Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1024
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBANERJEE, DEBARGHAen_US
dc.contributor.authorSRI RAMA CHANDRA KUSHTAGIen_US
dc.date.accessioned2018-05-17T10:45:39Z
dc.date.available2018-05-17T10:45:39Z
dc.date.issued2018-05en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1024-
dc.description.abstractThe Cheeger-Müller theorem (formerly Ray-Singer conjecture) is one of the seminal results for closed orientable Riemannian manifolds. It implies that for a compact hyperbolic 3−manifold, the analytic torsion and Reidemeister torsion coincide. An analogous result does not exist for non-compact hyperbolic 3−manifolds. We explore a result that compares non-compact these torsions in arithmetic manifolds of a special kind.en_US
dc.description.sponsorshipINSPYRE-DST FELLOWSHIPen_US
dc.language.isoenen_US
dc.subject2018
dc.subjectMATHEMATICSen_US
dc.titleA torsion correspondence for non-compact arithmetic hyperbolic 3-manifoldsen_US
dc.title.alternativeA torsion correspondenceen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20131128en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
now (1).pdfA reading of a research paper.2.48 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.