Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1754
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMISHRA, RAMAen_US
dc.date.accessioned2019-02-14T05:46:12Z
dc.date.available2019-02-14T05:46:12Z
dc.date.issued2013-06en_US
dc.identifier.citationKyungpook Mathematical Journal, 54(2), 271-292.en_US
dc.identifier.issn1225-6951en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1754-
dc.identifier.urihttps://doi.org/10.5666/KMJ.2014.54.2.271en_US
dc.description.abstractWe introduce a new method to transform a knot diagram into a diagram of an unknot using a polynomial representation of the knot. Here the unknotting sequence of a knot diagram with least number of crossing changes can be realized by a family of polynomial maps. The number of singular knots in this family is defined to be the singularity index of the diagram. We show that the singularity index of a diagram is always less than or equal to its unknotting number.en_US
dc.language.isoenen_US
dc.publisherDepartment of Mathematics, Kyungpook National Universityen_US
dc.subjectPolynomialsen_US
dc.subjectMathematical singularitiesen_US
dc.subjectTransformations (mathematics)en_US
dc.subjectMathematical sequencesen_US
dc.subjectDouble pointen_US
dc.subjectImmersionen_US
dc.subjectUnknotting numberen_US
dc.subject2013en_US
dc.titlePolynomial Unknotting and Singularity Index.en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleKyungpook Mathematical Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.