Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDasgupta, Jyotien_US
dc.contributor.authorKhan, Bivasen_US
dc.contributor.authorPODDAR, MAINAKen_US
dc.date.accessioned2025-09-16T06:14:10Z-
dc.date.available2025-09-16T06:14:10Z-
dc.date.issued2026-01en_US
dc.identifier.citationBulletin des Sciences Mathématiques, 206, 103715.en_US
dc.identifier.issn0007-4497en_US
dc.identifier.issn1952-4773en_US
dc.identifier.urihttps://doi.org/10.1016/j.bulsci.2025.103715en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10401-
dc.description.abstractLet X be a normal projective variety over an algebraically closed field of characteristic zero. Let D be a reduced Weil divisor on X. Let G be a reductive linear algebraic group. We study logarithmic connections on a principal G-bundle over X, which are singular along D. We give necessary and sufficient conditions for the existence of such a connection in terms of connections on associated vector bundles when the logarithmic tangent sheaf of X is locally free. The existence of a logarithmic connection on a principal bundle over a projective toric variety, singular along the boundary divisor, is shown to be equivalent to the existence of a torus equivariant structure on the bundle.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectLogarithmic connectionen_US
dc.subjectPrincipal bundleen_US
dc.subjectVector bundleen_US
dc.subjectResidueen_US
dc.subjectNormal varietyen_US
dc.subjectToric varietyen_US
dc.subject2025-SEP-WEEK1en_US
dc.subjectTOC-SEP-2025en_US
dc.subject2025en_US
dc.titleLogarithmic connections on principal bundles over normal varietiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleBulletin des Sciences Mathématiquesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.