Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10571
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTALE, PRAFULLKUMAR
dc.date.accessioned2025-12-15T08:26:10Z
dc.date.available2025-12-15T08:26:10Z
dc.date.issued2025-12
dc.identifier.citation20th International Symposium on Parameterized and Exact Computation (IPEC 2025)en_US
dc.identifier.otherSeries: Leibniz International Proceedings in Informatics (LIPIcs)en_US
dc.identifier.urihttps://doi.org/10.4230/LIPIcs.IPEC.2025.28en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10571
dc.description.abstractIn the Geodetic Set problem, the input consists of a graph G and a positive integer k. The goal is to determine whether there exists a subset S of vertices of size k such that every vertex in the graph is included in a shortest path between two vertices in S. Kellerhals and Koana [IPEC 2020; J. Graph Algorithms Appl 2022] proved that the problem is W[1]-hard when parameterized by the pathwidth or the feedback vertex set number of the input graph. They posed the question of whether the problem admits an XP-algorithm when parameterized by the combination of these two parameters. We answer this in the negative by proving that the problem remains NP-hard even on graphs of constant pathwidth and feedback vertex set number.en_US
dc.language.isoenen_US
dc.publisherDagstuhl Publishingen_US
dc.subjectGeodetic Setsen_US
dc.subjectNP-hardnessen_US
dc.subjectConstant Treewidthen_US
dc.subjectTOC-DEC-2025en_US
dc.subject2025-DEC-WEEK3en_US
dc.subject2025en_US
dc.titleGeodetic Set on Graphs of Constant Pathwidth and Feedback Vertex Set Numberen_US
dc.typeConference Papersen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.doihttps://doi.org/10.4230/LIPIcs.IPEC.2025.28en_US
dc.identifier.sourcetitle20th International Symposium on Parameterized and Exact Computation (IPEC 2025)en_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:CONFERENCE PAPERS

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.