Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2077
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BANERJEE, DEBARGHA | en_US |
dc.date.accessioned | 2019-02-25T09:04:44Z | |
dc.date.available | 2019-02-25T09:04:44Z | |
dc.date.issued | 2014-02 | en_US |
dc.identifier.citation | Journal of Number Theory 135, 353-373. | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.issn | 1096-1658 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2077 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jnt.2013.08.019 | en_US |
dc.description.abstract | We study the theory of differential modular forms for compact Shimura curves over totally real fields and construct differential modular forms, which are generalizations of the fundamental differential modular forms. We also construct the Serre–Tate expansions of such differential modular forms as a possible alternative to the Fourier expansion maps and calculate the Serre–Tate expansions of some of these differential modular forms. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Primary | en_US |
dc.subject | 13F35 | en_US |
dc.subject | Secondary | en_US |
dc.subject | 11F32 | en_US |
dc.subject | 11F41 | en_US |
dc.subject | 14D15 | en_US |
dc.subject | Witt vectorsp-Adic | en_US |
dc.subject | Modular forms | en_US |
dc.subject | Deformation theory | en_US |
dc.subject | 2014 | en_US |
dc.title | Differential modular forms on Shimura curves over totally real fields | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Number Theory 135 | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.