Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10082
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorASSISI, COLLINS
dc.contributor.authorNABAR, SRIRANG
dc.date.accessioned2025-05-22T05:28:49Z
dc.date.available2025-05-22T05:28:49Z
dc.date.issued2025-05
dc.identifier.citation43en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10082
dc.description.abstractAlzheimer’s disease (AD) is the leading cause of dementia in the modern day, due to the rapid increase in life expectancy across the developed world. While there is no known cure for AD, a sufficiently early diagnosis can precipitate better outcomes in terms of preserving the quality of life experienced by AD patients. In the earliest stages of AD, studies have reported abnormalities in the electrophysiological properties of neurons in the entorhinal cortex (EC), a region of the brain that plays a crucial role in spatial navigation. In particular, grid cells in the EC have been shown to exhibit altered firing patterns in AD patients. Grid cells are neurons that fire in a spatially periodic manner, and are thought to be responsible for the brain’s ability to form cognitive maps of the environment. Using a biophysically-realistic computational model of the grid cells, we have investigated the effects of varying electrophysiological properties in the EC on the network dynamics of grid cells. Our results show that altering certain electrophysiological properties leads to changes in the spatial periodicity of the grid cells, creating a signature which could potentially be used as a diagnostic tool for AD. While further work is needed to validate these results, our study provides a proof-of-concept for the use of computational models in understanding the pathophysiology of AD.en_US
dc.language.isoenen_US
dc.subjectNeuroscienceen_US
dc.subjectMathematicsen_US
dc.subjectTheoretical Biologyen_US
dc.subjectTheoretical Neuroscienceen_US
dc.subjectMathematical Biologyen_US
dc.subjectMathematical Neuroscienceen_US
dc.subjectComputational Biologyen_US
dc.subjectComputational Neuroscienceen_US
dc.subjectBiophysicsen_US
dc.subjectAlzheimer's diseaseen_US
dc.subjectAlzheimer'sen_US
dc.subjectAlzheimeren_US
dc.subjectNeuronsen_US
dc.subjectNeuronen_US
dc.subjectComputationen_US
dc.subjectTheoryen_US
dc.subjectSimulationen_US
dc.subjectSimulationsen_US
dc.subjectBrainen_US
dc.subjectEntorhinal Cortexen_US
dc.subjectSpatial Navigationen_US
dc.subjectPath Integrationen_US
dc.subjectCalciumen_US
dc.subjectCalcium Dynamicsen_US
dc.subjectHodgkin-Huxleyen_US
dc.subjectConductanceen_US
dc.subjectNetworken_US
dc.subjectRing Attractoren_US
dc.subjectGrid Cellsen_US
dc.subjectElectrophysiologyen_US
dc.titleAlzheimer’s-Induced Changes in Grid Cell Electrophysiology Affect Path Integration in a Network Model of the Medial Entorhinal Cortexen_US
dc.typeThesisen_US
dc.typeDissertationen_US
dc.description.embargo1 Yearen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Biologyen_US
dc.contributor.registration20201185en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
20201185_Srirang_Nabar_MS_Thesis.pdfMS Thesis3.99 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.