Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10623Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | SHAH, VARUN | en_US |
| dc.contributor.author | SPALLONE, STEVEN | en_US |
| dc.date.accessioned | 2025-12-29T06:40:47Z | |
| dc.date.available | 2025-12-29T06:40:47Z | |
| dc.date.issued | 2025-12 | en_US |
| dc.identifier.citation | Journal of Algebraic Combinatorics, 63(01). | en_US |
| dc.identifier.issn | 1572-9192 | en_US |
| dc.identifier.issn | 0925-9899 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/s10801-025-01481-9 | en_US |
| dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10623 | |
| dc.description.abstract | Let g be a reductive Lie algebra and m a positive integer. There is a natural density of irreducible representations of g, whose degrees are not divisible by m. For g = gln , this density decays exponentially to 0 as n. Similar results hold for simple Lie algebras and Lie groups, and there are versions for self-dual and orthogonal representations. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Nature | en_US |
| dc.subject | Weyl dimension formula | en_US |
| dc.subject | Natural density | en_US |
| dc.subject | Integer-valued polynomials | en_US |
| dc.subject | 2025-DEC-WEEK4 | en_US |
| dc.subject | TOC-DEC-2025 | en_US |
| dc.subject | 2025 | en_US |
| dc.title | On the divisibility of degrees of representations of Lie groups | en_US |
| dc.type | Article | en_US |
| dc.contributor.department | Dept. of Mathematics | en_US |
| dc.identifier.sourcetitle | Journal of Algebraic Combinatorics | en_US |
| dc.publication.originofpublisher | Foreign | en_US |
| Appears in Collections: | JOURNAL ARTICLES | |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.