Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBasak, Gopal K.en_US
dc.contributor.authorGhosh, Mrinal K.en_US
dc.contributor.authorGOSWAMI, ANINDYAen_US
dc.date.accessioned2019-02-14T05:52:33Z-
dc.date.available2019-02-14T05:52:33Z-
dc.date.issued2011-02en_US
dc.identifier.citationStochastic Analysis and Applications, 29(2), 259-281.en_US
dc.identifier.issn1532-9356en_US
dc.identifier.issn0736-2994en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/1850-
dc.identifier.urihttps://doi.org/10.1080/07362994.2011.548665en_US
dc.description.abstractWe address risk minimizing option pricing in a regime switching market where the floating interest rate depends on a finite state Markov process. The growth rate and the volatility of the stock also depend on the Markov process. Using the minimal martingale measure, we show that the locally risk minimizing prices for certain exotic options satisfy a system of Black-Scholes partial differential equations with appropriate boundary conditions. We find the corresponding hedging strategies and the residual risk. We develop suitable numerical methods to compute option prices.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectBlack-Scholes equationsen_US
dc.subjectExotic Optionsen_US
dc.subjectLocally risk minimizingen_US
dc.subjectoption priceen_US
dc.subjectMarkov modulated marketen_US
dc.subjectMinimal martingale measureen_US
dc.subject2011en_US
dc.titleRisk Minimizing Option Pricing for a Class of Exotic Options in a Markov-Modulated Marketen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleStochastic Analysis and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.