Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10287
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAKTA, MOUSOMIen_US
dc.contributor.authorDAS, PARAMANANDAen_US
dc.contributor.authorGanguly, Debdipen_US
dc.date.accessioned2025-07-11T06:06:54Z
dc.date.available2025-07-11T06:06:54Z
dc.date.issued2025-06en_US
dc.identifier.citationJournal of Geometric Analysis, 35, 245.en_US
dc.identifier.issn1050-6926en_US
dc.identifier.issn1559-002Xen_US
dc.identifier.urihttps://doi.org/10.1007/s12220-025-02081-6en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10287
dc.description.abstractWe study the fractional Schrodinger equations with a vanishing parameter: { (-Delta)(s) u + u = |u|(p-2 )u + lambda|u|(q-2 )u in R-N u is an element of H-s(R-N), (P-lambda) where s is an element of (0, 1), N > 2s, 2 < q < p <= 2(s)* = 2N/N-2s are fixed parameters and lambda > 0 is a vanishing parameter. We investigate the asymptotic behaviour of positive ground state solutions for A small, when p is subcritical, or critical Sobolev exponent 2(s)*. For p < 2(s)*, the ground state solution asymptotically coincides with unique positive ground state solution of (-Delta)(s )u + u = |u|(p-2 )u, whereas for p = 2(s)* the asymptotic behaviour of the solutions, after a rescaling, is given by the unique positive solution of the nonlocal critical Emden-Fowler type equation. Additionally, for lambda > 0 small, we show the uniqueness and nondegeneracy of the positive ground state solution using these asymptotic profiles of solutions.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCriticalen_US
dc.subjectSubcritical nonlinearityen_US
dc.subjectBlow-upen_US
dc.subjectUniquenessen_US
dc.subjectNondegeneracyen_US
dc.subjectAsymptotic profileen_US
dc.subjectRate of convergenceen_US
dc.subjectFractional Schrödingeren_US
dc.subject2025-JUL-WEEK2en_US
dc.subjectTOC-JUL-2025en_US
dc.subject2025en_US
dc.titleFractional Schrödinger Equations with Mixed Nonlinearities: Asymptotic Profiles, Uniqueness and Nondegeneracy of Ground Statesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematticsen_US
dc.identifier.sourcetitleJournal of Geometric Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.