Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1686
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalik, R.P.en_US
dc.contributor.authorKHARE, AVINASHen_US
dc.date.accessioned2019-02-14T05:02:58Z
dc.date.available2019-02-14T05:02:58Z
dc.date.issued2013-01en_US
dc.identifier.citationAnnals of Physics, 334, 142-156 .en_US
dc.identifier.issn-en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1686-
dc.identifier.urihttps://doi.org/10.1016/j.aop.2013.03.015en_US
dc.description.abstractWe demonstrate the existence of a novel set of discrete symmetries in the context of the supersymmetric (SUSY) quantum mechanical model with a potential function that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the – plane under the influence of a magnetic field in the -direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectSupersymmetric quantum mechanicsen_US
dc.subjectContinuous symmetryen_US
dc.subjectDiscrete symmetryen_US
dc.subjectRham cohomological operatoren_US
dc.subjectHodge theoryen_US
dc.subject2013en_US
dc.titleNovel symmetries N=2 in supersymmetric quantum mechanical modelsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleAnnals of Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.