Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrithika, R.en_US
dc.contributor.authorSharma, Roohanien_US
dc.contributor.authorTALE, PRAFULLKUMARen_US
dc.date.accessioned2025-12-19T11:42:10Z
dc.date.available2025-12-19T11:42:10Z
dc.date.issued2025-12en_US
dc.identifier.citationDiscrete Mathematics & Theoretical Computer Science, 27(3).en_US
dc.identifier.issn1365-8050en_US
dc.identifier.urihttps://doi.org/10.46298/dmtcs.14658en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10602
dc.description.abstractFor a positive integer ℓ≥3, the Cℓ-Contractibility problem takes as input an undirected simple graph G and determines whether G can be transformed into a graph isomorphic to Cℓ (the induced cycle on ℓ vertices) using only edge contractions. Brouwer and Veldman [JGT 1987] showed that C4-Contractibility is NP-complete in general graphs. It is easy to verify that C3-Contractibility is polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed that Cℓ-Contractibility is \NP-complete\ on bipartite graphs for ℓ=6 and posed as open problems the status of the problem when ℓ is 4 or 5. In this paper, we show that both C5-Contractibility and C4-Contractibility are NP-complete on bipartite graphs.en_US
dc.language.isoenen_US
dc.publisherEpisciencesen_US
dc.subjectComputational Complexityen_US
dc.subject2025-DEC-WEEK2en_US
dc.subjectTOC-DEC-2025en_US
dc.subject2025en_US
dc.titleThe Complexity of Contracting Bipartite Graphs into Small Cyclesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleDiscrete Mathematics & Theoretical Computer Scienceen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.