Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10471
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBAYEH, MARZIEHen_US
dc.contributor.authorDAUNDKAR, NAVNATHen_US
dc.contributor.authorSarkar, Soumenen_US
dc.date.accessioned2025-10-17T06:40:09Z
dc.date.available2025-10-17T06:40:09Z
dc.date.issued2025-10en_US
dc.identifier.citationJournal of Topology and Analysisen_US
dc.identifier.issn1793-5253en_US
dc.identifier.issn1793-7167en_US
dc.identifier.urihttps://doi.org/10.1142/S1793525326500032en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10471
dc.description.abstractIn this paper, we investigate the Lusternik–Schnirelmann category and the sequential topological complexity of the locally standard torus manifolds. We define the Dold manifolds of the torus and moment angle type, describe their mod-2 cohomology rings and compute some bounds on the LS category, equivariant LS category and equivariant topological complexity of these manifolds. In some cases, the exact values of these invariants have been computed.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.subjectEquivariant LS categoryen_US
dc.subjectSequential topological complexityen_US
dc.subjectTorus manifolden_US
dc.subjectQuasitoric manifoldsen_US
dc.subjectDold manifoldsen_US
dc.subjectMoment angle manifoldsen_US
dc.subject2025-OCT-WEEK3en_US
dc.subjectTOC-OCT-2025en_US
dc.subject2025en_US
dc.titleAn exploration of LS category and topological complexity of Dold manifolds of toric typeen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Topology and Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.