Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10061
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDeshpande, Manoj-
dc.contributor.authorPHANSE, SOMEN-
dc.date.accessioned2025-05-20T11:58:44Z-
dc.date.available2025-05-20T11:58:44Z-
dc.date.issued2025-05-
dc.identifier.citation60en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10061-
dc.description.abstractThe growing demand for personalized educational content has underscored the limitations of traditional, manually crafted question-generation methods, which struggle to scale while maintaining pedagogical quality. This thesis presents an AI-driven framework for automated question generation, integrating large lan- guage models (LLMs) with psycholinguistic principles to produce contextually relevant and cognitively appropriate questions. The core contribution is a two-stage training procedure for generating high- quality math word problems. First, Meta’s LLaMA-2-7B is fine-tuned using QLoRA on a curated dataset of math problems. Then, more powerful LLMs intervene to refine and diversify the generated questions. A human annotation step follows, filtering out irrelevant outputs before a second round of supervised fine-tuning using QLoRA. Additionally, this work explores context-based question generation through a separate supervised fine-tuning of a T5-based model.en_US
dc.language.isoenen_US
dc.subjectAI/MLen_US
dc.subjectNATURAL LANGUAGE PROCESSINGen_US
dc.subjectLARGE LANGUAGE MODELSen_US
dc.subjectPSYCHOLINGUISTICSen_US
dc.subjectTRANSFORMERSen_US
dc.subjectQLORAen_US
dc.subjectQUESTION GENERATIONen_US
dc.titleContext-driven question generation using AI-modelsen_US
dc.typeThesisen_US
dc.description.embargoTwo Yearsen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Data Scienceen_US
dc.contributor.registration20191134en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20191134_Somen_Phanse_MS_Thesis.pdfMS Thesis1.35 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.