Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10287
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BHAKTA, MOUSOMI | en_US |
dc.contributor.author | DAS, PARAMANANDA | en_US |
dc.contributor.author | Ganguly, Debdip | en_US |
dc.date.accessioned | 2025-07-11T06:06:54Z | |
dc.date.available | 2025-07-11T06:06:54Z | |
dc.date.issued | 2025-06 | en_US |
dc.identifier.citation | Journal of Geometric Analysis, 35, 245. | en_US |
dc.identifier.issn | 1050-6926 | en_US |
dc.identifier.issn | 1559-002X | en_US |
dc.identifier.uri | https://doi.org/10.1007/s12220-025-02081-6 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10287 | |
dc.description.abstract | We study the fractional Schrodinger equations with a vanishing parameter: { (-Delta)(s) u + u = |u|(p-2 )u + lambda|u|(q-2 )u in R-N u is an element of H-s(R-N), (P-lambda) where s is an element of (0, 1), N > 2s, 2 < q < p <= 2(s)* = 2N/N-2s are fixed parameters and lambda > 0 is a vanishing parameter. We investigate the asymptotic behaviour of positive ground state solutions for A small, when p is subcritical, or critical Sobolev exponent 2(s)*. For p < 2(s)*, the ground state solution asymptotically coincides with unique positive ground state solution of (-Delta)(s )u + u = |u|(p-2 )u, whereas for p = 2(s)* the asymptotic behaviour of the solutions, after a rescaling, is given by the unique positive solution of the nonlocal critical Emden-Fowler type equation. Additionally, for lambda > 0 small, we show the uniqueness and nondegeneracy of the positive ground state solution using these asymptotic profiles of solutions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Critical | en_US |
dc.subject | Subcritical nonlinearity | en_US |
dc.subject | Blow-up | en_US |
dc.subject | Uniqueness | en_US |
dc.subject | Nondegeneracy | en_US |
dc.subject | Asymptotic profile | en_US |
dc.subject | Rate of convergence | en_US |
dc.subject | Fractional Schrödinger | en_US |
dc.subject | 2025-JUL-WEEK2 | en_US |
dc.subject | TOC-JUL-2025 | en_US |
dc.subject | 2025 | en_US |
dc.title | Fractional Schrödinger Equations with Mixed Nonlinearities: Asymptotic Profiles, Uniqueness and Nondegeneracy of Ground States | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathemattics | en_US |
dc.identifier.sourcetitle | Journal of Geometric Analysis | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.