Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1042
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBHAGWAT, CHANDRASHEELen_US
dc.contributor.authorSINGH, SHASHANKen_US
dc.date.accessioned2018-05-21T08:10:29Z
dc.date.available2018-05-21T08:10:29Z
dc.date.issued2018-05en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1042-
dc.description.abstractIn this thesis, we state and sketch the proofs of main theorems of class field theory. There are many approaches to studying class field theory. We take the cohomological approach to prove the main results for the local case and then using these results establish analogous results for global fields. We briefly discuss John Tate’s seminal thesis on meromorphic analytic continuation of L-functions and their functional equations. No claim is made about originality of content and exposition.en_US
dc.description.sponsorshipDST-INSPIRE Fellowshipen_US
dc.language.isoenen_US
dc.subject2018
dc.subjectLocal fielden_US
dc.subjectGlobal fielden_US
dc.subjectAdèleen_US
dc.subjectIdèleen_US
dc.subjectReciprocity lawen_US
dc.subjectExistence theoremen_US
dc.subjectKronecker-Weber theoremen_US
dc.subjectAlgebraic Number Theoryen_US
dc.subjectMathematicsen_US
dc.titleClass Field Theoryen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20131017en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
MS-thesis_Shashank(20131017).pdf853.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.