Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1849
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBASU, RABEYAen_US
dc.contributor.authorRao, Ravi A.en_US
dc.contributor.authorChattopadhyay, Pratyushaen_US
dc.date.accessioned2019-02-14T05:52:33Z
dc.date.available2019-02-14T05:52:33Z
dc.date.issued2011-01en_US
dc.identifier.citationProceedings of the American Mathematical Society, 139, 2317-2325.en_US
dc.identifier.issn1088-6826en_US
dc.identifier.issnFeb-39en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1849-
dc.identifier.urihttps://doi.org/10.1090/S0002-9939-2010-10654-8en_US
dc.description.abstractIt is shown that if $ A$ is an affine algebra of odd dimension $ d$ over an infinite field of cohomological dimension at most one, with $ (d +1)! A = A$, and with $ 4\vert(d -1)$, then Um $ _{d+1}(A) = e_1\textrm{Sp}_{d+1}(A)$. As a consequence it is shown that if $ A$ is a non-singular affine algebra of dimension $ d$ over an infinite field of cohomological dimension at most one, and $ d!A = A$, and $ 4\vert d$, then $ \textrm{Sp}_d(A) \cap \textrm{ESp}_{d+2}(A) = \textrm{ESp}_d(A)$. This result is a partial analogue for even-dimensional algebras of the one obtained by Basu and Rao for odd-dimensional algebras earlier.en_US
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.subjectSymplecticen_US
dc.subjectInjective stabilityen_US
dc.subjectCohomological dimensionen_US
dc.subject2011en_US
dc.titleSome remarks on symplectic injective stabilityen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleProceedings of the American Mathematical Societyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.