Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10457
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorTOPP, ERWINen_US
dc.date.accessioned2025-10-17T06:40:08Z-
dc.date.available2025-10-17T06:40:08Z-
dc.date.issued2025-09en_US
dc.identifier.citationAnnals of PDE, 11, 27.en_US
dc.identifier.issn2199-2576en_US
dc.identifier.urihttps://doi.org/10.1007/s40818-025-00220-4en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10457-
dc.description.abstractIn this article, we investigate the Holder regularity of the fractional p-Laplace equation of the form (-triangle p)(s) u = f where p > 1, s is an element of (0, 1) and f is an element of L-loc(infinity) (ohm). Specifically, we prove that u is an element of C-degrees loc(0, gamma) (ohm) for gamma(degrees) = min{1, sp/p- 1}, provided that sp/p- 1 not equal 1. In particular, it shows that u is locally Lipschitz for sp/p- 1 > 1. Moreover, we show that for sp/p-1 = 1, the solution is locally Lipschitz, provided that f is locally Holder continuous. Additionally, we discuss further regularity results for the fractional double-phase problems.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectLipschitz regularityen_US
dc.subjectFractional -Laplacianen_US
dc.subjectHölder regularityen_US
dc.subjectNonlocal double phase problemsen_US
dc.subjectFractional -Laplacianen_US
dc.subject2025-OCT-WEEK3en_US
dc.subjectTOC-OCT-2025en_US
dc.subject2025en_US
dc.titleLipschitz Regularity of Fractional p-Laplacianen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAnnals of PDEen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.