Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1026
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBANERJEE, DEBARGHAen_US
dc.contributor.authorSHELKE, ROHITen_US
dc.date.accessioned2018-05-18T04:29:26Z
dc.date.available2018-05-18T04:29:26Z
dc.date.issued2018-05en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1026-
dc.description.abstractThe theory of modular forms is very rich. Modular forms for SL2(Z) and it’s congruence subgroups have very interesting properties which we will explore. We will also focus on studying some computational aspects of the modular forms along with the theory. We will see why Fourier expansion of modular forms exits and why it plays an important role.en_US
dc.language.isoenen_US
dc.subject2018
dc.subjectMathematicsen_US
dc.subjectElliptic modular forMSen_US
dc.titleProperties of elliptic modular forMSen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20131018en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Thesis - 2018 (Rohit Shelke).pdfMS-Thesis519.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.