Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1748
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorHOGADI, AMITen_US
dc.date.accessioned2019-02-14T05:46:12Z
dc.date.available2019-02-14T05:46:12Z
dc.date.issued2013-12en_US
dc.identifier.citationInternational Mathematics Research Notices, 2015(5), 1421-1444.en_US
dc.identifier.issn1421-1444en_US
dc.identifier.issn1687-0247en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1748-
dc.identifier.urihttps://doi.org/10.1093/imrn/rnt261en_US
dc.description.abstractLet k be a field, and let π:X~⟶X be a proper birational morphism of irreducible k-varieties, where X~ is smooth and X has at worst quotient singularities. When the characteristic of k is zero, a theorem of Kollár [7] says that π induces an isomorphism of étale fundamental groups. We give a proof of this result which works for all characteristics. As an application, we prove that for a smooth projective irreducible surface X over an algebraically closed field k, the étale fundamental group of the Hilbert scheme of n points of X, where n>1, is canonically isomorphic to the abelianization of the étale fundamental group of X. Kollár has pointed out how the proof of the first result can be extended to cover the case of quotients by finite group schemes.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectQuotient Singularitiesen_US
dc.subjectBirational morphismen_US
dc.subjectFundamental groupen_US
dc.subjectFinite group schemesen_US
dc.subject2013en_US
dc.titleOn the Fundamental Group of a Variety with Quotient Singularitiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Mathematics Research Noticesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.