Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2026
Title: Sensitized solar cell from type-II CdTe/CdSe core/shell nanocrystals synthesized without seed purification at low temperature
Authors: Patil, Padmashri
Laltlanzuala, C.
DATTA, SHOUVIK
Dept. of Physics
Keywords: Nanocrystals
Heterostructure
Synthesis
Photovoltaics
Heterostructure nanocrystals
Thickest shell nanocrystals
2014
Issue Date: Sep-2014
Publisher: Elsevier B.V.
Citation: Journal of Alloys and Compounds, 607, 230-237.
Abstract: Quicker and simpler chemical fabrication route is always desirable for synthesis of technologically important nanocrystals. Here we propose simple aqueous method for synthesis of type-II heterostructure of CdTe/CdSe core/shell nanocrystals without purification of CdTe seed at a relatively lower temperature of ∼80 °C. These core/shell nanocrystals show structural and optical properties comparable to the nanocrystals synthesized using purified CdTe seed nanocrystals. Longer photoluminescence lifetime with thicker shells are observed in such CdTe/CdSe core/shell heterostructures grown by both procedures which indicates more non-radiative decay channels are being added with increasing thickness of shell layer. Sensitized solar cells are fabricated using these good quality unpurified core/shell nanocrystals. We found that efficiency of solar cell is a strong function of shell thickness as the charge carrier separation is also function of shell thickness in these type-II heterostructure nanoparticles. The increment in short circuit current density in nanocrystals having thickest shell is ∼300% compared to the core–shell nanocrystals having the thinnest shell prepared by us. We also found that sintering of photo-anode sensitized with these CdTe/CdSe nanocrystals is very important for achieving higher efficiency. Calculated maximum efficiency of the solar cell fabricated using core/shell nanocrystals with thickest CdSe shell is ∼2% with JSC = 8.9 mA/cm2 and VOC = 0.53 V.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2026
https://doi.org/10.1016/j.jallcom.2014.04.072
ISSN: 0925-8388
0925-8388
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.