Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10014
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPODDAR, MAINAK-
dc.contributor.authorMISTRI, TRISHARTADEB-
dc.date.accessioned2025-05-19T11:27:49Z-
dc.date.available2025-05-19T11:27:49Z-
dc.date.issued2025-05-
dc.identifier.citation60en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10014-
dc.description.abstractThis thesis studies how persistent homology can recover stable topological features from high-dimensional noisy data. It describes a mathematical setup with homology theory and simplicial complexes (like Rips and Cech complexes) where multi-scale data representations can be built. By building persistence modules and applying algebraic techniques over polynomial rings, the thesis highlights efficient algorithms for the computation of the lifetime of features like connected components and loops, with both theoretical arguments and the usage of computational software for topological data analysis.en_US
dc.language.isoenen_US
dc.subjectTOPOLOGICAL DATA ANALYSISen_US
dc.subjectPERSISTENT HOMOLOGYen_US
dc.subjectMODULE OVER PIDen_US
dc.subjectCECH COMPLEXen_US
dc.subjectSIMPLICIAL HOMOLOGYen_US
dc.titleA STUDY OF PERSISTENT HOMOLOGY IN TOPOLOGICAL DATA ANALYSISen_US
dc.typeThesisen_US
dc.description.embargoOne Yearen_US
dc.type.degreeMSc.en_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20236601en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20236601_Trishartadeb_Mistri.pdfPhD Thesis1 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.