Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10140
Title: Deciphering the commensurately modulated monoclinic phase of Rb ZnCl at low temperatures
Authors: Kotla, Surya Rohith
RAMAKRISHNAN, SITARAM
Schaller, Achim M.
Rekis, Toms
Eisele, Claudio
Bao, Jin-Ke
Noohinejad, Leila
Laitre, Geoffroy de
Boissieu, Marc de
Smaalen, Sander van
Dept. of Chemistry
Keywords: Modulated structure
Synchrotron radiation
Crystal-chemical analysis
Successive phase transitions
Single crystal X-ray diffraction
Mode analysis
2025
Issue Date: May-2025
Publisher: Elsevier B.V.
Citation: Journal of Solid State Chemistry, 345, 125226.
Abstract: The ferroelectric phase III of Rb2ZnCl4 is stable below Tc = 192 K. It is known to be a threefold superstructure of the centrosymmetric high-temperature structure, with space group P21cn. Below TL = 70 K, phase IV exists as a sixfold superstructure. We report the crystal structure of phase IV with monoclinic symmetry Cc (b unique), while a structure model with symmetry Pn (c unique) leads to an almost equally good, yet significantly worse fit to the diffraction data. Employing the superspace approach to these commensurately modulated structures results in modulation waves that follow the two-dimensional irreducible representation T1 of P21cn, albeit with different order parameter directions defining Cc and Pn symmetries, consistent with the literature. Standard tools of crystal-chemical analysis indicate that the sixfold superstructure is more stable than the threefold superstructure of phase III. However, crystal-chemical arguments cannot distinguish between the correct superstructure model with space group Cc (b unique) and the incorrect superstructure model with symmetry Pn (c unique) for phase IV. New crystal chemical tools are required, in order to attain a meaningful understanding of superstructure formation.
URI: https://doi.org/10.1016/j.jssc.2025.125226
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10140
ISSN: 0022-4596
1095-726X
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.