Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2077
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.date.accessioned2019-02-25T09:04:44Z
dc.date.available2019-02-25T09:04:44Z
dc.date.issued2014-02en_US
dc.identifier.citationJournal of Number Theory 135, 353-373.en_US
dc.identifier.issn0022-314Xen_US
dc.identifier.issn1096-1658en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2077-
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2013.08.019en_US
dc.description.abstractWe study the theory of differential modular forms for compact Shimura curves over totally real fields and construct differential modular forms, which are generalizations of the fundamental differential modular forms. We also construct the Serre–Tate expansions of such differential modular forms as a possible alternative to the Fourier expansion maps and calculate the Serre–Tate expansions of some of these differential modular forms.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPrimaryen_US
dc.subject13F35en_US
dc.subjectSecondaryen_US
dc.subject11F32en_US
dc.subject11F41en_US
dc.subject14D15en_US
dc.subjectWitt vectorsp-Adicen_US
dc.subjectModular formsen_US
dc.subjectDeformation theoryen_US
dc.subject2014en_US
dc.titleDifferential modular forms on Shimura curves over totally real fieldsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Number Theory 135en_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.