Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorMerel, Loicen_US
dc.date.accessioned2018-10-25T03:37:30Z
dc.date.available2018-10-25T03:37:30Z
dc.date.issued2018-10en_US
dc.identifier.citationJournal of the London Mathematical Society,98(2), 329-348.en_US
dc.identifier.issn1469-7750en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1322-
dc.identifier.urihttps://doi.org/10.1112/jlms.12136en_US
dc.description.abstractFor any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin-Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectHecke Operatorsen_US
dc.subjectElementsen_US
dc.subject2018en_US
dc.titleThe Eisenstein cycles as modular symbolsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of the London Mathematical Societyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.