0.1. If vector bundles mi: Fy — B and my: Fy — B are isomorphic, then
wi(m) = wi(7r2) fOT’i Z 0.

35



Proof. Let h: E; — E5 be a vector bundle isomorphism. Then the identity map io: A — A

is covered by h. Therefore w;(m) = i w;(ms) = w;(me) for i > 0. O

Proposition 5.0.2. If 7: E — B is an n-dimensional trivial vector bundle, then w;(m) =0
fori>0.

Proof. Let b € B. Define a map h: E — {b} x R" by h(z,v) = (b,v). Then h is a bundle
map and the constant map f: B — {b} is covered by h. Since H*({b},Z/2Z) = 0 for i > 0,
w;(m) = f*0 =0 for ¢ > 0. O

Proposition 5.0.3. If 7: E — B is a trivial vector bundle, then wy(m @ m) = wy(m) for a
vector bundle m: By — B.

k

Proof. wi(m & m) = Zwi(m) U wg—i(m) = wi(m1) as w;(m) U0 = 0 and w;(m) Uwy(mw) =
i=1

wi(m). ]

Proposition 5.0.4. If 7: E — B 1is an n-dimensional euclidean vector bundle with k

nowhere dependent sections, then wy,_jy1(m) = -+ = w,(7) = 0.

Proof. Let Si,..., Sk be k nowhere dependent sections of 7: £ — B. Let F(b) be vector
subspace of 7~1(b) spanned by S;(b), ..., Sk(b) for each b € B. Let E; = |_| F(b). Define a

beB
map m: Ey — B by m(e) = (b) if e € F(b). Then m: F; — B is an k-dimensional trivial

subbundle of 7: £ — B. Let m{: E{- — B be the normal bundle of m,: E; — B. It follows
from proposition 6.0.3 that w;(7) = w;(m & i) = w;(7{). Since 71 : Ef — Bisn —k

dimensional vector bundle, w,,_p1(7) = -+ = wy,(7) = 0. O

Definition 5.0.1. Define H'(B;Z/27) as the set of all formal infinite series wo+wy +. ..+
Wy + ... withw; € H(B;Z/2Z).

H"(B;Z/2Z) with the additive operation (wo + w; + wy 4+ ...) + (vo +v1 + vy +...) =
wo+vo+wi+v;+. .. and the multiplicative operation (wo+w;+wa+. .. ) (vo+vi+ve+...) =

(wo Uwg) + (wo U vy +wy Uwg) + (we U vy + wy Uvy + we Ung) + ... i a commutative ring.

Definition 5.0.2. For an n-dimensional vector bundle m: E — B, the element w(mw) =
L+w (m) 4 +wn(m) +0+... of HY(B;Z/27) is defined as the total Stiefel- Whitney
class of the vector bundle 7: E — B.
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Lemma 5.0.5. The set G = {wy +wy +wy + ... € HYB;Z/27) | wy = 1} is an abelian

group under multiplication.

Proof. Since 1U1 = 1, G is closed under addition. G is abelian and associative as
HY(B;Z/27) is abelian and associative. For 1+w;+... € G, let (1+w;+wy+...)(14+v;+vy+
...) = 1. Then wy+v; = 0; we+w,Uvy+ve = 0;.. s wp+w,_1Uv +. . 4w Uv,_14v, = 0;. . ..
Since coefficients are in Z /27, vy = wi;vs = wo + wy Uwy;...;0, = Wy, + Wy Uvy + ...+
wy Uv,_1;.... Therefore 1 +v; + ... is the inverse of 1 +w; + .. .. O

It is the consequence of the product operation on H"(B;Z/2Z) that w(m @ m) =
w(m)w(my) for vector bundles m: Fy — B and my: Fy — B.

Lemma 5.0.6. If A is a smooth manifold in R, m: TA — A is the tangent bundle of A
and m+: TAL — A is the normal bundle of m: TA — A, then w(nt) = w(r)~?

Proof. Since @7t : TAGT A+ — Ais isomorphic to the n-dimensional trivial vector bundle

over B, w(m)w(rt) = w(mr & nt) = 1. Therefore w(rt) = w(mw)~". O

Example 12. w(r) = 1 for the tangent bundle w: TS™ — S™. Since S™ C R"™ and the
normal bundle of w: TS™ — S™ is the 1-dimensional trivial vector bundle, w(m) = w(mxt) 1 =
1.

Example 13. We have w;(n}) # 0 for the line bundle w}: v — RP'. Since the inclusion
map i: v — 7L is a bundle map, the inclusion map f: RP! — RP" is covered by the bundle
map i. frwy(m)) = wy(7}) # 0 implies that wy(w}) # 0. Therefore w(nl) = 14w, for some

non-zero element wy of H'(B,7/27).

Example 14. The vector bundle 7t} : v — RP" is a subbundle of the trivial bundle
7 RP" xR — RP". 7l @ (7})t: ~! @ (71)+ — RP™ is isomorphic to the trivial bundle
7. RP" xR — RP™. Therefore w((m})t) = w(nl)™t = (1+wy) ™! = 14w, +wi+.. . +wl

where wY s the n-fold cup product of wy.

Lemma 5.0.7. The tangent bundle w: T RP" — RP" and the vector bundle
7’1 Hom(v}, (41)*) — RP™ are isomorphic.

Proof. The canonical map f: S™ — RP" given by f(x) = {Zx} is locally a diffeomorphism.

Therefore the tangent spaces of S™ at x and —z map isomorphically to the tangent space of
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RP™ at {£x}. We can identify the tangent space of RP" at {+x} with the tangent spaces of
S™ at x and x. Therefore the tangent space of RP™ at {£x} is the set of equivalence classes of
pairs {(z,v), (—z, —v)} with € S™ and < x,v >= 0. Let L,y be the line passing through

x and —z in R"*. Let L{Lﬂ} be the orthogonal complement of Lyy,y in R"*!. Define

I": Ly — L{Lﬂ}

T v
for a fixed v € L{Lﬂ}. Denote [* by [I if x maps to v. Then [J is a linear map. Define

h: TRP" — Hom(y!, (41)*4)
{(IE,U), <_‘T’ _U)} = lg

Then h maps the tangent space of RP" at {£x} isomorphically to Hom (L}, L{Lix}). h is bi-
jective. Since bases of topology on T'RP"™ and Hom(v}, (7})+) have quotient topology induce
from U x R™ where U is an element of coordinate open sets of RP", h is a homeomorphism.

Therefore h is a vector bundle isomorphism. O

Theorem 5.0.8. The Whitney sum of the tangent bundle m: T RP"™ — RP" and the trivial
vector bundle m: e — RP™ is isomorphic to the (n + 1)-fold Whitney sum > & -+ & ..

Proof. From exercise 5, we get that Hom(+},~!) is isomorphic to the trivial vector bundle
m1: et — RP™. Since the tangent bundle of RP™ is isomorphic to Hom(v;, (})1), T RP"™ ¢!
is isomorphic to Hom(v;, (})+) @ Hom(~}, v2). Hom(v}, (41)+) ®Hom(v},~v}) is isomorphic
to Hom(~;, (v2)t @~}). Hom(v}, (1) @~L) is isomorphic to Hom(v2, e"*1). Hom(y}, 1)
is isomorphic to Hom(v}, e @...®e!). Hom(y!, el @...®e!) is isomorphic to Hom(v}, e') &
...® Hom(y},e'). From exercise 6, we get that Hom(y.,e!) is isomorphic to 7. Therefore

T RP" @e! is isomorphic to (n + 1)-fold Whitney sum ! & ... ® ;. O

It follows from the previous theorem that the total Stiefel-Whitney class of the tangent
bundle of RP" is w(x})™ 1) = (1 + w;)™*Y. We will denote the total Stiefel-Whitney class
of tangent bundle of RP" by w(RP").

Corollary 5.0.9. w(RP") = 1 if and only if n + 1 = 2% for some positive integer k.

Proof. Assume w(RP™) = 1. Suppose n + 1 is not a power of 2. If n + 1 is a odd positive
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integer, then w(RP") = (1 + wy)"™ =1+ (n + 1wy + ... # 1 as the coefficient of w;
is a non-zero modulo 2. If n + 1 is an even positive integer, then n + 1 = 2¥m for some
odd positive integer m. Since (1 + wy)? = 1+ w? modulo 2, w(RP") = (1 4+ wy)?"™ =
(1+w?)" =1+ mw? +...# 1 as m is odd and 2¥ < n. Therefore n + 1 = 2* for some

positive integer k.

Conversely if n+1 = 2* for some positive integer k, then w(RP™) = (14+w;)? = 1+w?" =

1 +wi™ =1 as TRP" is an n-dimensional vector bundle. O

It follows from the previous corollary that if the tangent bundle of RP" is the trivial

vector bundle, then n + 1 must be 2* for some positive integer k.

Theorem 5.0.10. If there is a bilinear product operation p: R™ x R™ — R™ without zero

divisors, then the tangent bundle of RP™™' is the trivial vector bundle.

Proof. See theorem 4.7 of [2]. O

Exercise 9. For two vector bundles m: By — A and mo: Ey — B, wi(m X mg) =

k
E w; U wg—_;.
i=0

Solution. Consider the two maps p;: A x B — A given by p;(a,b) =a and ps: Ax B — B
given by pa(a,b) = b. Then pim: piE; — AX B and pimse: piEs — A X B are vector bundles
induced by p; and ps respectively. From axiom 2 of Stiefel-Whitney classes, w;(pim;) = w;(m)
and w;(phme) = w;(me) for each i > 0. Consider pjm @ pime: piEy @ psEy — A x B, Whitney

sum of the two induced vector bundles. We know that

piEy = {(a,b,e1) € A X B x Ey | pi1(a,b) =m(e1)}

psEy = {(a,b,e3) € A X B x Ey | pa(a,b) = ma(e2)}
PrEL @ p3Ea = {((a1, b1, 1), (a2, b2, €2)) € pTEL X p3 By | pimi((a1, b1, 1)) = pama((az, be, €2))}
= {((a1,b1,e1), (az, ba, €2)) € pyEL X Py By | ay = ag, by = ba}

Define

h: pTEl @p;Eg — E1 X E2
((a7b7 61)7 (CL, b7 62)) - (61762)
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h is continuous and restriction of h on (pim @ pima)t(a,b) = (pim) (a,b) x (pim2) ' (a,b)
is linear isomorphism of (pim )~ (a,b) x (pima)~*(a, b) with 7, (a) x 7,1 (b). Lemma 3.1.1

implies that h is a vector bundle isomorphism. Therefore wy(m; X m3) = wi(pjm ® pima) =
k k

> wi(pim) Uwi—i(pima) = > wilm) Uwe_i(m). O

1=0 =0
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