Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHORWADWALA, ANISA M. H.en_US
dc.contributor.authorMahadevan, Rajeshen_US
dc.contributor.authorToledo, Franciscoen_US
dc.date.accessioned2019-02-25T09:05:30Z
dc.date.available2019-02-25T09:05:30Z
dc.date.issued2014-10en_US
dc.identifier.citationESAIM: Control, Optimisation and Calculus of Variations, 21(1), 60 - 72.en_US
dc.identifier.issn1292-8119en_US
dc.identifier.issn1262-3377en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2081-
dc.identifier.urihttps://doi.org/10.1051/cocv/2014017en_US
dc.description.abstractA famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem.en_US
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.subjectSymmetryen_US
dc.subjectMoving plane methoden_US
dc.subjectComparison Principlesen_US
dc.subjectBoundary point lemmaen_US
dc.subject2014en_US
dc.titleOn the Faber–Krahn inequality for the Dirichlet p-Laplacianen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleESAIM: Controlen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.