Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10068
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSANTHANAM, M.S.-
dc.contributor.authorYADAV, DHARMESH-
dc.date.accessioned2025-05-21T11:54:09Z-
dc.date.available2025-05-21T11:54:09Z-
dc.date.issued2025-05-
dc.identifier.citation76en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10068-
dc.description.abstractThis thesis explores the implementation of Quantum Reservoir Computing (QRC) using random matrices and the Transverse Field Ising Model for time series prediction tasks. Given the limited theoretical understanding of QRC, this work investigates the dependence of reservoir dynamics on the performance of chaotic and memory-intensive time series. Our findings reveal that the optimal reservoir for learning is highly task-dependent, where chaotic time series are best predicted using random matrices, while memory-intensive tasks achieve optimal performance at the boundary between integrable and chaotic regimes. Additionally, we explore the connection between QRC and the Volterra expansion, demonstrating that QRC can be interpreted within this framework. This interpretation offers a deeper insight into chaos-boundary enhancement and, more broadly, the performance of various time series modelled using QRC.en_US
dc.language.isoen_USen_US
dc.subjectQuantum Reservoir Computingen_US
dc.subjectTransverse Field Ising Modelen_US
dc.subjectTime series predictionen_US
dc.subjectClassical Reservoir Computingen_US
dc.titleQuantum reservoir computing with many body systemsen_US
dc.typeThesisen_US
dc.description.embargoOne Yearen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Physicsen_US
dc.contributor.registration20201275en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20201275_Dharmesh_Yadav_MS_Thesis.pdfMS Thesis5.69 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.