Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2087
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGOSWAMI, ANINDYAen_US
dc.contributor.authorSaini, Ravi Kanten_US
dc.date.accessioned2019-02-25T09:05:30Z
dc.date.available2019-02-25T09:05:30Z
dc.date.issued2014-08en_US
dc.identifier.citationCogent Economics and Finance, 2 (1),en_US
dc.identifier.issn2332-2039en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2087-
dc.identifier.urihttps://doi.org/10.1080/23322039.2014.939769en_US
dc.description.abstractIt is known that the risk minimizing price of European options in Markov-modulated market satisfies a system of coupled PDE, known as generalized B–S–M PDE. In this paper, another system of equations, which can be categorized as a Volterra integral equations of second kind, are considered. It is shown that this system of integral equations has smooth solution and the solution solves the generalized B–S–M PDE. Apart from showing existence and uniqueness of the PDE, this IE representation helps to develop a new computational method. It enables to compute the European option price and corresponding optimal hedging strategy by using quadrature method.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectMarkov modulated marketen_US
dc.subjectlocally risk minimizing option priceen_US
dc.subjectBlack-Scholesen_US
dc.subjectMerton equationsen_US
dc.subjectVolterra equationen_US
dc.subjectQuadrature methoden_US
dc.subject2014en_US
dc.titleVolterra equation for pricing and hedging in a regime switching marketen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCogent Economics and Financeen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.