Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1322
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BANERJEE, DEBARGHA | en_US |
dc.contributor.author | Merel, Loic | en_US |
dc.date.accessioned | 2018-10-25T03:37:30Z | |
dc.date.available | 2018-10-25T03:37:30Z | |
dc.date.issued | 2018-10 | en_US |
dc.identifier.citation | Journal of the London Mathematical Society,98(2), 329-348. | en_US |
dc.identifier.issn | 1469-7750 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1322 | - |
dc.identifier.uri | https://doi.org/10.1112/jlms.12136 | en_US |
dc.description.abstract | For any odd integer N, we explicitly write down the Eisenstein cycles in the first homology group of modular curves of level N as linear combinations of Manin symbols. These cycles are, by definition, those over which every integral of holomorphic differential forms vanish. Our result can be seen as an explicit version of the Manin-Drinfeld theorem. Our method is to characterize such Eisenstein cycles as eigenvectors for the Hecke operators. We make crucial use of expressions of Hecke actions on modular symbols and on auxiliary level 2 structures. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.subject | Hecke Operators | en_US |
dc.subject | Elements | en_US |
dc.subject | 2018 | en_US |
dc.title | The Eisenstein cycles as modular symbols | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of the London Mathematical Society | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.