Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1848
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBASU, RABEYAen_US
dc.date.accessioned2019-02-14T05:52:33Z
dc.date.available2019-02-14T05:52:33Z
dc.date.issued2011-07en_US
dc.identifier.citationJournal of Algebra and Its Applications, 10(4), 793-799.en_US
dc.identifier.issn0219-4988en_US
dc.identifier.issn1793-6829en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1848-
dc.identifier.urihttps://doi.org/10.1142/S0219498811004951en_US
dc.description.abstractWhen R is a commutative ring with identity, and if k ∈ ℕ, with kR = R, then it was shown in [C. Weibel, Mayer–Vietoris Sequence and Module Structure on NK0, Lecture Notes in Mathematics, Vol. 854 (Springer, 1981), pp. 466–498] that SK1(R[X]) has no k-torsion. We prove this result for any associative ring R with identity in which kR = R.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.subjectLinear groupen_US
dc.subjectK1en_US
dc.subjectNK1en_US
dc.subjectSK1en_US
dc.subjecttorsionen_US
dc.subjectWitt vectorsen_US
dc.subject2011en_US
dc.titleAbsence of torsion for NK_1(R) over associative ringsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Algebra and Its Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.