Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10014
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | PODDAR, MAINAK | - |
dc.contributor.author | MISTRI, TRISHARTADEB | - |
dc.date.accessioned | 2025-05-19T11:27:49Z | - |
dc.date.available | 2025-05-19T11:27:49Z | - |
dc.date.issued | 2025-05 | - |
dc.identifier.citation | 60 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10014 | - |
dc.description.abstract | This thesis studies how persistent homology can recover stable topological features from high-dimensional noisy data. It describes a mathematical setup with homology theory and simplicial complexes (like Rips and Cech complexes) where multi-scale data representations can be built. By building persistence modules and applying algebraic techniques over polynomial rings, the thesis highlights efficient algorithms for the computation of the lifetime of features like connected components and loops, with both theoretical arguments and the usage of computational software for topological data analysis. | en_US |
dc.language.iso | en | en_US |
dc.subject | TOPOLOGICAL DATA ANALYSIS | en_US |
dc.subject | PERSISTENT HOMOLOGY | en_US |
dc.subject | MODULE OVER PID | en_US |
dc.subject | CECH COMPLEX | en_US |
dc.subject | SIMPLICIAL HOMOLOGY | en_US |
dc.title | A STUDY OF PERSISTENT HOMOLOGY IN TOPOLOGICAL DATA ANALYSIS | en_US |
dc.type | Thesis | en_US |
dc.description.embargo | One Year | en_US |
dc.type.degree | MSc. | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.contributor.registration | 20236601 | en_US |
Appears in Collections: | MS THESES |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
20236601_Trishartadeb_Mistri.pdf | PhD Thesis | 1 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.