Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSree Ranjani, P.en_US
dc.contributor.authorKapoor, A. K.en_US
dc.contributor.authorKHARE, AVINASHen_US
dc.contributor.authorPanigrahi, P. K.en_US
dc.date.accessioned2019-02-14T05:02:59Z
dc.date.available2019-02-14T05:02:59Z
dc.date.issued2013-08en_US
dc.identifier.citationPramana, 81(2), 237-246.en_US
dc.identifier.issn0304-4289en_US
dc.identifier.issn0973-7111en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1689-
dc.identifier.urihttps://doi.org/10.1007/s12043-013-0558-8en_US
dc.description.abstractQuantum Hamilton–Jacobi formalism is used to give a proof for Gozzi’s criterion, which states that for eigenstates of the supersymmetric partners, corresponding to the same energy, the difference in the number of nodes is equal to one when supersymmetry (SUSY) is unbroken and is zero when SUSY is broken. We also show that this proof is also applicable to the case, where isospectral deformation is involved.en_US
dc.language.isoenen_US
dc.publisherIndian Academy of Sciencesen_US
dc.subjectQuantum Hamilton-Jacobi formalismen_US
dc.subjectSupersymmetryen_US
dc.subjectGozzis criterion Exactly solvable modelsen_US
dc.subjectBound statesen_US
dc.subject2013en_US
dc.titleA quantum Hamilton Jacobi proof of the nodal structure of the wave functions of supersymmetric partner potentialsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePramanaen_US
dc.publication.originofpublisherIndianen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.