Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2030
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KHARE, AVINASH | en_US |
dc.contributor.author | Kanna, T. | en_US |
dc.contributor.author | Tamilselvan K. | en_US |
dc.date.accessioned | 2019-02-25T09:03:47Z | |
dc.date.available | 2019-02-25T09:03:47Z | |
dc.date.issued | 2014-08 | en_US |
dc.identifier.citation | Physics Letters A , 378(42), 3093-3101. | en_US |
dc.identifier.issn | 0375-9601 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2030 | - |
dc.identifier.uri | https://doi.org/10.1016/j.physleta.2014.09.006 | en_US |
dc.description.abstract | We consider - and -dimensional long-wave–short-wave resonance interaction systems. We construct an extensive set of exact periodic solutions of these systems in terms of Lamé polynomials of order one and two. The periodic solutions are classified into three categories as similar, mixed, superposed elliptic solutions. We also discuss the hyperbolic solutions as limiting cases. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | LSRI system | en_US |
dc.subject | Jacobi elliptic function | en_US |
dc.subject | Lame equation | en_US |
dc.subject | Lame polynomials | en_US |
dc.subject | Bright Dark | en_US |
dc.subject | Anti-dark soliton solutions | en_US |
dc.subject | 2014 | en_US |
dc.title | Elliptic waves in two-component long-wave–short-wave resonance interaction system in one and two dimensions | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Physics | en_US |
dc.identifier.sourcetitle | Physics Letters A | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.