Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSHAH, VARUNen_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2025-12-29T06:40:47Z
dc.date.available2025-12-29T06:40:47Z
dc.date.issued2025-12en_US
dc.identifier.citationJournal of Algebraic Combinatorics, 63(01).en_US
dc.identifier.issn1572-9192en_US
dc.identifier.issn0925-9899en_US
dc.identifier.urihttps://doi.org/10.1007/s10801-025-01481-9en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10623
dc.description.abstractLet g be a reductive Lie algebra and m a positive integer. There is a natural density of irreducible representations of g, whose degrees are not divisible by m. For g = gln , this density decays exponentially to 0 as n. Similar results hold for simple Lie algebras and Lie groups, and there are versions for self-dual and orthogonal representations.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectWeyl dimension formulaen_US
dc.subjectNatural densityen_US
dc.subjectInteger-valued polynomialsen_US
dc.subject2025-DEC-WEEK4en_US
dc.subjectTOC-DEC-2025en_US
dc.subject2025en_US
dc.titleOn the divisibility of degrees of representations of Lie groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Algebraic Combinatoricsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.