Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10354
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSONWANI, DISHAen_US
dc.contributor.authorNAYAK, BHOJKUMARen_US
dc.contributor.authorMishra, Neerajen_US
dc.contributor.authorKANADE, SANDEEP C.en_US
dc.contributor.authorKUMAR, HITESHen_US
dc.contributor.authorCHUDIWAL, ANKITAen_US
dc.contributor.authorMakov, Guyen_US
dc.contributor.authorTHOTIYL, MUSTHAFA OTTAKAMen_US
dc.date.accessioned2025-08-22T10:17:41Z
dc.date.available2025-08-22T10:17:41Z
dc.date.issued2025-08en_US
dc.identifier.citationLangmuiren_US
dc.identifier.issn0743-7463en_US
dc.identifier.issn1520-5827en_US
dc.identifier.urihttps://doi.org/10.1021/acs.langmuir.5c02133en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10354
dc.description.abstractThe development of efficient and cost-effective electrocatalysts for sustainable hydrogen production remains crucial for transitioning to a carbon-neutral energy economy. We present a dual-carbide heterostructure interface that demonstrates an exceptional hydrogen evolution reaction (HER) performance across a wide pH range. The catalyst achieves low overpotentials comparable to platinum benchmarks and maintains stability during extended operation in acidic, neutral, and alkaline electrolytes. The pH-universal performance arises from the optimized hydrogen adsorption and desorption energetics at the heterointerface, which induces synergistic effects that improve the overall reaction kinetics of the HER. Density functional theory calculations reveal that the incorporation of dual carbide heterostructure alters the electronic landscape with a favorable ΔGH* of ∼0.34 eV, which is closer to the thermoneutral value compared to the individual carbides. When tested in a saline-water electrolyzer, the catalyst delivers long-term consistent performance for 200 h without observable degradation. This work advances nonprecious metal HER catalysis by demonstrating how interface engineering can achieve performance comparable to noble metals, while offering superior stability and cost-effectiveness.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectElectrocatalystsen_US
dc.subjectEvolution reactionsen_US
dc.subjectHeterostructuresen_US
dc.subjectHydrogenen_US
dc.subjectInterfacesen_US
dc.subject2025-AUG-WEEK3en_US
dc.subjectTOC-AUG-2025en_US
dc.subject2025en_US
dc.titleA Dual-Carbide Heterostructure Interface-Driven Broad pH Range Hydrogen Fuel Productionen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleLangmuiren_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.