Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10304
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBandyapadhyay, Sayan
dc.contributor.authorLochet, William
dc.contributor.authorLokshtanov, Daniel
dc.contributor.authorMarx, Dániel
dc.contributor.authorMisra, Pranabendu
dc.contributor.authorNeuen, Daniel
dc.contributor.authorSaurabh, Saket
dc.contributor.authorTALE, PRAFULLKUMAR
dc.contributor.authorXue, Jie
dc.date.accessioned2025-07-18T04:30:40Z
dc.date.available2025-07-18T04:30:40Z
dc.date.issued2026-06
dc.identifier.citationInternational Colloquium on Automata, Languages, and Programming (ICALP)en_US
dc.identifier.isbn978-395977372-0
dc.identifier.issn1868-8969
dc.identifier.urihttps://doi.org/10.4230/LIPIcs.ICALP.2025.17
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10304
dc.descriptionIncluded Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatiken_US
dc.description.abstractWe prove a robust contraction decomposition theorem for H-minor-free graphs, which states that given an H-minor-free graph G and an integer p, one can partition in polynomial time the vertices of G into p sets Z₁,… ,Z_p such that tw(G/(Z_i ⧵ Z')) = O(p + |Z'|) for all i ∈ [p] and Z' ⊆ Z_i. Here, tw(⋅) denotes the treewidth of a graph and G/(Z_i ⧵ Z') denotes the graph obtained from G by contracting all edges with both endpoints in Z_i ⧵ Z'. Our result generalizes earlier results by Klein [SICOMP 2008] and Demaine et al. [STOC 2011] based on partitioning E(G), and some recent theorems for planar graphs by Marx et al. [SODA 2022], for bounded-genus graphs (more generally, almost-embeddable graphs) by Bandyapadhyay et al. [SODA 2022], and for unit-disk graphs by Bandyapadhyay et al. [SoCG 2022]. The robust contraction decomposition theorem directly results in parameterized algorithms with running time 2^{Õ(√k)} ⋅ n^{O(1)} or n^{O(√k)} for every vertex/edge deletion problems on H-minor-free graphs that can be formulated as Permutation CSP Deletion or 2-Conn Permutation CSP Deletion. Consequently, we obtain the first subexponential-time parameterized algorithms for Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Subset Group Feedback Vertex Set, 2-Conn Component Order Connectivity on H-minor-free graphs. For other problems which already have subexponential-time parameterized algorithms on H-minor-free graphs (e.g., Odd Cycle Transversal, Vertex Multiway Cut, Vertex Multicut, etc.), our theorem gives much simpler algorithms of the same running time.en_US
dc.language.isoenen_US
dc.publisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishingen_US
dc.subjectGraph contractionen_US
dc.subjectGraph decompositionen_US
dc.subjectMinor-free graphsen_US
dc.subjectPlanar graphsen_US
dc.subjectSubexponential time algorithmsen_US
dc.subject2025-JUL-WEEK3en_US
dc.subjectTOC-JUL-2025en_US
dc.subject2025en_US
dc.titleRobust Contraction Decomposition for Minor-Free Graphs and Its Applicationsen_US
dc.typeConference Papersen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.doihttps://doi.org/10.4230/LIPIcs.ICALP.2025.17en_US
dc.identifier.sourcetitleInternational Colloquium on Automata, Languages, and Programming (ICALP)en_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:CONFERENCE PAPERS

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.