Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1849
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BASU, RABEYA | en_US |
dc.contributor.author | Rao, Ravi A. | en_US |
dc.contributor.author | Chattopadhyay, Pratyusha | en_US |
dc.date.accessioned | 2019-02-14T05:52:33Z | |
dc.date.available | 2019-02-14T05:52:33Z | |
dc.date.issued | 2011-01 | en_US |
dc.identifier.citation | Proceedings of the American Mathematical Society, 139, 2317-2325. | en_US |
dc.identifier.issn | 1088-6826 | en_US |
dc.identifier.issn | Feb-39 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1849 | - |
dc.identifier.uri | https://doi.org/10.1090/S0002-9939-2010-10654-8 | en_US |
dc.description.abstract | It is shown that if $ A$ is an affine algebra of odd dimension $ d$ over an infinite field of cohomological dimension at most one, with $ (d +1)! A = A$, and with $ 4\vert(d -1)$, then Um $ _{d+1}(A) = e_1\textrm{Sp}_{d+1}(A)$. As a consequence it is shown that if $ A$ is a non-singular affine algebra of dimension $ d$ over an infinite field of cohomological dimension at most one, and $ d!A = A$, and $ 4\vert d$, then $ \textrm{Sp}_d(A) \cap \textrm{ESp}_{d+2}(A) = \textrm{ESp}_d(A)$. This result is a partial analogue for even-dimensional algebras of the one obtained by Basu and Rao for odd-dimensional algebras earlier. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.subject | Symplectic | en_US |
dc.subject | Injective stability | en_US |
dc.subject | Cohomological dimension | en_US |
dc.subject | 2011 | en_US |
dc.title | Some remarks on symplectic injective stability | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Proceedings of the American Mathematical Society | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.