Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1742
Title: | On local Galois representations associated to ordinary Hilbert modular forms |
Authors: | BALASUBRAMANYAM, BASKAR Ghate, Eknath Vatsal, Vinayak Dept. of Mathematics |
Keywords: | Galois representations Ordinary Hilbert modular forms CM primitive Technical assumptions 2013 |
Issue Date: | Nov-2013 |
Publisher: | Springer Nature |
Citation: | Manuscripta Mathematica,142(3-4), 513-524. |
Abstract: | Let F be a totally real field and p be an odd prime which splits completely in F. We show that a generic p-ordinary non-CM primitive Hilbert modular cuspidal eigenform over F of parallel weight two or more must have a locally non-split p-adic Galois representation, at at least one of the primes of F lying above p. This is proved under some technical assumptions on the global residual Galois representation. We also indicate how to extend our results to nearly ordinary families and forms of non-parallel weight. |
URI: | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1742 https://doi.org/10.1007/s00229-013-0614-1 |
ISSN: | 0025-2611 1432-1785 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.