Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2040
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhamesra, Bhaveshen_US
dc.contributor.authorVARDARAJAN, SUNEETAen_US
dc.date.accessioned2019-02-25T09:04:13Z
dc.date.available2019-02-25T09:04:13Z
dc.date.issued2014-07en_US
dc.identifier.citationPhysical Review D, 90(2), 024044.en_US
dc.identifier.issn2470-0010en_US
dc.identifier.issn2470-0029en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2040-
dc.identifier.urihttps://doi.org/10.1103/PhysRevD.90.024044en_US
dc.description.abstractWe consider spherically symmetric spacetimes sourced by a fluid with pressure anisotropy in the radial direction. We use gauge-invariant perturbation theory to study the stability of this class of spacetimes under axial perturbations. We apply our results to three diverse examples. Two examples arise as endpoints of collapse of a ball of fluid-one describes a well-behaved stellar interior, and the other has a naked singularity. We prove the stability of the stellar interior both with respect to Dirichlet and quasinormal mode boundary conditions on the perturbation. Surprisingly, the naked singularity is also stable under axial perturbations. Last, we take the example of anisotropic cosmology to show that, in this case, the relevant perturbations are those in which the direction of anisotropy is also perturbed.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectStability analysisen_US
dc.subjectAnisotropic spacetimesen_US
dc.subjectPerturbation theoryen_US
dc.subjectDirichlet and quasinormal mode boundaryen_US
dc.subject2014en_US
dc.titleStability analysis of a class of anisotropic spacetimesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePhysical Review Den_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.