Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBALASUBRAMANYAM, BASKARen_US
dc.contributor.authorGhate, Eknathen_US
dc.contributor.authorVatsal, Vinayaken_US
dc.date.accessioned2019-02-14T05:46:11Z
dc.date.available2019-02-14T05:46:11Z
dc.date.issued2013-11en_US
dc.identifier.citationManuscripta Mathematica,142(3-4), 513-524.en_US
dc.identifier.issn0025-2611en_US
dc.identifier.issn1432-1785en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1742-
dc.identifier.urihttps://doi.org/10.1007/s00229-013-0614-1en_US
dc.description.abstractLet F be a totally real field and p be an odd prime which splits completely in F. We show that a generic p-ordinary non-CM primitive Hilbert modular cuspidal eigenform over F of parallel weight two or more must have a locally non-split p-adic Galois representation, at at least one of the primes of F lying above p. This is proved under some technical assumptions on the global residual Galois representation. We also indicate how to extend our results to nearly ordinary families and forms of non-parallel weight.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectGalois representationsen_US
dc.subjectOrdinary Hilbert modular formsen_US
dc.subjectCM primitiveen_US
dc.subjectTechnical assumptionsen_US
dc.subject2013en_US
dc.titleOn local Galois representations associated to ordinary Hilbert modular formsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleManuscripta Mathematicaen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.