Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1039
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Sebastian, Ronnie | en_US |
dc.contributor.author | ADDANKI, CHARY | en_US |
dc.date.accessioned | 2018-05-18T10:37:37Z | |
dc.date.available | 2018-05-18T10:37:37Z | |
dc.date.issued | 2018-05 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1039 | - |
dc.description.abstract | Class Field Theory gives a one-one correspondence between the Galois groups of finite abelian extensions of a global field, k, and open subgroups of finite index in class group. This correspondence is captured by Reciprocity map and Existence theorem. We first derive these theorems for local fields using Tate’s theorem and Lubin-Tate Formal groups. From local case we go to global case using cohomology of Adeles and Ideles. | en_US |
dc.language.iso | en | en_US |
dc.subject | 2018 | |
dc.subject | Class Field Theory | en_US |
dc.subject | Mathematics | en_US |
dc.title | Class Field Theory | en_US |
dc.type | Thesis | en_US |
dc.type.degree | BS-MS | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.contributor.registration | 20131091 | en_US |
Appears in Collections: | MS THESES |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Thesis.pdf | 592.2 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.