Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10440
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhate, Eknathen_US
dc.contributor.authorRAI, VIVEKen_US
dc.date.accessioned2025-09-30T04:45:04Z
dc.date.available2025-09-30T04:45:04Z
dc.date.issued2025-08en_US
dc.identifier.citationKyoto Journal of Mathematics, 65(03).en_US
dc.identifier.issn2156-2261en_US
dc.identifier.issn2154-3321en_US
dc.identifier.urihttps://doi.org/10.1215/21562261-2024-0022en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10440
dc.description.abstractWe prove a zig-zag conjecture describing the reductions of irreducible crystalline two-dimensional representations of GQp of slope 32 and exceptional weights. This, along with previous works, completes the description of the reduction for all slopes less than 2. The proof involves computing the reductions of the Banach spaces attached by the p-adic Local Langlands Correspondence (LLC) to these representations, followed by an application of the mod p LLC to recover the reductions of these representations.
dc.language.isoenen_US
dc.publisherDuke University Pressen_US
dc.subjectBanach spaceen_US
dc.subjectHecke operatoren_US
dc.subjectMod p Local Langlands Correspondenceen_US
dc.subjectReductions of crystalline Galois representationsen_US
dc.subject2025-SEP-WEEK5en_US
dc.subjectTOC-SEP-2025en_US
dc.subject2025en_US
dc.titleReductions of Galois representations of slope 3/2en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleKyoto Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.