Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10366
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Panja, Saikat | en_US |
dc.contributor.author | SAINI, PRACHI | en_US |
dc.contributor.author | SINGH, ANUPAM | en_US |
dc.date.accessioned | 2025-08-28T07:04:38Z | |
dc.date.available | 2025-08-28T07:04:38Z | |
dc.date.issued | 2025-07 | en_US |
dc.identifier.citation | Communications in Algebra | en_US |
dc.identifier.issn | 0092-7872 | en_US |
dc.identifier.issn | 1532-4125 | en_US |
dc.identifier.uri | https://doi.org/10.1080/00927872.2025.2531559 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10366 | |
dc.description.abstract | Let O(F) be the split octonion algebra over an algebraically closed field F. For positive integers k(1), k(2) >= 2, we study surjectivity of the map A(1)(x(1)(k)) + A(2)(y(2)(k)) is an element of O(F)< x, y > on O(F). For this, we use the orbit representatives of the G2(F)-action on O(F) x O(F) for the tuple (A(1), A(2)), and characterize the ones which give a surjective map. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.subject | G(2) | en_US |
dc.subject | Polynomial maps | en_US |
dc.subject | Split octonion algebra | en_US |
dc.subject | 2025-AUG-WEEK1 | en_US |
dc.subject | TOC-AUG-2025 | en_US |
dc.subject | 2025 | en_US |
dc.title | Polynomial maps with constants on split octonion algebras | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Communications in Algebra | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.