Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081
Title: | On the Faber–Krahn inequality for the Dirichlet p-Laplacian |
Authors: | CHORWADWALA, ANISA M. H. Mahadevan, Rajesh Toledo, Francisco Dept. of Mathematics |
Keywords: | Symmetry Moving plane method Comparison Principles Boundary point lemma 2014 |
Issue Date: | Oct-2014 |
Publisher: | EDP Sciences |
Citation: | ESAIM: Control, Optimisation and Calculus of Variations, 21(1), 60 - 72. |
Abstract: | A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem. |
URI: | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081 https://doi.org/10.1051/cocv/2014017 |
ISSN: | 1292-8119 1262-3377 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.