Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081
Title: On the Faber–Krahn inequality for the Dirichlet p-Laplacian
Authors: CHORWADWALA, ANISA M. H.
Mahadevan, Rajesh
Toledo, Francisco
Dept. of Mathematics
Keywords: Symmetry
Moving plane method
Comparison Principles
Boundary point lemma
2014
Issue Date: Oct-2014
Publisher: EDP Sciences
Citation: ESAIM: Control, Optimisation and Calculus of Variations, 21(1), 60 - 72.
Abstract: A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081
https://doi.org/10.1051/cocv/2014017
ISSN: 1292-8119
1262-3377
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.