Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10133
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROY, DEEPAK K.en_US
dc.contributor.authorKABIR, MUKULen_US
dc.date.accessioned2025-06-11T05:01:41Z-
dc.date.available2025-06-11T05:01:41Z-
dc.date.issued2025-04en_US
dc.identifier.citationPhysical Review B, 111, 134409.en_US
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.111.134409en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10133-
dc.description.abstractThe quest for room-temperature nanoscale magnets remains a central challenge, driven by their promising applications in quantum technologies. Layered 4⁢𝑑 and 5⁢𝑑 transition metal oxides with high magnetic ordering temperatures offer significant potential in this context. We explore ultrathin SrRu2⁢O6 nanosheets using first-principles calculations, complemented by classical Heisenberg Monte Carlo simulations. Remarkably, these nanosheets exhibit robust antiferromagnetic ordering with Néel temperatures exceeding 430 K, despite the enhanced spin fluctuations characteristic of two-dimensional systems. Surface-termination-induced intrinsic charge doping introduces complexity to the magnetism, resulting in an insulator-to-metal transition and renormalized Néel temperatures in doped systems. A detailed microscopic analysis reveals distinct mechanisms underlying the magnetic behavior in electron- and hole-doped nanosheets. These findings provide a foundation for advancing theoretical and experimental studies in the largely unexplored realm of correlated oxides at the two-dimensional limit.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectMagnetismen_US
dc.subject2-dimensional systemsen_US
dc.subjectOxidesen_US
dc.subjectStrongly correlated systemsen_US
dc.subjectFirst-principles calculationsen_US
dc.subjectMonte Carlo methodsen_US
dc.subject2025en_US
dc.titleHigh-temperature antiferromagnetism in ultrathin SrRu2⁢O6 nanosheetsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePhysical Review Ben_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.