Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1039
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSebastian, Ronnieen_US
dc.contributor.authorADDANKI, CHARYen_US
dc.date.accessioned2018-05-18T10:37:37Z
dc.date.available2018-05-18T10:37:37Z
dc.date.issued2018-05en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1039-
dc.description.abstractClass Field Theory gives a one-one correspondence between the Galois groups of finite abelian extensions of a global field, k, and open subgroups of finite index in class group. This correspondence is captured by Reciprocity map and Existence theorem. We first derive these theorems for local fields using Tate’s theorem and Lubin-Tate Formal groups. From local case we go to global case using cohomology of Adeles and Ideles.en_US
dc.language.isoenen_US
dc.subject2018
dc.subjectClass Field Theoryen_US
dc.subjectMathematicsen_US
dc.titleClass Field Theoryen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20131091en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Thesis.pdf592.2 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.